fix debug-options
[bpt/guile.git] / module / ice-9 / boot-9.scm
... / ...
CommitLineData
1;;; installed-scm-file
2
3;;;; Copyright (C) 1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2009
4;;;; Free Software Foundation, Inc.
5;;;;
6;;;; This library is free software; you can redistribute it and/or
7;;;; modify it under the terms of the GNU Lesser General Public
8;;;; License as published by the Free Software Foundation; either
9;;;; version 2.1 of the License, or (at your option) any later version.
10;;;;
11;;;; This library is distributed in the hope that it will be useful,
12;;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
13;;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14;;;; Lesser General Public License for more details.
15;;;;
16;;;; You should have received a copy of the GNU Lesser General Public
17;;;; License along with this library; if not, write to the Free Software
18;;;; Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19;;;;
20
21\f
22
23;;; Commentary:
24
25;;; This file is the first thing loaded into Guile. It adds many mundane
26;;; definitions and a few that are interesting.
27;;;
28;;; The module system (hence the hierarchical namespace) are defined in this
29;;; file.
30;;;
31
32;;; Code:
33
34\f
35
36;; Before compiling, make sure any symbols are resolved in the (guile)
37;; module, the primary location of those symbols, rather than in
38;; (guile-user), the default module that we compile in.
39
40(eval-when (compile)
41 (set-current-module (resolve-module '(guile))))
42
43;;; {R4RS compliance}
44;;;
45
46(primitive-load-path "ice-9/r4rs")
47
48\f
49
50;;; {Simple Debugging Tools}
51;;;
52
53;; peek takes any number of arguments, writes them to the
54;; current ouput port, and returns the last argument.
55;; It is handy to wrap around an expression to look at
56;; a value each time is evaluated, e.g.:
57;;
58;; (+ 10 (troublesome-fn))
59;; => (+ 10 (pk 'troublesome-fn-returned (troublesome-fn)))
60;;
61
62(define (peek . stuff)
63 (newline)
64 (display ";;; ")
65 (write stuff)
66 (newline)
67 (car (last-pair stuff)))
68
69(define pk peek)
70
71(define (warn . stuff)
72 (with-output-to-port (current-error-port)
73 (lambda ()
74 (newline)
75 (display ";;; WARNING ")
76 (display stuff)
77 (newline)
78 (car (last-pair stuff)))))
79
80\f
81
82;;; {Features}
83;;;
84
85(define (provide sym)
86 (if (not (memq sym *features*))
87 (set! *features* (cons sym *features*))))
88
89;; Return #t iff FEATURE is available to this Guile interpreter. In SLIB,
90;; provided? also checks to see if the module is available. We should do that
91;; too, but don't.
92
93(define (provided? feature)
94 (and (memq feature *features*) #t))
95
96\f
97
98;;; {and-map and or-map}
99;;;
100;;; (and-map fn lst) is like (and (fn (car lst)) (fn (cadr lst)) (fn...) ...)
101;;; (or-map fn lst) is like (or (fn (car lst)) (fn (cadr lst)) (fn...) ...)
102;;;
103
104;; and-map f l
105;;
106;; Apply f to successive elements of l until exhaustion or f returns #f.
107;; If returning early, return #f. Otherwise, return the last value returned
108;; by f. If f has never been called because l is empty, return #t.
109;;
110(define (and-map f lst)
111 (let loop ((result #t)
112 (l lst))
113 (and result
114 (or (and (null? l)
115 result)
116 (loop (f (car l)) (cdr l))))))
117
118;; or-map f l
119;;
120;; Apply f to successive elements of l until exhaustion or while f returns #f.
121;; If returning early, return the return value of f.
122;;
123(define (or-map f lst)
124 (let loop ((result #f)
125 (l lst))
126 (or result
127 (and (not (null? l))
128 (loop (f (car l)) (cdr l))))))
129
130\f
131
132;; let format alias simple-format until the more complete version is loaded
133
134(define format simple-format)
135
136;; this is scheme wrapping the C code so the final pred call is a tail call,
137;; per SRFI-13 spec
138(define (string-any char_pred s . rest)
139 (let ((start (if (null? rest)
140 0 (car rest)))
141 (end (if (or (null? rest) (null? (cdr rest)))
142 (string-length s) (cadr rest))))
143 (if (and (procedure? char_pred)
144 (> end start)
145 (<= end (string-length s))) ;; let c-code handle range error
146 (or (string-any-c-code char_pred s start (1- end))
147 (char_pred (string-ref s (1- end))))
148 (string-any-c-code char_pred s start end))))
149
150;; this is scheme wrapping the C code so the final pred call is a tail call,
151;; per SRFI-13 spec
152(define (string-every char_pred s . rest)
153 (let ((start (if (null? rest)
154 0 (car rest)))
155 (end (if (or (null? rest) (null? (cdr rest)))
156 (string-length s) (cadr rest))))
157 (if (and (procedure? char_pred)
158 (> end start)
159 (<= end (string-length s))) ;; let c-code handle range error
160 (and (string-every-c-code char_pred s start (1- end))
161 (char_pred (string-ref s (1- end))))
162 (string-every-c-code char_pred s start end))))
163
164;; A variant of string-fill! that we keep for compatability
165;;
166(define (substring-fill! str start end fill)
167 (string-fill! str fill start end))
168
169\f
170
171;; Define a minimal stub of the module API for psyntax, before modules
172;; have booted.
173(define (module-name x)
174 '(guile))
175(define (module-define! module sym val)
176 (let ((v (hashq-ref (%get-pre-modules-obarray) sym)))
177 (if v
178 (variable-set! v val)
179 (hashq-set! (%get-pre-modules-obarray) sym
180 (make-variable val)))))
181(define (module-ref module sym)
182 (let ((v (module-variable module sym)))
183 (if v (variable-ref v) (error "badness!" (pk module) (pk sym)))))
184(define (resolve-module . args)
185 #f)
186
187;; Input hook to syncase -- so that we might be able to pass annotated
188;; expressions in. Currently disabled. Maybe we should just use
189;; source-properties directly.
190(define (annotation? x) #f)
191
192;; API provided by psyntax
193(define syntax-violation #f)
194(define datum->syntax #f)
195(define syntax->datum #f)
196(define identifier? #f)
197(define generate-temporaries #f)
198(define bound-identifier=? #f)
199(define free-identifier=? #f)
200(define sc-expand #f)
201
202;; $sc-expand is an implementation detail of psyntax. It is used by
203;; expanded macros, to dispatch an input against a set of patterns.
204(define $sc-dispatch #f)
205
206;; Load it up!
207(primitive-load-path "ice-9/psyntax-pp")
208
209;; %pre-modules-transformer is the Scheme expander from now until the
210;; module system has booted up.
211(define %pre-modules-transformer sc-expand)
212
213(define-syntax and
214 (syntax-rules ()
215 ((_) #t)
216 ((_ x) x)
217 ((_ x y ...) (if x (and y ...) #f))))
218
219(define-syntax or
220 (syntax-rules ()
221 ((_) #f)
222 ((_ x) x)
223 ((_ x y ...) (let ((t x)) (if t t (or y ...))))))
224
225;; The "maybe-more" bits are something of a hack, so that we can support
226;; SRFI-61. Rewrites into a standalone syntax-case macro would be
227;; appreciated.
228(define-syntax cond
229 (syntax-rules (=> else)
230 ((_ "maybe-more" test consequent)
231 (if test consequent))
232
233 ((_ "maybe-more" test consequent clause ...)
234 (if test consequent (cond clause ...)))
235
236 ((_ (else else1 else2 ...))
237 (begin else1 else2 ...))
238
239 ((_ (test => receiver) more-clause ...)
240 (let ((t test))
241 (cond "maybe-more" t (receiver t) more-clause ...)))
242
243 ((_ (generator guard => receiver) more-clause ...)
244 (call-with-values (lambda () generator)
245 (lambda t
246 (cond "maybe-more"
247 (apply guard t) (apply receiver t) more-clause ...))))
248
249 ((_ (test => receiver ...) more-clause ...)
250 (syntax-violation 'cond "wrong number of receiver expressions"
251 '(test => receiver ...)))
252 ((_ (generator guard => receiver ...) more-clause ...)
253 (syntax-violation 'cond "wrong number of receiver expressions"
254 '(generator guard => receiver ...)))
255
256 ((_ (test) more-clause ...)
257 (let ((t test))
258 (cond "maybe-more" t t more-clause ...)))
259
260 ((_ (test body1 body2 ...) more-clause ...)
261 (cond "maybe-more"
262 test (begin body1 body2 ...) more-clause ...))))
263
264(define-syntax case
265 (syntax-rules (else)
266 ((case (key ...)
267 clauses ...)
268 (let ((atom-key (key ...)))
269 (case atom-key clauses ...)))
270 ((case key
271 (else result1 result2 ...))
272 (begin result1 result2 ...))
273 ((case key
274 ((atoms ...) result1 result2 ...))
275 (if (memv key '(atoms ...))
276 (begin result1 result2 ...)))
277 ((case key
278 ((atoms ...) result1 result2 ...)
279 clause clauses ...)
280 (if (memv key '(atoms ...))
281 (begin result1 result2 ...)
282 (case key clause clauses ...)))))
283
284(define-syntax do
285 (syntax-rules ()
286 ((do ((var init step ...) ...)
287 (test expr ...)
288 command ...)
289 (letrec
290 ((loop
291 (lambda (var ...)
292 (if test
293 (begin
294 (if #f #f)
295 expr ...)
296 (begin
297 command
298 ...
299 (loop (do "step" var step ...)
300 ...))))))
301 (loop init ...)))
302 ((do "step" x)
303 x)
304 ((do "step" x y)
305 y)))
306
307(define-syntax delay
308 (syntax-rules ()
309 ((_ exp) (make-promise (lambda () exp)))))
310
311\f
312
313;;; {Defmacros}
314;;;
315
316(define-syntax define-macro
317 (lambda (x)
318 "Define a defmacro."
319 (syntax-case x ()
320 ((_ (macro . args) doc body1 body ...)
321 (string? (syntax->datum (syntax doc)))
322 (syntax (define-macro macro doc (lambda args body1 body ...))))
323 ((_ (macro . args) body ...)
324 (syntax (define-macro macro #f (lambda args body ...))))
325 ((_ macro doc transformer)
326 (or (string? (syntax->datum (syntax doc)))
327 (not (syntax->datum (syntax doc))))
328 (syntax
329 (define-syntax macro
330 (lambda (y)
331 doc
332 (syntax-case y ()
333 ((_ . args)
334 (let ((v (syntax->datum (syntax args))))
335 (datum->syntax y (apply transformer v))))))))))))
336
337(define-syntax defmacro
338 (lambda (x)
339 "Define a defmacro, with the old lispy defun syntax."
340 (syntax-case x ()
341 ((_ macro args doc body1 body ...)
342 (string? (syntax->datum (syntax doc)))
343 (syntax (define-macro macro doc (lambda args body1 body ...))))
344 ((_ macro args body ...)
345 (syntax (define-macro macro #f (lambda args body ...)))))))
346
347(provide 'defmacro)
348
349\f
350
351;;; {Deprecation}
352;;;
353;;; Depends on: defmacro
354;;;
355
356(defmacro begin-deprecated forms
357 (if (include-deprecated-features)
358 `(begin ,@forms)
359 `(begin)))
360
361\f
362
363;;; {Trivial Functions}
364;;;
365
366(define (identity x) x)
367(define (and=> value procedure) (and value (procedure value)))
368(define call/cc call-with-current-continuation)
369
370;;; apply-to-args is functionally redundant with apply and, worse,
371;;; is less general than apply since it only takes two arguments.
372;;;
373;;; On the other hand, apply-to-args is a syntacticly convenient way to
374;;; perform binding in many circumstances when the "let" family of
375;;; of forms don't cut it. E.g.:
376;;;
377;;; (apply-to-args (return-3d-mouse-coords)
378;;; (lambda (x y z)
379;;; ...))
380;;;
381
382(define (apply-to-args args fn) (apply fn args))
383
384(defmacro false-if-exception (expr)
385 `(catch #t
386 (lambda ()
387 ;; avoid saving backtraces inside false-if-exception
388 (with-fluid* the-last-stack (fluid-ref the-last-stack)
389 (lambda () ,expr)))
390 (lambda args #f)))
391
392\f
393
394;;; {General Properties}
395;;;
396
397;; This is a more modern interface to properties. It will replace all
398;; other property-like things eventually.
399
400(define (make-object-property)
401 (let ((prop (primitive-make-property #f)))
402 (make-procedure-with-setter
403 (lambda (obj) (primitive-property-ref prop obj))
404 (lambda (obj val) (primitive-property-set! prop obj val)))))
405
406\f
407
408;;; {Symbol Properties}
409;;;
410
411(define (symbol-property sym prop)
412 (let ((pair (assoc prop (symbol-pref sym))))
413 (and pair (cdr pair))))
414
415(define (set-symbol-property! sym prop val)
416 (let ((pair (assoc prop (symbol-pref sym))))
417 (if pair
418 (set-cdr! pair val)
419 (symbol-pset! sym (acons prop val (symbol-pref sym))))))
420
421(define (symbol-property-remove! sym prop)
422 (let ((pair (assoc prop (symbol-pref sym))))
423 (if pair
424 (symbol-pset! sym (delq! pair (symbol-pref sym))))))
425
426\f
427
428;;; {Arrays}
429;;;
430
431(define (array-shape a)
432 (map (lambda (ind) (if (number? ind) (list 0 (+ -1 ind)) ind))
433 (array-dimensions a)))
434
435\f
436
437;;; {Keywords}
438;;;
439
440(define (kw-arg-ref args kw)
441 (let ((rem (member kw args)))
442 (and rem (pair? (cdr rem)) (cadr rem))))
443
444\f
445
446;;; {Structs}
447;;;
448
449(define (struct-layout s)
450 (struct-ref (struct-vtable s) vtable-index-layout))
451
452\f
453
454;;; {Records}
455;;;
456
457;; Printing records: by default, records are printed as
458;;
459;; #<type-name field1: val1 field2: val2 ...>
460;;
461;; You can change that by giving a custom printing function to
462;; MAKE-RECORD-TYPE (after the list of field symbols). This function
463;; will be called like
464;;
465;; (<printer> object port)
466;;
467;; It should print OBJECT to PORT.
468
469(define (inherit-print-state old-port new-port)
470 (if (get-print-state old-port)
471 (port-with-print-state new-port (get-print-state old-port))
472 new-port))
473
474;; 0: type-name, 1: fields
475(define record-type-vtable
476 (make-vtable-vtable "prpr" 0
477 (lambda (s p)
478 (cond ((eq? s record-type-vtable)
479 (display "#<record-type-vtable>" p))
480 (else
481 (display "#<record-type " p)
482 (display (record-type-name s) p)
483 (display ">" p))))))
484
485(define (record-type? obj)
486 (and (struct? obj) (eq? record-type-vtable (struct-vtable obj))))
487
488(define (make-record-type type-name fields . opt)
489 (let ((printer-fn (and (pair? opt) (car opt))))
490 (let ((struct (make-struct record-type-vtable 0
491 (make-struct-layout
492 (apply string-append
493 (map (lambda (f) "pw") fields)))
494 (or printer-fn
495 (lambda (s p)
496 (display "#<" p)
497 (display type-name p)
498 (let loop ((fields fields)
499 (off 0))
500 (cond
501 ((not (null? fields))
502 (display " " p)
503 (display (car fields) p)
504 (display ": " p)
505 (display (struct-ref s off) p)
506 (loop (cdr fields) (+ 1 off)))))
507 (display ">" p)))
508 type-name
509 (copy-tree fields))))
510 ;; Temporary solution: Associate a name to the record type descriptor
511 ;; so that the object system can create a wrapper class for it.
512 (set-struct-vtable-name! struct (if (symbol? type-name)
513 type-name
514 (string->symbol type-name)))
515 struct)))
516
517(define (record-type-name obj)
518 (if (record-type? obj)
519 (struct-ref obj vtable-offset-user)
520 (error 'not-a-record-type obj)))
521
522(define (record-type-fields obj)
523 (if (record-type? obj)
524 (struct-ref obj (+ 1 vtable-offset-user))
525 (error 'not-a-record-type obj)))
526
527(define (record-constructor rtd . opt)
528 (let ((field-names (if (pair? opt) (car opt) (record-type-fields rtd))))
529 (primitive-eval
530 `(lambda ,field-names
531 (make-struct ',rtd 0 ,@(map (lambda (f)
532 (if (memq f field-names)
533 f
534 #f))
535 (record-type-fields rtd)))))))
536
537(define (record-predicate rtd)
538 (lambda (obj) (and (struct? obj) (eq? rtd (struct-vtable obj)))))
539
540(define (%record-type-error rtd obj) ;; private helper
541 (or (eq? rtd (record-type-descriptor obj))
542 (scm-error 'wrong-type-arg "%record-type-check"
543 "Wrong type record (want `~S'): ~S"
544 (list (record-type-name rtd) obj)
545 #f)))
546
547(define (record-accessor rtd field-name)
548 (let ((pos (list-index (record-type-fields rtd) field-name)))
549 (if (not pos)
550 (error 'no-such-field field-name))
551 (lambda (obj)
552 (if (eq? (struct-vtable obj) rtd)
553 (struct-ref obj pos)
554 (%record-type-error rtd obj)))))
555
556(define (record-modifier rtd field-name)
557 (let ((pos (list-index (record-type-fields rtd) field-name)))
558 (if (not pos)
559 (error 'no-such-field field-name))
560 (lambda (obj val)
561 (if (eq? (struct-vtable obj) rtd)
562 (struct-set! obj pos val)
563 (%record-type-error rtd obj)))))
564
565(define (record? obj)
566 (and (struct? obj) (record-type? (struct-vtable obj))))
567
568(define (record-type-descriptor obj)
569 (if (struct? obj)
570 (struct-vtable obj)
571 (error 'not-a-record obj)))
572
573(provide 'record)
574
575\f
576
577;;; {Booleans}
578;;;
579
580(define (->bool x) (not (not x)))
581
582\f
583
584;;; {Symbols}
585;;;
586
587(define (symbol-append . args)
588 (string->symbol (apply string-append (map symbol->string args))))
589
590(define (list->symbol . args)
591 (string->symbol (apply list->string args)))
592
593(define (symbol . args)
594 (string->symbol (apply string args)))
595
596\f
597
598;;; {Lists}
599;;;
600
601(define (list-index l k)
602 (let loop ((n 0)
603 (l l))
604 (and (not (null? l))
605 (if (eq? (car l) k)
606 n
607 (loop (+ n 1) (cdr l))))))
608
609\f
610
611(if (provided? 'posix)
612 (primitive-load-path "ice-9/posix"))
613
614(if (provided? 'socket)
615 (primitive-load-path "ice-9/networking"))
616
617;; For reference, Emacs file-exists-p uses stat in this same way.
618(define file-exists?
619 (if (provided? 'posix)
620 (lambda (str)
621 (->bool (stat str #f)))
622 (lambda (str)
623 (let ((port (catch 'system-error (lambda () (open-file str OPEN_READ))
624 (lambda args #f))))
625 (if port (begin (close-port port) #t)
626 #f)))))
627
628(define file-is-directory?
629 (if (provided? 'posix)
630 (lambda (str)
631 (eq? (stat:type (stat str)) 'directory))
632 (lambda (str)
633 (let ((port (catch 'system-error
634 (lambda () (open-file (string-append str "/.")
635 OPEN_READ))
636 (lambda args #f))))
637 (if port (begin (close-port port) #t)
638 #f)))))
639
640(define (has-suffix? str suffix)
641 (string-suffix? suffix str))
642
643(define (system-error-errno args)
644 (if (eq? (car args) 'system-error)
645 (car (list-ref args 4))
646 #f))
647
648\f
649
650;;; {Error Handling}
651;;;
652
653(define (error . args)
654 (save-stack)
655 (if (null? args)
656 (scm-error 'misc-error #f "?" #f #f)
657 (let loop ((msg "~A")
658 (rest (cdr args)))
659 (if (not (null? rest))
660 (loop (string-append msg " ~S")
661 (cdr rest))
662 (scm-error 'misc-error #f msg args #f)))))
663
664;; bad-throw is the hook that is called upon a throw to a an unhandled
665;; key (unless the throw has four arguments, in which case
666;; it's usually interpreted as an error throw.)
667;; If the key has a default handler (a throw-handler-default property),
668;; it is applied to the throw.
669;;
670(define (bad-throw key . args)
671 (let ((default (symbol-property key 'throw-handler-default)))
672 (or (and default (apply default key args))
673 (apply error "unhandled-exception:" key args))))
674
675\f
676
677(define (tm:sec obj) (vector-ref obj 0))
678(define (tm:min obj) (vector-ref obj 1))
679(define (tm:hour obj) (vector-ref obj 2))
680(define (tm:mday obj) (vector-ref obj 3))
681(define (tm:mon obj) (vector-ref obj 4))
682(define (tm:year obj) (vector-ref obj 5))
683(define (tm:wday obj) (vector-ref obj 6))
684(define (tm:yday obj) (vector-ref obj 7))
685(define (tm:isdst obj) (vector-ref obj 8))
686(define (tm:gmtoff obj) (vector-ref obj 9))
687(define (tm:zone obj) (vector-ref obj 10))
688
689(define (set-tm:sec obj val) (vector-set! obj 0 val))
690(define (set-tm:min obj val) (vector-set! obj 1 val))
691(define (set-tm:hour obj val) (vector-set! obj 2 val))
692(define (set-tm:mday obj val) (vector-set! obj 3 val))
693(define (set-tm:mon obj val) (vector-set! obj 4 val))
694(define (set-tm:year obj val) (vector-set! obj 5 val))
695(define (set-tm:wday obj val) (vector-set! obj 6 val))
696(define (set-tm:yday obj val) (vector-set! obj 7 val))
697(define (set-tm:isdst obj val) (vector-set! obj 8 val))
698(define (set-tm:gmtoff obj val) (vector-set! obj 9 val))
699(define (set-tm:zone obj val) (vector-set! obj 10 val))
700
701(define (tms:clock obj) (vector-ref obj 0))
702(define (tms:utime obj) (vector-ref obj 1))
703(define (tms:stime obj) (vector-ref obj 2))
704(define (tms:cutime obj) (vector-ref obj 3))
705(define (tms:cstime obj) (vector-ref obj 4))
706
707(define file-position ftell)
708(define (file-set-position port offset . whence)
709 (let ((whence (if (eq? whence '()) SEEK_SET (car whence))))
710 (seek port offset whence)))
711
712(define (move->fdes fd/port fd)
713 (cond ((integer? fd/port)
714 (dup->fdes fd/port fd)
715 (close fd/port)
716 fd)
717 (else
718 (primitive-move->fdes fd/port fd)
719 (set-port-revealed! fd/port 1)
720 fd/port)))
721
722(define (release-port-handle port)
723 (let ((revealed (port-revealed port)))
724 (if (> revealed 0)
725 (set-port-revealed! port (- revealed 1)))))
726
727(define (dup->port port/fd mode . maybe-fd)
728 (let ((port (fdopen (apply dup->fdes port/fd maybe-fd)
729 mode)))
730 (if (pair? maybe-fd)
731 (set-port-revealed! port 1))
732 port))
733
734(define (dup->inport port/fd . maybe-fd)
735 (apply dup->port port/fd "r" maybe-fd))
736
737(define (dup->outport port/fd . maybe-fd)
738 (apply dup->port port/fd "w" maybe-fd))
739
740(define (dup port/fd . maybe-fd)
741 (if (integer? port/fd)
742 (apply dup->fdes port/fd maybe-fd)
743 (apply dup->port port/fd (port-mode port/fd) maybe-fd)))
744
745(define (duplicate-port port modes)
746 (dup->port port modes))
747
748(define (fdes->inport fdes)
749 (let loop ((rest-ports (fdes->ports fdes)))
750 (cond ((null? rest-ports)
751 (let ((result (fdopen fdes "r")))
752 (set-port-revealed! result 1)
753 result))
754 ((input-port? (car rest-ports))
755 (set-port-revealed! (car rest-ports)
756 (+ (port-revealed (car rest-ports)) 1))
757 (car rest-ports))
758 (else
759 (loop (cdr rest-ports))))))
760
761(define (fdes->outport fdes)
762 (let loop ((rest-ports (fdes->ports fdes)))
763 (cond ((null? rest-ports)
764 (let ((result (fdopen fdes "w")))
765 (set-port-revealed! result 1)
766 result))
767 ((output-port? (car rest-ports))
768 (set-port-revealed! (car rest-ports)
769 (+ (port-revealed (car rest-ports)) 1))
770 (car rest-ports))
771 (else
772 (loop (cdr rest-ports))))))
773
774(define (port->fdes port)
775 (set-port-revealed! port (+ (port-revealed port) 1))
776 (fileno port))
777
778(define (setenv name value)
779 (if value
780 (putenv (string-append name "=" value))
781 (putenv name)))
782
783(define (unsetenv name)
784 "Remove the entry for NAME from the environment."
785 (putenv name))
786
787\f
788
789;;; {Load Paths}
790;;;
791
792;;; Here for backward compatability
793;;
794(define scheme-file-suffix (lambda () ".scm"))
795
796(define (in-vicinity vicinity file)
797 (let ((tail (let ((len (string-length vicinity)))
798 (if (zero? len)
799 #f
800 (string-ref vicinity (- len 1))))))
801 (string-append vicinity
802 (if (or (not tail)
803 (eq? tail #\/))
804 ""
805 "/")
806 file)))
807
808\f
809
810;;; {Help for scm_shell}
811;;;
812;;; The argument-processing code used by Guile-based shells generates
813;;; Scheme code based on the argument list. This page contains help
814;;; functions for the code it generates.
815;;;
816
817(define (command-line) (program-arguments))
818
819;; This is mostly for the internal use of the code generated by
820;; scm_compile_shell_switches.
821
822(define (turn-on-debugging)
823 (debug-enable 'debug)
824 (debug-enable 'backtrace)
825 (read-enable 'positions))
826
827(define (load-user-init)
828 (let* ((home (or (getenv "HOME")
829 (false-if-exception (passwd:dir (getpwuid (getuid))))
830 "/")) ;; fallback for cygwin etc.
831 (init-file (in-vicinity home ".guile")))
832 (if (file-exists? init-file)
833 (primitive-load init-file))))
834
835\f
836
837;;; {The interpreter stack}
838;;;
839
840(defmacro start-stack (tag exp)
841 `(%start-stack ,tag (lambda () ,exp)))
842
843\f
844
845;;; {Loading by paths}
846;;;
847
848;;; Load a Scheme source file named NAME, searching for it in the
849;;; directories listed in %load-path, and applying each of the file
850;;; name extensions listed in %load-extensions.
851(define (load-from-path name)
852 (start-stack 'load-stack
853 (primitive-load-path name)))
854
855(define %load-verbosely #f)
856(define (assert-load-verbosity v) (set! %load-verbosely v))
857
858(define (%load-announce file)
859 (if %load-verbosely
860 (with-output-to-port (current-error-port)
861 (lambda ()
862 (display ";;; ")
863 (display "loading ")
864 (display file)
865 (newline)
866 (force-output)))))
867
868(set! %load-hook %load-announce)
869
870(define (load name . reader)
871 (with-fluid* current-reader (and (pair? reader) (car reader))
872 (lambda ()
873 (start-stack 'load-stack
874 (primitive-load name)))))
875
876\f
877
878;;; {Transcendental Functions}
879;;;
880;;; Derived from "Transcen.scm", Complex trancendental functions for SCM.
881;;; Written by Jerry D. Hedden, (C) FSF.
882;;; See the file `COPYING' for terms applying to this program.
883;;;
884
885(define expt
886 (let ((integer-expt integer-expt))
887 (lambda (z1 z2)
888 (cond ((and (exact? z2) (integer? z2))
889 (integer-expt z1 z2))
890 ((and (real? z2) (real? z1) (>= z1 0))
891 ($expt z1 z2))
892 (else
893 (exp (* z2 (log z1))))))))
894
895(define (sinh z)
896 (if (real? z) ($sinh z)
897 (let ((x (real-part z)) (y (imag-part z)))
898 (make-rectangular (* ($sinh x) ($cos y))
899 (* ($cosh x) ($sin y))))))
900(define (cosh z)
901 (if (real? z) ($cosh z)
902 (let ((x (real-part z)) (y (imag-part z)))
903 (make-rectangular (* ($cosh x) ($cos y))
904 (* ($sinh x) ($sin y))))))
905(define (tanh z)
906 (if (real? z) ($tanh z)
907 (let* ((x (* 2 (real-part z)))
908 (y (* 2 (imag-part z)))
909 (w (+ ($cosh x) ($cos y))))
910 (make-rectangular (/ ($sinh x) w) (/ ($sin y) w)))))
911
912(define (asinh z)
913 (if (real? z) ($asinh z)
914 (log (+ z (sqrt (+ (* z z) 1))))))
915
916(define (acosh z)
917 (if (and (real? z) (>= z 1))
918 ($acosh z)
919 (log (+ z (sqrt (- (* z z) 1))))))
920
921(define (atanh z)
922 (if (and (real? z) (> z -1) (< z 1))
923 ($atanh z)
924 (/ (log (/ (+ 1 z) (- 1 z))) 2)))
925
926(define (sin z)
927 (if (real? z) ($sin z)
928 (let ((x (real-part z)) (y (imag-part z)))
929 (make-rectangular (* ($sin x) ($cosh y))
930 (* ($cos x) ($sinh y))))))
931(define (cos z)
932 (if (real? z) ($cos z)
933 (let ((x (real-part z)) (y (imag-part z)))
934 (make-rectangular (* ($cos x) ($cosh y))
935 (- (* ($sin x) ($sinh y)))))))
936(define (tan z)
937 (if (real? z) ($tan z)
938 (let* ((x (* 2 (real-part z)))
939 (y (* 2 (imag-part z)))
940 (w (+ ($cos x) ($cosh y))))
941 (make-rectangular (/ ($sin x) w) (/ ($sinh y) w)))))
942
943(define (asin z)
944 (if (and (real? z) (>= z -1) (<= z 1))
945 ($asin z)
946 (* -i (asinh (* +i z)))))
947
948(define (acos z)
949 (if (and (real? z) (>= z -1) (<= z 1))
950 ($acos z)
951 (+ (/ (angle -1) 2) (* +i (asinh (* +i z))))))
952
953(define (atan z . y)
954 (if (null? y)
955 (if (real? z) ($atan z)
956 (/ (log (/ (- +i z) (+ +i z))) +2i))
957 ($atan2 z (car y))))
958
959\f
960
961;;; {Reader Extensions}
962;;;
963;;; Reader code for various "#c" forms.
964;;;
965
966(define read-eval? (make-fluid))
967(fluid-set! read-eval? #f)
968(read-hash-extend #\.
969 (lambda (c port)
970 (if (fluid-ref read-eval?)
971 (eval (read port) (interaction-environment))
972 (error
973 "#. read expansion found and read-eval? is #f."))))
974
975\f
976
977;;; {Command Line Options}
978;;;
979
980(define (get-option argv kw-opts kw-args return)
981 (cond
982 ((null? argv)
983 (return #f #f argv))
984
985 ((or (not (eq? #\- (string-ref (car argv) 0)))
986 (eq? (string-length (car argv)) 1))
987 (return 'normal-arg (car argv) (cdr argv)))
988
989 ((eq? #\- (string-ref (car argv) 1))
990 (let* ((kw-arg-pos (or (string-index (car argv) #\=)
991 (string-length (car argv))))
992 (kw (symbol->keyword (substring (car argv) 2 kw-arg-pos)))
993 (kw-opt? (member kw kw-opts))
994 (kw-arg? (member kw kw-args))
995 (arg (or (and (not (eq? kw-arg-pos (string-length (car argv))))
996 (substring (car argv)
997 (+ kw-arg-pos 1)
998 (string-length (car argv))))
999 (and kw-arg?
1000 (begin (set! argv (cdr argv)) (car argv))))))
1001 (if (or kw-opt? kw-arg?)
1002 (return kw arg (cdr argv))
1003 (return 'usage-error kw (cdr argv)))))
1004
1005 (else
1006 (let* ((char (substring (car argv) 1 2))
1007 (kw (symbol->keyword char)))
1008 (cond
1009
1010 ((member kw kw-opts)
1011 (let* ((rest-car (substring (car argv) 2 (string-length (car argv))))
1012 (new-argv (if (= 0 (string-length rest-car))
1013 (cdr argv)
1014 (cons (string-append "-" rest-car) (cdr argv)))))
1015 (return kw #f new-argv)))
1016
1017 ((member kw kw-args)
1018 (let* ((rest-car (substring (car argv) 2 (string-length (car argv))))
1019 (arg (if (= 0 (string-length rest-car))
1020 (cadr argv)
1021 rest-car))
1022 (new-argv (if (= 0 (string-length rest-car))
1023 (cddr argv)
1024 (cdr argv))))
1025 (return kw arg new-argv)))
1026
1027 (else (return 'usage-error kw argv)))))))
1028
1029(define (for-next-option proc argv kw-opts kw-args)
1030 (let loop ((argv argv))
1031 (get-option argv kw-opts kw-args
1032 (lambda (opt opt-arg argv)
1033 (and opt (proc opt opt-arg argv loop))))))
1034
1035(define (display-usage-report kw-desc)
1036 (for-each
1037 (lambda (kw)
1038 (or (eq? (car kw) #t)
1039 (eq? (car kw) 'else)
1040 (let* ((opt-desc kw)
1041 (help (cadr opt-desc))
1042 (opts (car opt-desc))
1043 (opts-proper (if (string? (car opts)) (cdr opts) opts))
1044 (arg-name (if (string? (car opts))
1045 (string-append "<" (car opts) ">")
1046 ""))
1047 (left-part (string-append
1048 (with-output-to-string
1049 (lambda ()
1050 (map (lambda (x) (display (keyword->symbol x)) (display " "))
1051 opts-proper)))
1052 arg-name))
1053 (middle-part (if (and (< (string-length left-part) 30)
1054 (< (string-length help) 40))
1055 (make-string (- 30 (string-length left-part)) #\ )
1056 "\n\t")))
1057 (display left-part)
1058 (display middle-part)
1059 (display help)
1060 (newline))))
1061 kw-desc))
1062
1063
1064
1065(define (transform-usage-lambda cases)
1066 (let* ((raw-usage (delq! 'else (map car cases)))
1067 (usage-sans-specials (map (lambda (x)
1068 (or (and (not (list? x)) x)
1069 (and (symbol? (car x)) #t)
1070 (and (boolean? (car x)) #t)
1071 x))
1072 raw-usage))
1073 (usage-desc (delq! #t usage-sans-specials))
1074 (kw-desc (map car usage-desc))
1075 (kw-opts (apply append (map (lambda (x) (and (not (string? (car x))) x)) kw-desc)))
1076 (kw-args (apply append (map (lambda (x) (and (string? (car x)) (cdr x))) kw-desc)))
1077 (transmogrified-cases (map (lambda (case)
1078 (cons (let ((opts (car case)))
1079 (if (or (boolean? opts) (eq? 'else opts))
1080 opts
1081 (cond
1082 ((symbol? (car opts)) opts)
1083 ((boolean? (car opts)) opts)
1084 ((string? (caar opts)) (cdar opts))
1085 (else (car opts)))))
1086 (cdr case)))
1087 cases)))
1088 `(let ((%display-usage (lambda () (display-usage-report ',usage-desc))))
1089 (lambda (%argv)
1090 (let %next-arg ((%argv %argv))
1091 (get-option %argv
1092 ',kw-opts
1093 ',kw-args
1094 (lambda (%opt %arg %new-argv)
1095 (case %opt
1096 ,@ transmogrified-cases))))))))
1097
1098
1099\f
1100
1101;;; {Low Level Modules}
1102;;;
1103;;; These are the low level data structures for modules.
1104;;;
1105;;; Every module object is of the type 'module-type', which is a record
1106;;; consisting of the following members:
1107;;;
1108;;; - eval-closure: the function that defines for its module the strategy that
1109;;; shall be followed when looking up symbols in the module.
1110;;;
1111;;; An eval-closure is a function taking two arguments: the symbol to be
1112;;; looked up and a boolean value telling whether a binding for the symbol
1113;;; should be created if it does not exist yet. If the symbol lookup
1114;;; succeeded (either because an existing binding was found or because a new
1115;;; binding was created), a variable object representing the binding is
1116;;; returned. Otherwise, the value #f is returned. Note that the eval
1117;;; closure does not take the module to be searched as an argument: During
1118;;; construction of the eval-closure, the eval-closure has to store the
1119;;; module it belongs to in its environment. This means, that any
1120;;; eval-closure can belong to only one module.
1121;;;
1122;;; The eval-closure of a module can be defined arbitrarily. However, three
1123;;; special cases of eval-closures are to be distinguished: During startup
1124;;; the module system is not yet activated. In this phase, no modules are
1125;;; defined and all bindings are automatically stored by the system in the
1126;;; pre-modules-obarray. Since no eval-closures exist at this time, the
1127;;; functions which require an eval-closure as their argument need to be
1128;;; passed the value #f.
1129;;;
1130;;; The other two special cases of eval-closures are the
1131;;; standard-eval-closure and the standard-interface-eval-closure. Both
1132;;; behave equally for the case that no new binding is to be created. The
1133;;; difference between the two comes in, when the boolean argument to the
1134;;; eval-closure indicates that a new binding shall be created if it is not
1135;;; found.
1136;;;
1137;;; Given that no new binding shall be created, both standard eval-closures
1138;;; define the following standard strategy of searching bindings in the
1139;;; module: First, the module's obarray is searched for the symbol. Second,
1140;;; if no binding for the symbol was found in the module's obarray, the
1141;;; module's binder procedure is exececuted. If this procedure did not
1142;;; return a binding for the symbol, the modules referenced in the module's
1143;;; uses list are recursively searched for a binding of the symbol. If the
1144;;; binding can not be found in these modules also, the symbol lookup has
1145;;; failed.
1146;;;
1147;;; If a new binding shall be created, the standard-interface-eval-closure
1148;;; immediately returns indicating failure. That is, it does not even try
1149;;; to look up the symbol. In contrast, the standard-eval-closure would
1150;;; first search the obarray, and if no binding was found there, would
1151;;; create a new binding in the obarray, therefore not calling the binder
1152;;; procedure or searching the modules in the uses list.
1153;;;
1154;;; The explanation of the following members obarray, binder and uses
1155;;; assumes that the symbol lookup follows the strategy that is defined in
1156;;; the standard-eval-closure and the standard-interface-eval-closure.
1157;;;
1158;;; - obarray: a hash table that maps symbols to variable objects. In this
1159;;; hash table, the definitions are found that are local to the module (that
1160;;; is, not imported from other modules). When looking up bindings in the
1161;;; module, this hash table is searched first.
1162;;;
1163;;; - binder: either #f or a function taking a module and a symbol argument.
1164;;; If it is a function it is called after the obarray has been
1165;;; unsuccessfully searched for a binding. It then can provide bindings
1166;;; that would otherwise not be found locally in the module.
1167;;;
1168;;; - uses: a list of modules from which non-local bindings can be inherited.
1169;;; These modules are the third place queried for bindings after the obarray
1170;;; has been unsuccessfully searched and the binder function did not deliver
1171;;; a result either.
1172;;;
1173;;; - transformer: either #f or a function taking a scheme expression as
1174;;; delivered by read. If it is a function, it will be called to perform
1175;;; syntax transformations (e. g. makro expansion) on the given scheme
1176;;; expression. The output of the transformer function will then be passed
1177;;; to Guile's internal memoizer. This means that the output must be valid
1178;;; scheme code. The only exception is, that the output may make use of the
1179;;; syntax extensions provided to identify the modules that a binding
1180;;; belongs to.
1181;;;
1182;;; - name: the name of the module. This is used for all kinds of printing
1183;;; outputs. In certain places the module name also serves as a way of
1184;;; identification. When adding a module to the uses list of another
1185;;; module, it is made sure that the new uses list will not contain two
1186;;; modules of the same name.
1187;;;
1188;;; - kind: classification of the kind of module. The value is (currently?)
1189;;; only used for printing. It has no influence on how a module is treated.
1190;;; Currently the following values are used when setting the module kind:
1191;;; 'module, 'directory, 'interface, 'custom-interface. If no explicit kind
1192;;; is set, it defaults to 'module.
1193;;;
1194;;; - duplicates-handlers: a list of procedures that get called to make a
1195;;; choice between two duplicate bindings when name clashes occur. See the
1196;;; `duplicate-handlers' global variable below.
1197;;;
1198;;; - observers: a list of procedures that get called when the module is
1199;;; modified.
1200;;;
1201;;; - weak-observers: a weak-key hash table of procedures that get called
1202;;; when the module is modified. See `module-observe-weak' for details.
1203;;;
1204;;; In addition, the module may (must?) contain a binding for
1205;;; `%module-public-interface'. This variable should be bound to a module
1206;;; representing the exported interface of a module. See the
1207;;; `module-public-interface' and `module-export!' procedures.
1208;;;
1209;;; !!! warning: The interface to lazy binder procedures is going
1210;;; to be changed in an incompatible way to permit all the basic
1211;;; module ops to be virtualized.
1212;;;
1213;;; (make-module size use-list lazy-binding-proc) => module
1214;;; module-{obarray,uses,binder}[|-set!]
1215;;; (module? obj) => [#t|#f]
1216;;; (module-locally-bound? module symbol) => [#t|#f]
1217;;; (module-bound? module symbol) => [#t|#f]
1218;;; (module-symbol-locally-interned? module symbol) => [#t|#f]
1219;;; (module-symbol-interned? module symbol) => [#t|#f]
1220;;; (module-local-variable module symbol) => [#<variable ...> | #f]
1221;;; (module-variable module symbol) => [#<variable ...> | #f]
1222;;; (module-symbol-binding module symbol opt-value)
1223;;; => [ <obj> | opt-value | an error occurs ]
1224;;; (module-make-local-var! module symbol) => #<variable...>
1225;;; (module-add! module symbol var) => unspecified
1226;;; (module-remove! module symbol) => unspecified
1227;;; (module-for-each proc module) => unspecified
1228;;; (make-scm-module) => module ; a lazy copy of the symhash module
1229;;; (set-current-module module) => unspecified
1230;;; (current-module) => #<module...>
1231;;;
1232;;;
1233
1234\f
1235
1236;;; {Printing Modules}
1237;;;
1238
1239;; This is how modules are printed. You can re-define it.
1240;; (Redefining is actually more complicated than simply redefining
1241;; %print-module because that would only change the binding and not
1242;; the value stored in the vtable that determines how record are
1243;; printed. Sigh.)
1244
1245(define (%print-module mod port) ; unused args: depth length style table)
1246 (display "#<" port)
1247 (display (or (module-kind mod) "module") port)
1248 (display " " port)
1249 (display (module-name mod) port)
1250 (display " " port)
1251 (display (number->string (object-address mod) 16) port)
1252 (display ">" port))
1253
1254;; module-type
1255;;
1256;; A module is characterized by an obarray in which local symbols
1257;; are interned, a list of modules, "uses", from which non-local
1258;; bindings can be inherited, and an optional lazy-binder which
1259;; is a (CLOSURE module symbol) which, as a last resort, can provide
1260;; bindings that would otherwise not be found locally in the module.
1261;;
1262;; NOTE: If you change anything here, you also need to change
1263;; libguile/modules.h.
1264;;
1265(define module-type
1266 (make-record-type 'module
1267 '(obarray uses binder eval-closure transformer name kind
1268 duplicates-handlers import-obarray
1269 observers weak-observers)
1270 %print-module))
1271
1272;; make-module &opt size uses binder
1273;;
1274;; Create a new module, perhaps with a particular size of obarray,
1275;; initial uses list, or binding procedure.
1276;;
1277(define make-module
1278 (lambda args
1279
1280 (define (parse-arg index default)
1281 (if (> (length args) index)
1282 (list-ref args index)
1283 default))
1284
1285 (define %default-import-size
1286 ;; Typical number of imported bindings actually used by a module.
1287 600)
1288
1289 (if (> (length args) 3)
1290 (error "Too many args to make-module." args))
1291
1292 (let ((size (parse-arg 0 31))
1293 (uses (parse-arg 1 '()))
1294 (binder (parse-arg 2 #f)))
1295
1296 (if (not (integer? size))
1297 (error "Illegal size to make-module." size))
1298 (if (not (and (list? uses)
1299 (and-map module? uses)))
1300 (error "Incorrect use list." uses))
1301 (if (and binder (not (procedure? binder)))
1302 (error
1303 "Lazy-binder expected to be a procedure or #f." binder))
1304
1305 (let ((module (module-constructor (make-hash-table size)
1306 uses binder #f %pre-modules-transformer
1307 #f #f #f
1308 (make-hash-table %default-import-size)
1309 '()
1310 (make-weak-key-hash-table 31))))
1311
1312 ;; We can't pass this as an argument to module-constructor,
1313 ;; because we need it to close over a pointer to the module
1314 ;; itself.
1315 (set-module-eval-closure! module (standard-eval-closure module))
1316
1317 module))))
1318
1319(define module-constructor (record-constructor module-type))
1320(define module-obarray (record-accessor module-type 'obarray))
1321(define set-module-obarray! (record-modifier module-type 'obarray))
1322(define module-uses (record-accessor module-type 'uses))
1323(define set-module-uses! (record-modifier module-type 'uses))
1324(define module-binder (record-accessor module-type 'binder))
1325(define set-module-binder! (record-modifier module-type 'binder))
1326
1327;; NOTE: This binding is used in libguile/modules.c.
1328(define module-eval-closure (record-accessor module-type 'eval-closure))
1329
1330(define module-transformer (record-accessor module-type 'transformer))
1331(define set-module-transformer! (record-modifier module-type 'transformer))
1332;; (define module-name (record-accessor module-type 'name)) wait until mods are booted
1333(define set-module-name! (record-modifier module-type 'name))
1334(define module-kind (record-accessor module-type 'kind))
1335(define set-module-kind! (record-modifier module-type 'kind))
1336(define module-duplicates-handlers
1337 (record-accessor module-type 'duplicates-handlers))
1338(define set-module-duplicates-handlers!
1339 (record-modifier module-type 'duplicates-handlers))
1340(define module-observers (record-accessor module-type 'observers))
1341(define set-module-observers! (record-modifier module-type 'observers))
1342(define module-weak-observers (record-accessor module-type 'weak-observers))
1343(define module? (record-predicate module-type))
1344
1345(define module-import-obarray (record-accessor module-type 'import-obarray))
1346
1347(define set-module-eval-closure!
1348 (let ((setter (record-modifier module-type 'eval-closure)))
1349 (lambda (module closure)
1350 (setter module closure)
1351 ;; Make it possible to lookup the module from the environment.
1352 ;; This implementation is correct since an eval closure can belong
1353 ;; to maximally one module.
1354 (set-procedure-property! closure 'module module))))
1355
1356\f
1357
1358;;; {Observer protocol}
1359;;;
1360
1361(define (module-observe module proc)
1362 (set-module-observers! module (cons proc (module-observers module)))
1363 (cons module proc))
1364
1365(define (module-observe-weak module observer-id . proc)
1366 ;; Register PROC as an observer of MODULE under name OBSERVER-ID (which can
1367 ;; be any Scheme object). PROC is invoked and passed MODULE any time
1368 ;; MODULE is modified. PROC gets unregistered when OBSERVER-ID gets GC'd
1369 ;; (thus, it is never unregistered if OBSERVER-ID is an immediate value,
1370 ;; for instance).
1371
1372 ;; The two-argument version is kept for backward compatibility: when called
1373 ;; with two arguments, the observer gets unregistered when closure PROC
1374 ;; gets GC'd (making it impossible to use an anonymous lambda for PROC).
1375
1376 (let ((proc (if (null? proc) observer-id (car proc))))
1377 (hashq-set! (module-weak-observers module) observer-id proc)))
1378
1379(define (module-unobserve token)
1380 (let ((module (car token))
1381 (id (cdr token)))
1382 (if (integer? id)
1383 (hash-remove! (module-weak-observers module) id)
1384 (set-module-observers! module (delq1! id (module-observers module)))))
1385 *unspecified*)
1386
1387(define module-defer-observers #f)
1388(define module-defer-observers-mutex (make-mutex 'recursive))
1389(define module-defer-observers-table (make-hash-table))
1390
1391(define (module-modified m)
1392 (if module-defer-observers
1393 (hash-set! module-defer-observers-table m #t)
1394 (module-call-observers m)))
1395
1396;;; This function can be used to delay calls to observers so that they
1397;;; can be called once only in the face of massive updating of modules.
1398;;;
1399(define (call-with-deferred-observers thunk)
1400 (dynamic-wind
1401 (lambda ()
1402 (lock-mutex module-defer-observers-mutex)
1403 (set! module-defer-observers #t))
1404 thunk
1405 (lambda ()
1406 (set! module-defer-observers #f)
1407 (hash-for-each (lambda (m dummy)
1408 (module-call-observers m))
1409 module-defer-observers-table)
1410 (hash-clear! module-defer-observers-table)
1411 (unlock-mutex module-defer-observers-mutex))))
1412
1413(define (module-call-observers m)
1414 (for-each (lambda (proc) (proc m)) (module-observers m))
1415
1416 ;; We assume that weak observers don't (un)register themselves as they are
1417 ;; called since this would preclude proper iteration over the hash table
1418 ;; elements.
1419 (hash-for-each (lambda (id proc) (proc m)) (module-weak-observers m)))
1420
1421\f
1422
1423;;; {Module Searching in General}
1424;;;
1425;;; We sometimes want to look for properties of a symbol
1426;;; just within the obarray of one module. If the property
1427;;; holds, then it is said to hold ``locally'' as in, ``The symbol
1428;;; DISPLAY is locally rebound in the module `safe-guile'.''
1429;;;
1430;;;
1431;;; Other times, we want to test for a symbol property in the obarray
1432;;; of M and, if it is not found there, try each of the modules in the
1433;;; uses list of M. This is the normal way of testing for some
1434;;; property, so we state these properties without qualification as
1435;;; in: ``The symbol 'fnord is interned in module M because it is
1436;;; interned locally in module M2 which is a member of the uses list
1437;;; of M.''
1438;;;
1439
1440;; module-search fn m
1441;;
1442;; return the first non-#f result of FN applied to M and then to
1443;; the modules in the uses of m, and so on recursively. If all applications
1444;; return #f, then so does this function.
1445;;
1446(define (module-search fn m v)
1447 (define (loop pos)
1448 (and (pair? pos)
1449 (or (module-search fn (car pos) v)
1450 (loop (cdr pos)))))
1451 (or (fn m v)
1452 (loop (module-uses m))))
1453
1454
1455;;; {Is a symbol bound in a module?}
1456;;;
1457;;; Symbol S in Module M is bound if S is interned in M and if the binding
1458;;; of S in M has been set to some well-defined value.
1459;;;
1460
1461;; module-locally-bound? module symbol
1462;;
1463;; Is a symbol bound (interned and defined) locally in a given module?
1464;;
1465(define (module-locally-bound? m v)
1466 (let ((var (module-local-variable m v)))
1467 (and var
1468 (variable-bound? var))))
1469
1470;; module-bound? module symbol
1471;;
1472;; Is a symbol bound (interned and defined) anywhere in a given module
1473;; or its uses?
1474;;
1475(define (module-bound? m v)
1476 (let ((var (module-variable m v)))
1477 (and var
1478 (variable-bound? var))))
1479
1480;;; {Is a symbol interned in a module?}
1481;;;
1482;;; Symbol S in Module M is interned if S occurs in
1483;;; of S in M has been set to some well-defined value.
1484;;;
1485;;; It is possible to intern a symbol in a module without providing
1486;;; an initial binding for the corresponding variable. This is done
1487;;; with:
1488;;; (module-add! module symbol (make-undefined-variable))
1489;;;
1490;;; In that case, the symbol is interned in the module, but not
1491;;; bound there. The unbound symbol shadows any binding for that
1492;;; symbol that might otherwise be inherited from a member of the uses list.
1493;;;
1494
1495(define (module-obarray-get-handle ob key)
1496 ((if (symbol? key) hashq-get-handle hash-get-handle) ob key))
1497
1498(define (module-obarray-ref ob key)
1499 ((if (symbol? key) hashq-ref hash-ref) ob key))
1500
1501(define (module-obarray-set! ob key val)
1502 ((if (symbol? key) hashq-set! hash-set!) ob key val))
1503
1504(define (module-obarray-remove! ob key)
1505 ((if (symbol? key) hashq-remove! hash-remove!) ob key))
1506
1507;; module-symbol-locally-interned? module symbol
1508;;
1509;; is a symbol interned (not neccessarily defined) locally in a given module
1510;; or its uses? Interned symbols shadow inherited bindings even if
1511;; they are not themselves bound to a defined value.
1512;;
1513(define (module-symbol-locally-interned? m v)
1514 (not (not (module-obarray-get-handle (module-obarray m) v))))
1515
1516;; module-symbol-interned? module symbol
1517;;
1518;; is a symbol interned (not neccessarily defined) anywhere in a given module
1519;; or its uses? Interned symbols shadow inherited bindings even if
1520;; they are not themselves bound to a defined value.
1521;;
1522(define (module-symbol-interned? m v)
1523 (module-search module-symbol-locally-interned? m v))
1524
1525
1526;;; {Mapping modules x symbols --> variables}
1527;;;
1528
1529;; module-local-variable module symbol
1530;; return the local variable associated with a MODULE and SYMBOL.
1531;;
1532;;; This function is very important. It is the only function that can
1533;;; return a variable from a module other than the mutators that store
1534;;; new variables in modules. Therefore, this function is the location
1535;;; of the "lazy binder" hack.
1536;;;
1537;;; If symbol is defined in MODULE, and if the definition binds symbol
1538;;; to a variable, return that variable object.
1539;;;
1540;;; If the symbols is not found at first, but the module has a lazy binder,
1541;;; then try the binder.
1542;;;
1543;;; If the symbol is not found at all, return #f.
1544;;;
1545;;; (This is now written in C, see `modules.c'.)
1546;;;
1547
1548;;; {Mapping modules x symbols --> bindings}
1549;;;
1550;;; These are similar to the mapping to variables, except that the
1551;;; variable is dereferenced.
1552;;;
1553
1554;; module-symbol-binding module symbol opt-value
1555;;
1556;; return the binding of a variable specified by name within
1557;; a given module, signalling an error if the variable is unbound.
1558;; If the OPT-VALUE is passed, then instead of signalling an error,
1559;; return OPT-VALUE.
1560;;
1561(define (module-symbol-local-binding m v . opt-val)
1562 (let ((var (module-local-variable m v)))
1563 (if (and var (variable-bound? var))
1564 (variable-ref var)
1565 (if (not (null? opt-val))
1566 (car opt-val)
1567 (error "Locally unbound variable." v)))))
1568
1569;; module-symbol-binding module symbol opt-value
1570;;
1571;; return the binding of a variable specified by name within
1572;; a given module, signalling an error if the variable is unbound.
1573;; If the OPT-VALUE is passed, then instead of signalling an error,
1574;; return OPT-VALUE.
1575;;
1576(define (module-symbol-binding m v . opt-val)
1577 (let ((var (module-variable m v)))
1578 (if (and var (variable-bound? var))
1579 (variable-ref var)
1580 (if (not (null? opt-val))
1581 (car opt-val)
1582 (error "Unbound variable." v)))))
1583
1584
1585\f
1586
1587;;; {Adding Variables to Modules}
1588;;;
1589
1590;; module-make-local-var! module symbol
1591;;
1592;; ensure a variable for V in the local namespace of M.
1593;; If no variable was already there, then create a new and uninitialzied
1594;; variable.
1595;;
1596;; This function is used in modules.c.
1597;;
1598(define (module-make-local-var! m v)
1599 (or (let ((b (module-obarray-ref (module-obarray m) v)))
1600 (and (variable? b)
1601 (begin
1602 ;; Mark as modified since this function is called when
1603 ;; the standard eval closure defines a binding
1604 (module-modified m)
1605 b)))
1606
1607 ;; Create a new local variable.
1608 (let ((local-var (make-undefined-variable)))
1609 (module-add! m v local-var)
1610 local-var)))
1611
1612;; module-ensure-local-variable! module symbol
1613;;
1614;; Ensure that there is a local variable in MODULE for SYMBOL. If
1615;; there is no binding for SYMBOL, create a new uninitialized
1616;; variable. Return the local variable.
1617;;
1618(define (module-ensure-local-variable! module symbol)
1619 (or (module-local-variable module symbol)
1620 (let ((var (make-undefined-variable)))
1621 (module-add! module symbol var)
1622 var)))
1623
1624;; module-add! module symbol var
1625;;
1626;; ensure a particular variable for V in the local namespace of M.
1627;;
1628(define (module-add! m v var)
1629 (if (not (variable? var))
1630 (error "Bad variable to module-add!" var))
1631 (module-obarray-set! (module-obarray m) v var)
1632 (module-modified m))
1633
1634;; module-remove!
1635;;
1636;; make sure that a symbol is undefined in the local namespace of M.
1637;;
1638(define (module-remove! m v)
1639 (module-obarray-remove! (module-obarray m) v)
1640 (module-modified m))
1641
1642(define (module-clear! m)
1643 (hash-clear! (module-obarray m))
1644 (module-modified m))
1645
1646;; MODULE-FOR-EACH -- exported
1647;;
1648;; Call PROC on each symbol in MODULE, with arguments of (SYMBOL VARIABLE).
1649;;
1650(define (module-for-each proc module)
1651 (hash-for-each proc (module-obarray module)))
1652
1653(define (module-map proc module)
1654 (hash-map->list proc (module-obarray module)))
1655
1656\f
1657
1658;;; {Low Level Bootstrapping}
1659;;;
1660
1661;; make-root-module
1662
1663;; A root module uses the pre-modules-obarray as its obarray. This
1664;; special obarray accumulates all bindings that have been established
1665;; before the module system is fully booted.
1666;;
1667;; (The obarray continues to be used by code that has been closed over
1668;; before the module system has been booted.)
1669
1670(define (make-root-module)
1671 (let ((m (make-module 0)))
1672 (set-module-obarray! m (%get-pre-modules-obarray))
1673 m))
1674
1675;; make-scm-module
1676
1677;; The root interface is a module that uses the same obarray as the
1678;; root module. It does not allow new definitions, tho.
1679
1680(define (make-scm-module)
1681 (let ((m (make-module 0)))
1682 (set-module-obarray! m (%get-pre-modules-obarray))
1683 (set-module-eval-closure! m (standard-interface-eval-closure m))
1684 m))
1685
1686
1687\f
1688
1689;;; {Module-based Loading}
1690;;;
1691
1692(define (save-module-excursion thunk)
1693 (let ((inner-module (current-module))
1694 (outer-module #f))
1695 (dynamic-wind (lambda ()
1696 (set! outer-module (current-module))
1697 (set-current-module inner-module)
1698 (set! inner-module #f))
1699 thunk
1700 (lambda ()
1701 (set! inner-module (current-module))
1702 (set-current-module outer-module)
1703 (set! outer-module #f)))))
1704
1705(define basic-load load)
1706
1707(define (load-module filename . reader)
1708 (save-module-excursion
1709 (lambda ()
1710 (let ((oldname (and (current-load-port)
1711 (port-filename (current-load-port)))))
1712 (apply basic-load
1713 (if (and oldname
1714 (> (string-length filename) 0)
1715 (not (char=? (string-ref filename 0) #\/))
1716 (not (string=? (dirname oldname) ".")))
1717 (string-append (dirname oldname) "/" filename)
1718 filename)
1719 reader)))))
1720
1721
1722\f
1723
1724;;; {MODULE-REF -- exported}
1725;;;
1726
1727;; Returns the value of a variable called NAME in MODULE or any of its
1728;; used modules. If there is no such variable, then if the optional third
1729;; argument DEFAULT is present, it is returned; otherwise an error is signaled.
1730;;
1731(define (module-ref module name . rest)
1732 (let ((variable (module-variable module name)))
1733 (if (and variable (variable-bound? variable))
1734 (variable-ref variable)
1735 (if (null? rest)
1736 (error "No variable named" name 'in module)
1737 (car rest) ; default value
1738 ))))
1739
1740;; MODULE-SET! -- exported
1741;;
1742;; Sets the variable called NAME in MODULE (or in a module that MODULE uses)
1743;; to VALUE; if there is no such variable, an error is signaled.
1744;;
1745(define (module-set! module name value)
1746 (let ((variable (module-variable module name)))
1747 (if variable
1748 (variable-set! variable value)
1749 (error "No variable named" name 'in module))))
1750
1751;; MODULE-DEFINE! -- exported
1752;;
1753;; Sets the variable called NAME in MODULE to VALUE; if there is no such
1754;; variable, it is added first.
1755;;
1756(define (module-define! module name value)
1757 (let ((variable (module-local-variable module name)))
1758 (if variable
1759 (begin
1760 (variable-set! variable value)
1761 (module-modified module))
1762 (let ((variable (make-variable value)))
1763 (module-add! module name variable)))))
1764
1765;; MODULE-DEFINED? -- exported
1766;;
1767;; Return #t iff NAME is defined in MODULE (or in a module that MODULE
1768;; uses)
1769;;
1770(define (module-defined? module name)
1771 (let ((variable (module-variable module name)))
1772 (and variable (variable-bound? variable))))
1773
1774;; MODULE-USE! module interface
1775;;
1776;; Add INTERFACE to the list of interfaces used by MODULE.
1777;;
1778(define (module-use! module interface)
1779 (if (not (or (eq? module interface)
1780 (memq interface (module-uses module))))
1781 (begin
1782 ;; Newly used modules must be appended rather than consed, so that
1783 ;; `module-variable' traverses the use list starting from the first
1784 ;; used module.
1785 (set-module-uses! module
1786 (append (filter (lambda (m)
1787 (not
1788 (equal? (module-name m)
1789 (module-name interface))))
1790 (module-uses module))
1791 (list interface)))
1792
1793 (module-modified module))))
1794
1795;; MODULE-USE-INTERFACES! module interfaces
1796;;
1797;; Same as MODULE-USE! but add multiple interfaces and check for duplicates
1798;;
1799(define (module-use-interfaces! module interfaces)
1800 (set-module-uses! module
1801 (append (module-uses module) interfaces))
1802 (module-modified module))
1803
1804\f
1805
1806;;; {Recursive Namespaces}
1807;;;
1808;;; A hierarchical namespace emerges if we consider some module to be
1809;;; root, and variables bound to modules as nested namespaces.
1810;;;
1811;;; The routines in this file manage variable names in hierarchical namespace.
1812;;; Each variable name is a list of elements, looked up in successively nested
1813;;; modules.
1814;;;
1815;;; (nested-ref some-root-module '(foo bar baz))
1816;;; => <value of a variable named baz in the module bound to bar in
1817;;; the module bound to foo in some-root-module>
1818;;;
1819;;;
1820;;; There are:
1821;;;
1822;;; ;; a-root is a module
1823;;; ;; name is a list of symbols
1824;;;
1825;;; nested-ref a-root name
1826;;; nested-set! a-root name val
1827;;; nested-define! a-root name val
1828;;; nested-remove! a-root name
1829;;;
1830;;;
1831;;; (current-module) is a natural choice for a-root so for convenience there are
1832;;; also:
1833;;;
1834;;; local-ref name == nested-ref (current-module) name
1835;;; local-set! name val == nested-set! (current-module) name val
1836;;; local-define! name val == nested-define! (current-module) name val
1837;;; local-remove! name == nested-remove! (current-module) name
1838;;;
1839
1840
1841(define (nested-ref root names)
1842 (let loop ((cur root)
1843 (elts names))
1844 (cond
1845 ((null? elts) cur)
1846 ((not (module? cur)) #f)
1847 (else (loop (module-ref cur (car elts) #f) (cdr elts))))))
1848
1849(define (nested-set! root names val)
1850 (let loop ((cur root)
1851 (elts names))
1852 (if (null? (cdr elts))
1853 (module-set! cur (car elts) val)
1854 (loop (module-ref cur (car elts)) (cdr elts)))))
1855
1856(define (nested-define! root names val)
1857 (let loop ((cur root)
1858 (elts names))
1859 (if (null? (cdr elts))
1860 (module-define! cur (car elts) val)
1861 (loop (module-ref cur (car elts)) (cdr elts)))))
1862
1863(define (nested-remove! root names)
1864 (let loop ((cur root)
1865 (elts names))
1866 (if (null? (cdr elts))
1867 (module-remove! cur (car elts))
1868 (loop (module-ref cur (car elts)) (cdr elts)))))
1869
1870(define (local-ref names) (nested-ref (current-module) names))
1871(define (local-set! names val) (nested-set! (current-module) names val))
1872(define (local-define names val) (nested-define! (current-module) names val))
1873(define (local-remove names) (nested-remove! (current-module) names))
1874
1875
1876\f
1877
1878;;; {The (%app) module}
1879;;;
1880;;; The root of conventionally named objects not directly in the top level.
1881;;;
1882;;; (%app modules)
1883;;; (%app modules guile)
1884;;;
1885;;; The directory of all modules and the standard root module.
1886;;;
1887
1888;; module-public-interface is defined in C.
1889(define (set-module-public-interface! m i)
1890 (module-define! m '%module-public-interface i))
1891(define (set-system-module! m s)
1892 (set-procedure-property! (module-eval-closure m) 'system-module s))
1893(define the-root-module (make-root-module))
1894(define the-scm-module (make-scm-module))
1895(set-module-public-interface! the-root-module the-scm-module)
1896(set-module-name! the-root-module '(guile))
1897(set-module-name! the-scm-module '(guile))
1898(set-module-kind! the-scm-module 'interface)
1899(set-system-module! the-root-module #t)
1900(set-system-module! the-scm-module #t)
1901
1902;; NOTE: This binding is used in libguile/modules.c.
1903;;
1904(define (make-modules-in module name)
1905 (if (null? name)
1906 module
1907 (make-modules-in
1908 (let* ((var (module-local-variable module (car name)))
1909 (val (and var (variable-bound? var) (variable-ref var))))
1910 (if (module? val)
1911 val
1912 (let ((m (make-module 31)))
1913 (set-module-kind! m 'directory)
1914 (set-module-name! m (append (module-name module)
1915 (list (car name))))
1916 (module-define! module (car name) m)
1917 m)))
1918 (cdr name))))
1919
1920(define (beautify-user-module! module)
1921 (let ((interface (module-public-interface module)))
1922 (if (or (not interface)
1923 (eq? interface module))
1924 (let ((interface (make-module 31)))
1925 (set-module-name! interface (module-name module))
1926 (set-module-kind! interface 'interface)
1927 (set-module-public-interface! module interface))))
1928 (if (and (not (memq the-scm-module (module-uses module)))
1929 (not (eq? module the-root-module)))
1930 ;; Import the default set of bindings (from the SCM module) in MODULE.
1931 (module-use! module the-scm-module)))
1932
1933;; NOTE: This binding is used in libguile/modules.c.
1934;;
1935(define resolve-module
1936 (let ((the-root-module the-root-module))
1937 (lambda (name . maybe-autoload)
1938 (if (equal? name '(guile))
1939 the-root-module
1940 (let ((full-name (append '(%app modules) name)))
1941 (let ((already (nested-ref the-root-module full-name))
1942 (autoload (or (null? maybe-autoload) (car maybe-autoload))))
1943 (cond
1944 ((and already (module? already)
1945 (or (not autoload) (module-public-interface already)))
1946 ;; A hit, a palpable hit.
1947 already)
1948 (autoload
1949 ;; Try to autoload the module, and recurse.
1950 (try-load-module name)
1951 (resolve-module name #f))
1952 (else
1953 ;; A module is not bound (but maybe something else is),
1954 ;; we're not autoloading -- here's the weird semantics,
1955 ;; we create an empty module.
1956 (make-modules-in the-root-module full-name)))))))))
1957
1958;; Cheat. These bindings are needed by modules.c, but we don't want
1959;; to move their real definition here because that would be unnatural.
1960;;
1961(define try-module-autoload #f)
1962(define process-define-module #f)
1963(define process-use-modules #f)
1964(define module-export! #f)
1965(define default-duplicate-binding-procedures #f)
1966
1967(define %app (make-module 31))
1968(set-module-name! %app '(%app))
1969(define app %app) ;; for backwards compatability
1970
1971(let ((m (make-module 31)))
1972 (set-module-name! m '())
1973 (local-define '(%app modules) m))
1974(local-define '(%app modules guile) the-root-module)
1975
1976;; This boots the module system. All bindings needed by modules.c
1977;; must have been defined by now.
1978;;
1979(set-current-module the-root-module)
1980;; definition deferred for syncase's benefit.
1981(define module-name
1982 (let ((accessor (record-accessor module-type 'name)))
1983 (lambda (mod)
1984 (or (accessor mod)
1985 (begin
1986 (set-module-name! mod (list (gensym)))
1987 (accessor mod))))))
1988
1989;; (define-special-value '(%app modules new-ws) (lambda () (make-scm-module)))
1990
1991(define (try-load-module name)
1992 (try-module-autoload name))
1993
1994(define (purify-module! module)
1995 "Removes bindings in MODULE which are inherited from the (guile) module."
1996 (let ((use-list (module-uses module)))
1997 (if (and (pair? use-list)
1998 (eq? (car (last-pair use-list)) the-scm-module))
1999 (set-module-uses! module (reverse (cdr (reverse use-list)))))))
2000
2001;; Return a module that is an interface to the module designated by
2002;; NAME.
2003;;
2004;; `resolve-interface' takes four keyword arguments:
2005;;
2006;; #:select SELECTION
2007;;
2008;; SELECTION is a list of binding-specs to be imported; A binding-spec
2009;; is either a symbol or a pair of symbols (ORIG . SEEN), where ORIG
2010;; is the name in the used module and SEEN is the name in the using
2011;; module. Note that SEEN is also passed through RENAMER, below. The
2012;; default is to select all bindings. If you specify no selection but
2013;; a renamer, only the bindings that already exist in the used module
2014;; are made available in the interface. Bindings that are added later
2015;; are not picked up.
2016;;
2017;; #:hide BINDINGS
2018;;
2019;; BINDINGS is a list of bindings which should not be imported.
2020;;
2021;; #:prefix PREFIX
2022;;
2023;; PREFIX is a symbol that will be appended to each exported name.
2024;; The default is to not perform any renaming.
2025;;
2026;; #:renamer RENAMER
2027;;
2028;; RENAMER is a procedure that takes a symbol and returns its new
2029;; name. The default is not perform any renaming.
2030;;
2031;; Signal "no code for module" error if module name is not resolvable
2032;; or its public interface is not available. Signal "no binding"
2033;; error if selected binding does not exist in the used module.
2034;;
2035(define (resolve-interface name . args)
2036
2037 (define (get-keyword-arg args kw def)
2038 (cond ((memq kw args)
2039 => (lambda (kw-arg)
2040 (if (null? (cdr kw-arg))
2041 (error "keyword without value: " kw))
2042 (cadr kw-arg)))
2043 (else
2044 def)))
2045
2046 (let* ((select (get-keyword-arg args #:select #f))
2047 (hide (get-keyword-arg args #:hide '()))
2048 (renamer (or (get-keyword-arg args #:renamer #f)
2049 (let ((prefix (get-keyword-arg args #:prefix #f)))
2050 (and prefix (symbol-prefix-proc prefix)))
2051 identity))
2052 (module (resolve-module name))
2053 (public-i (and module (module-public-interface module))))
2054 (and (or (not module) (not public-i))
2055 (error "no code for module" name))
2056 (if (and (not select) (null? hide) (eq? renamer identity))
2057 public-i
2058 (let ((selection (or select (module-map (lambda (sym var) sym)
2059 public-i)))
2060 (custom-i (make-module 31)))
2061 (set-module-kind! custom-i 'custom-interface)
2062 (set-module-name! custom-i name)
2063 ;; XXX - should use a lazy binder so that changes to the
2064 ;; used module are picked up automatically.
2065 (for-each (lambda (bspec)
2066 (let* ((direct? (symbol? bspec))
2067 (orig (if direct? bspec (car bspec)))
2068 (seen (if direct? bspec (cdr bspec)))
2069 (var (or (module-local-variable public-i orig)
2070 (module-local-variable module orig)
2071 (error
2072 ;; fixme: format manually for now
2073 (simple-format
2074 #f "no binding `~A' in module ~A"
2075 orig name)))))
2076 (if (memq orig hide)
2077 (set! hide (delq! orig hide))
2078 (module-add! custom-i
2079 (renamer seen)
2080 var))))
2081 selection)
2082 ;; Check that we are not hiding bindings which don't exist
2083 (for-each (lambda (binding)
2084 (if (not (module-local-variable public-i binding))
2085 (error
2086 (simple-format
2087 #f "no binding `~A' to hide in module ~A"
2088 binding name))))
2089 hide)
2090 custom-i))))
2091
2092(define (symbol-prefix-proc prefix)
2093 (lambda (symbol)
2094 (symbol-append prefix symbol)))
2095
2096;; This function is called from "modules.c". If you change it, be
2097;; sure to update "modules.c" as well.
2098
2099(define (process-define-module args)
2100 (let* ((module-id (car args))
2101 (module (resolve-module module-id #f))
2102 (kws (cdr args))
2103 (unrecognized (lambda (arg)
2104 (error "unrecognized define-module argument" arg))))
2105 (beautify-user-module! module)
2106 (let loop ((kws kws)
2107 (reversed-interfaces '())
2108 (exports '())
2109 (re-exports '())
2110 (replacements '())
2111 (autoloads '()))
2112
2113 (if (null? kws)
2114 (call-with-deferred-observers
2115 (lambda ()
2116 (module-use-interfaces! module (reverse reversed-interfaces))
2117 (module-export! module exports)
2118 (module-replace! module replacements)
2119 (module-re-export! module re-exports)
2120 (if (not (null? autoloads))
2121 (apply module-autoload! module autoloads))))
2122 (case (car kws)
2123 ((#:use-module #:use-syntax)
2124 (or (pair? (cdr kws))
2125 (unrecognized kws))
2126 (cond
2127 ((equal? (caadr kws) '(ice-9 syncase))
2128 (issue-deprecation-warning
2129 "(ice-9 syncase) is deprecated. Support for syntax-case is now in Guile core.")
2130 (loop (cddr kws)
2131 reversed-interfaces
2132 exports
2133 re-exports
2134 replacements
2135 autoloads))
2136 (else
2137 (let* ((interface-args (cadr kws))
2138 (interface (apply resolve-interface interface-args)))
2139 (and (eq? (car kws) #:use-syntax)
2140 (or (symbol? (caar interface-args))
2141 (error "invalid module name for use-syntax"
2142 (car interface-args)))
2143 (set-module-transformer!
2144 module
2145 (module-ref interface
2146 (car (last-pair (car interface-args)))
2147 #f)))
2148 (loop (cddr kws)
2149 (cons interface reversed-interfaces)
2150 exports
2151 re-exports
2152 replacements
2153 autoloads)))))
2154 ((#:autoload)
2155 (or (and (pair? (cdr kws)) (pair? (cddr kws)))
2156 (unrecognized kws))
2157 (loop (cdddr kws)
2158 reversed-interfaces
2159 exports
2160 re-exports
2161 replacements
2162 (let ((name (cadr kws))
2163 (bindings (caddr kws)))
2164 (cons* name bindings autoloads))))
2165 ((#:no-backtrace)
2166 (set-system-module! module #t)
2167 (loop (cdr kws) reversed-interfaces exports re-exports
2168 replacements autoloads))
2169 ((#:pure)
2170 (purify-module! module)
2171 (loop (cdr kws) reversed-interfaces exports re-exports
2172 replacements autoloads))
2173 ((#:duplicates)
2174 (if (not (pair? (cdr kws)))
2175 (unrecognized kws))
2176 (set-module-duplicates-handlers!
2177 module
2178 (lookup-duplicates-handlers (cadr kws)))
2179 (loop (cddr kws) reversed-interfaces exports re-exports
2180 replacements autoloads))
2181 ((#:export #:export-syntax)
2182 (or (pair? (cdr kws))
2183 (unrecognized kws))
2184 (loop (cddr kws)
2185 reversed-interfaces
2186 (append (cadr kws) exports)
2187 re-exports
2188 replacements
2189 autoloads))
2190 ((#:re-export #:re-export-syntax)
2191 (or (pair? (cdr kws))
2192 (unrecognized kws))
2193 (loop (cddr kws)
2194 reversed-interfaces
2195 exports
2196 (append (cadr kws) re-exports)
2197 replacements
2198 autoloads))
2199 ((#:replace #:replace-syntax)
2200 (or (pair? (cdr kws))
2201 (unrecognized kws))
2202 (loop (cddr kws)
2203 reversed-interfaces
2204 exports
2205 re-exports
2206 (append (cadr kws) replacements)
2207 autoloads))
2208 (else
2209 (unrecognized kws)))))
2210 (run-hook module-defined-hook module)
2211 module))
2212
2213;; `module-defined-hook' is a hook that is run whenever a new module
2214;; is defined. Its members are called with one argument, the new
2215;; module.
2216(define module-defined-hook (make-hook 1))
2217
2218\f
2219
2220;;; {Autoload}
2221;;;
2222
2223(define (make-autoload-interface module name bindings)
2224 (let ((b (lambda (a sym definep)
2225 (and (memq sym bindings)
2226 (let ((i (module-public-interface (resolve-module name))))
2227 (if (not i)
2228 (error "missing interface for module" name))
2229 (let ((autoload (memq a (module-uses module))))
2230 ;; Replace autoload-interface with actual interface if
2231 ;; that has not happened yet.
2232 (if (pair? autoload)
2233 (set-car! autoload i)))
2234 (module-local-variable i sym))))))
2235 (module-constructor (make-hash-table 0) '() b #f #f name 'autoload #f
2236 (make-hash-table 0) '() (make-weak-value-hash-table 31))))
2237
2238(define (module-autoload! module . args)
2239 "Have @var{module} automatically load the module named @var{name} when one
2240of the symbols listed in @var{bindings} is looked up. @var{args} should be a
2241list of module-name/binding-list pairs, e.g., as in @code{(module-autoload!
2242module '(ice-9 q) '(make-q q-length))}."
2243 (let loop ((args args))
2244 (cond ((null? args)
2245 #t)
2246 ((null? (cdr args))
2247 (error "invalid name+binding autoload list" args))
2248 (else
2249 (let ((name (car args))
2250 (bindings (cadr args)))
2251 (module-use! module (make-autoload-interface module
2252 name bindings))
2253 (loop (cddr args)))))))
2254
2255
2256\f
2257
2258;;; {Autoloading modules}
2259;;;
2260
2261(define autoloads-in-progress '())
2262
2263;; This function is called from "modules.c". If you change it, be
2264;; sure to update "modules.c" as well.
2265
2266(define (try-module-autoload module-name)
2267 (let* ((reverse-name (reverse module-name))
2268 (name (symbol->string (car reverse-name)))
2269 (dir-hint-module-name (reverse (cdr reverse-name)))
2270 (dir-hint (apply string-append
2271 (map (lambda (elt)
2272 (string-append (symbol->string elt) "/"))
2273 dir-hint-module-name))))
2274 (resolve-module dir-hint-module-name #f)
2275 (and (not (autoload-done-or-in-progress? dir-hint name))
2276 (let ((didit #f))
2277 (dynamic-wind
2278 (lambda () (autoload-in-progress! dir-hint name))
2279 (lambda ()
2280 (with-fluid* current-reader #f
2281 (lambda ()
2282 (save-module-excursion
2283 (lambda ()
2284 (primitive-load-path (in-vicinity dir-hint name) #f)
2285 (set! didit #t))))))
2286 (lambda () (set-autoloaded! dir-hint name didit)))
2287 didit))))
2288
2289\f
2290
2291;;; {Dynamic linking of modules}
2292;;;
2293
2294(define autoloads-done '((guile . guile)))
2295
2296(define (autoload-done-or-in-progress? p m)
2297 (let ((n (cons p m)))
2298 (->bool (or (member n autoloads-done)
2299 (member n autoloads-in-progress)))))
2300
2301(define (autoload-done! p m)
2302 (let ((n (cons p m)))
2303 (set! autoloads-in-progress
2304 (delete! n autoloads-in-progress))
2305 (or (member n autoloads-done)
2306 (set! autoloads-done (cons n autoloads-done)))))
2307
2308(define (autoload-in-progress! p m)
2309 (let ((n (cons p m)))
2310 (set! autoloads-done
2311 (delete! n autoloads-done))
2312 (set! autoloads-in-progress (cons n autoloads-in-progress))))
2313
2314(define (set-autoloaded! p m done?)
2315 (if done?
2316 (autoload-done! p m)
2317 (let ((n (cons p m)))
2318 (set! autoloads-done (delete! n autoloads-done))
2319 (set! autoloads-in-progress (delete! n autoloads-in-progress)))))
2320
2321\f
2322
2323;;; {Run-time options}
2324;;;
2325
2326(defmacro define-option-interface (option-group)
2327 (let* ((option-name 'car)
2328 (option-value 'cadr)
2329 (option-documentation 'caddr)
2330
2331 ;; Below follow the macros defining the run-time option interfaces.
2332
2333 (make-options (lambda (interface)
2334 `(lambda args
2335 (cond ((null? args) (,interface))
2336 ((list? (car args))
2337 (,interface (car args)) (,interface))
2338 (else (for-each
2339 (lambda (option)
2340 (display (,option-name option))
2341 (if (< (string-length
2342 (symbol->string (,option-name option)))
2343 8)
2344 (display #\tab))
2345 (display #\tab)
2346 (display (,option-value option))
2347 (display #\tab)
2348 (display (,option-documentation option))
2349 (newline))
2350 (,interface #t)))))))
2351
2352 (make-enable (lambda (interface)
2353 `(lambda flags
2354 (,interface (append flags (,interface)))
2355 (,interface))))
2356
2357 (make-disable (lambda (interface)
2358 `(lambda flags
2359 (let ((options (,interface)))
2360 (for-each (lambda (flag)
2361 (set! options (delq! flag options)))
2362 flags)
2363 (,interface options)
2364 (,interface))))))
2365 (let* ((interface (car option-group))
2366 (options/enable/disable (cadr option-group)))
2367 `(begin
2368 (define ,(car options/enable/disable)
2369 ,(make-options interface))
2370 (define ,(cadr options/enable/disable)
2371 ,(make-enable interface))
2372 (define ,(caddr options/enable/disable)
2373 ,(make-disable interface))
2374 (defmacro ,(caaddr option-group) (opt val)
2375 `(,',(car options/enable/disable)
2376 (append (,',(car options/enable/disable))
2377 (list ',opt ,val))))))))
2378
2379(define-option-interface
2380 (eval-options-interface
2381 (eval-options eval-enable eval-disable)
2382 (eval-set!)))
2383
2384(define-option-interface
2385 (debug-options-interface
2386 (debug-options debug-enable debug-disable)
2387 (debug-set!)))
2388
2389(define-option-interface
2390 (evaluator-traps-interface
2391 (traps trap-enable trap-disable)
2392 (trap-set!)))
2393
2394(define-option-interface
2395 (read-options-interface
2396 (read-options read-enable read-disable)
2397 (read-set!)))
2398
2399(define-option-interface
2400 (print-options-interface
2401 (print-options print-enable print-disable)
2402 (print-set!)))
2403
2404\f
2405
2406;;; {Running Repls}
2407;;;
2408
2409(define (repl read evaler print)
2410 (let loop ((source (read (current-input-port))))
2411 (print (evaler source))
2412 (loop (read (current-input-port)))))
2413
2414;; A provisional repl that acts like the SCM repl:
2415;;
2416(define scm-repl-silent #f)
2417(define (assert-repl-silence v) (set! scm-repl-silent v))
2418
2419(define *unspecified* (if #f #f))
2420(define (unspecified? v) (eq? v *unspecified*))
2421
2422(define scm-repl-print-unspecified #f)
2423(define (assert-repl-print-unspecified v) (set! scm-repl-print-unspecified v))
2424
2425(define scm-repl-verbose #f)
2426(define (assert-repl-verbosity v) (set! scm-repl-verbose v))
2427
2428(define scm-repl-prompt "guile> ")
2429
2430(define (set-repl-prompt! v) (set! scm-repl-prompt v))
2431
2432(define (default-pre-unwind-handler key . args)
2433 (save-stack 1)
2434 (apply throw key args))
2435
2436(begin-deprecated
2437 (define (pre-unwind-handler-dispatch key . args)
2438 (apply default-pre-unwind-handler key args)))
2439
2440(define abort-hook (make-hook))
2441
2442;; these definitions are used if running a script.
2443;; otherwise redefined in error-catching-loop.
2444(define (set-batch-mode?! arg) #t)
2445(define (batch-mode?) #t)
2446
2447(define (error-catching-loop thunk)
2448 (let ((status #f)
2449 (interactive #t))
2450 (define (loop first)
2451 (let ((next
2452 (catch #t
2453
2454 (lambda ()
2455 (call-with-unblocked-asyncs
2456 (lambda ()
2457 (with-traps
2458 (lambda ()
2459 (first)
2460
2461 ;; This line is needed because mark
2462 ;; doesn't do closures quite right.
2463 ;; Unreferenced locals should be
2464 ;; collected.
2465 (set! first #f)
2466 (let loop ((v (thunk)))
2467 (loop (thunk)))
2468 #f)))))
2469
2470 (lambda (key . args)
2471 (case key
2472 ((quit)
2473 (set! status args)
2474 #f)
2475
2476 ((switch-repl)
2477 (apply throw 'switch-repl args))
2478
2479 ((abort)
2480 ;; This is one of the closures that require
2481 ;; (set! first #f) above
2482 ;;
2483 (lambda ()
2484 (run-hook abort-hook)
2485 (force-output (current-output-port))
2486 (display "ABORT: " (current-error-port))
2487 (write args (current-error-port))
2488 (newline (current-error-port))
2489 (if interactive
2490 (begin
2491 (if (and
2492 (not has-shown-debugger-hint?)
2493 (not (memq 'backtrace
2494 (debug-options-interface)))
2495 (stack? (fluid-ref the-last-stack)))
2496 (begin
2497 (newline (current-error-port))
2498 (display
2499 "Type \"(backtrace)\" to get more information or \"(debug)\" to enter the debugger.\n"
2500 (current-error-port))
2501 (set! has-shown-debugger-hint? #t)))
2502 (force-output (current-error-port)))
2503 (begin
2504 (primitive-exit 1)))
2505 (set! stack-saved? #f)))
2506
2507 (else
2508 ;; This is the other cons-leak closure...
2509 (lambda ()
2510 (cond ((= (length args) 4)
2511 (apply handle-system-error key args))
2512 (else
2513 (apply bad-throw key args)))))))
2514
2515 default-pre-unwind-handler)))
2516
2517 (if next (loop next) status)))
2518 (set! set-batch-mode?! (lambda (arg)
2519 (cond (arg
2520 (set! interactive #f)
2521 (restore-signals))
2522 (#t
2523 (error "sorry, not implemented")))))
2524 (set! batch-mode? (lambda () (not interactive)))
2525 (call-with-blocked-asyncs
2526 (lambda () (loop (lambda () #t))))))
2527
2528;;(define the-last-stack (make-fluid)) Defined by scm_init_backtrace ()
2529(define before-signal-stack (make-fluid))
2530(define stack-saved? #f)
2531
2532(define (save-stack . narrowing)
2533 (or stack-saved?
2534 (cond ((not (memq 'debug (debug-options-interface)))
2535 (fluid-set! the-last-stack #f)
2536 (set! stack-saved? #t))
2537 (else
2538 (fluid-set!
2539 the-last-stack
2540 (case (stack-id #t)
2541 ((repl-stack)
2542 (apply make-stack #t save-stack primitive-eval #t 0 narrowing))
2543 ((load-stack)
2544 (apply make-stack #t save-stack 0 #t 0 narrowing))
2545 ((tk-stack)
2546 (apply make-stack #t save-stack tk-stack-mark #t 0 narrowing))
2547 ((#t)
2548 (apply make-stack #t save-stack 0 1 narrowing))
2549 (else
2550 (let ((id (stack-id #t)))
2551 (and (procedure? id)
2552 (apply make-stack #t save-stack id #t 0 narrowing))))))
2553 (set! stack-saved? #t)))))
2554
2555(define before-error-hook (make-hook))
2556(define after-error-hook (make-hook))
2557(define before-backtrace-hook (make-hook))
2558(define after-backtrace-hook (make-hook))
2559
2560(define has-shown-debugger-hint? #f)
2561
2562(define (handle-system-error key . args)
2563 (let ((cep (current-error-port)))
2564 (cond ((not (stack? (fluid-ref the-last-stack))))
2565 ((memq 'backtrace (debug-options-interface))
2566 (let ((highlights (if (or (eq? key 'wrong-type-arg)
2567 (eq? key 'out-of-range))
2568 (list-ref args 3)
2569 '())))
2570 (run-hook before-backtrace-hook)
2571 (newline cep)
2572 (display "Backtrace:\n")
2573 (display-backtrace (fluid-ref the-last-stack) cep
2574 #f #f highlights)
2575 (newline cep)
2576 (run-hook after-backtrace-hook))))
2577 (run-hook before-error-hook)
2578 (apply display-error (fluid-ref the-last-stack) cep args)
2579 (run-hook after-error-hook)
2580 (force-output cep)
2581 (throw 'abort key)))
2582
2583(define (quit . args)
2584 (apply throw 'quit args))
2585
2586(define exit quit)
2587
2588;;(define has-shown-backtrace-hint? #f) Defined by scm_init_backtrace ()
2589
2590;; Replaced by C code:
2591;;(define (backtrace)
2592;; (if (fluid-ref the-last-stack)
2593;; (begin
2594;; (newline)
2595;; (display-backtrace (fluid-ref the-last-stack) (current-output-port))
2596;; (newline)
2597;; (if (and (not has-shown-backtrace-hint?)
2598;; (not (memq 'backtrace (debug-options-interface))))
2599;; (begin
2600;; (display
2601;;"Type \"(debug-enable 'backtrace)\" if you would like a backtrace
2602;;automatically if an error occurs in the future.\n")
2603;; (set! has-shown-backtrace-hint? #t))))
2604;; (display "No backtrace available.\n")))
2605
2606(define (error-catching-repl r e p)
2607 (error-catching-loop
2608 (lambda ()
2609 (call-with-values (lambda () (e (r)))
2610 (lambda the-values (for-each p the-values))))))
2611
2612(define (gc-run-time)
2613 (cdr (assq 'gc-time-taken (gc-stats))))
2614
2615(define before-read-hook (make-hook))
2616(define after-read-hook (make-hook))
2617(define before-eval-hook (make-hook 1))
2618(define after-eval-hook (make-hook 1))
2619(define before-print-hook (make-hook 1))
2620(define after-print-hook (make-hook 1))
2621
2622;;; The default repl-reader function. We may override this if we've
2623;;; the readline library.
2624(define repl-reader
2625 (lambda (prompt)
2626 (display (if (string? prompt) prompt (prompt)))
2627 (force-output)
2628 (run-hook before-read-hook)
2629 ((or (fluid-ref current-reader) read) (current-input-port))))
2630
2631(define (scm-style-repl)
2632
2633 (letrec (
2634 (start-gc-rt #f)
2635 (start-rt #f)
2636 (repl-report-start-timing (lambda ()
2637 (set! start-gc-rt (gc-run-time))
2638 (set! start-rt (get-internal-run-time))))
2639 (repl-report (lambda ()
2640 (display ";;; ")
2641 (display (inexact->exact
2642 (* 1000 (/ (- (get-internal-run-time) start-rt)
2643 internal-time-units-per-second))))
2644 (display " msec (")
2645 (display (inexact->exact
2646 (* 1000 (/ (- (gc-run-time) start-gc-rt)
2647 internal-time-units-per-second))))
2648 (display " msec in gc)\n")))
2649
2650 (consume-trailing-whitespace
2651 (lambda ()
2652 (let ((ch (peek-char)))
2653 (cond
2654 ((eof-object? ch))
2655 ((or (char=? ch #\space) (char=? ch #\tab))
2656 (read-char)
2657 (consume-trailing-whitespace))
2658 ((char=? ch #\newline)
2659 (read-char))))))
2660 (-read (lambda ()
2661 (let ((val
2662 (let ((prompt (cond ((string? scm-repl-prompt)
2663 scm-repl-prompt)
2664 ((thunk? scm-repl-prompt)
2665 (scm-repl-prompt))
2666 (scm-repl-prompt "> ")
2667 (else ""))))
2668 (repl-reader prompt))))
2669
2670 ;; As described in R4RS, the READ procedure updates the
2671 ;; port to point to the first character past the end of
2672 ;; the external representation of the object. This
2673 ;; means that it doesn't consume the newline typically
2674 ;; found after an expression. This means that, when
2675 ;; debugging Guile with GDB, GDB gets the newline, which
2676 ;; it often interprets as a "continue" command, making
2677 ;; breakpoints kind of useless. So, consume any
2678 ;; trailing newline here, as well as any whitespace
2679 ;; before it.
2680 ;; But not if EOF, for control-D.
2681 (if (not (eof-object? val))
2682 (consume-trailing-whitespace))
2683 (run-hook after-read-hook)
2684 (if (eof-object? val)
2685 (begin
2686 (repl-report-start-timing)
2687 (if scm-repl-verbose
2688 (begin
2689 (newline)
2690 (display ";;; EOF -- quitting")
2691 (newline)))
2692 (quit 0)))
2693 val)))
2694
2695 (-eval (lambda (sourc)
2696 (repl-report-start-timing)
2697 (run-hook before-eval-hook sourc)
2698 (let ((val (start-stack 'repl-stack
2699 ;; If you change this procedure
2700 ;; (primitive-eval), please also
2701 ;; modify the repl-stack case in
2702 ;; save-stack so that stack cutting
2703 ;; continues to work.
2704 (primitive-eval sourc))))
2705 (run-hook after-eval-hook sourc)
2706 val)))
2707
2708
2709 (-print (let ((maybe-print (lambda (result)
2710 (if (or scm-repl-print-unspecified
2711 (not (unspecified? result)))
2712 (begin
2713 (write result)
2714 (newline))))))
2715 (lambda (result)
2716 (if (not scm-repl-silent)
2717 (begin
2718 (run-hook before-print-hook result)
2719 (maybe-print result)
2720 (run-hook after-print-hook result)
2721 (if scm-repl-verbose
2722 (repl-report))
2723 (force-output))))))
2724
2725 (-quit (lambda (args)
2726 (if scm-repl-verbose
2727 (begin
2728 (display ";;; QUIT executed, repl exitting")
2729 (newline)
2730 (repl-report)))
2731 args))
2732
2733 (-abort (lambda ()
2734 (if scm-repl-verbose
2735 (begin
2736 (display ";;; ABORT executed.")
2737 (newline)
2738 (repl-report)))
2739 (repl -read -eval -print))))
2740
2741 (let ((status (error-catching-repl -read
2742 -eval
2743 -print)))
2744 (-quit status))))
2745
2746
2747\f
2748
2749;;; {IOTA functions: generating lists of numbers}
2750;;;
2751
2752(define (iota n)
2753 (let loop ((count (1- n)) (result '()))
2754 (if (< count 0) result
2755 (loop (1- count) (cons count result)))))
2756
2757\f
2758
2759;;; {collect}
2760;;;
2761;;; Similar to `begin' but returns a list of the results of all constituent
2762;;; forms instead of the result of the last form.
2763;;; (The definition relies on the current left-to-right
2764;;; order of evaluation of operands in applications.)
2765;;;
2766
2767(defmacro collect forms
2768 (cons 'list forms))
2769
2770\f
2771
2772;;; {with-fluids}
2773;;;
2774
2775;; with-fluids is a convenience wrapper for the builtin procedure
2776;; `with-fluids*'. The syntax is just like `let':
2777;;
2778;; (with-fluids ((fluid val)
2779;; ...)
2780;; body)
2781
2782(defmacro with-fluids (bindings . body)
2783 (let ((fluids (map car bindings))
2784 (values (map cadr bindings)))
2785 (if (and (= (length fluids) 1) (= (length values) 1))
2786 `(with-fluid* ,(car fluids) ,(car values) (lambda () ,@body))
2787 `(with-fluids* (list ,@fluids) (list ,@values)
2788 (lambda () ,@body)))))
2789
2790;;; {While}
2791;;;
2792;;; with `continue' and `break'.
2793;;;
2794
2795;; The inner `do' loop avoids re-establishing a catch every iteration,
2796;; that's only necessary if continue is actually used. A new key is
2797;; generated every time, so break and continue apply to their originating
2798;; `while' even when recursing.
2799;;
2800;; FIXME: This macro is unintentionally unhygienic with respect to let,
2801;; make-symbol, do, throw, catch, lambda, and not.
2802;;
2803(define-macro (while cond . body)
2804 (let ((keyvar (make-symbol "while-keyvar")))
2805 `(let ((,keyvar (make-symbol "while-key")))
2806 (do ()
2807 ((catch ,keyvar
2808 (lambda ()
2809 (let ((break (lambda () (throw ,keyvar #t)))
2810 (continue (lambda () (throw ,keyvar #f))))
2811 (do ()
2812 ((not ,cond))
2813 ,@body)
2814 #t))
2815 (lambda (key arg)
2816 arg)))))))
2817
2818
2819\f
2820
2821;;; {Module System Macros}
2822;;;
2823
2824;; Return a list of expressions that evaluate to the appropriate
2825;; arguments for resolve-interface according to SPEC.
2826
2827(eval-when
2828 (compile)
2829 (if (memq 'prefix (read-options))
2830 (error "boot-9 must be compiled with #:kw, not :kw")))
2831
2832(define (compile-interface-spec spec)
2833 (define (make-keyarg sym key quote?)
2834 (cond ((or (memq sym spec)
2835 (memq key spec))
2836 => (lambda (rest)
2837 (if quote?
2838 (list key (list 'quote (cadr rest)))
2839 (list key (cadr rest)))))
2840 (else
2841 '())))
2842 (define (map-apply func list)
2843 (map (lambda (args) (apply func args)) list))
2844 (define keys
2845 ;; sym key quote?
2846 '((:select #:select #t)
2847 (:hide #:hide #t)
2848 (:prefix #:prefix #t)
2849 (:renamer #:renamer #f)))
2850 (if (not (pair? (car spec)))
2851 `(',spec)
2852 `(',(car spec)
2853 ,@(apply append (map-apply make-keyarg keys)))))
2854
2855(define (keyword-like-symbol->keyword sym)
2856 (symbol->keyword (string->symbol (substring (symbol->string sym) 1))))
2857
2858(define (compile-define-module-args args)
2859 ;; Just quote everything except #:use-module and #:use-syntax. We
2860 ;; need to know about all arguments regardless since we want to turn
2861 ;; symbols that look like keywords into real keywords, and the
2862 ;; keyword args in a define-module form are not regular
2863 ;; (i.e. no-backtrace doesn't take a value).
2864 (let loop ((compiled-args `((quote ,(car args))))
2865 (args (cdr args)))
2866 (cond ((null? args)
2867 (reverse! compiled-args))
2868 ;; symbol in keyword position
2869 ((symbol? (car args))
2870 (loop compiled-args
2871 (cons (keyword-like-symbol->keyword (car args)) (cdr args))))
2872 ((memq (car args) '(#:no-backtrace #:pure))
2873 (loop (cons (car args) compiled-args)
2874 (cdr args)))
2875 ((null? (cdr args))
2876 (error "keyword without value:" (car args)))
2877 ((memq (car args) '(#:use-module #:use-syntax))
2878 (loop (cons* `(list ,@(compile-interface-spec (cadr args)))
2879 (car args)
2880 compiled-args)
2881 (cddr args)))
2882 ((eq? (car args) #:autoload)
2883 (loop (cons* `(quote ,(caddr args))
2884 `(quote ,(cadr args))
2885 (car args)
2886 compiled-args)
2887 (cdddr args)))
2888 (else
2889 (loop (cons* `(quote ,(cadr args))
2890 (car args)
2891 compiled-args)
2892 (cddr args))))))
2893
2894(defmacro define-module args
2895 `(eval-when
2896 (eval load compile)
2897 (let ((m (process-define-module
2898 (list ,@(compile-define-module-args args)))))
2899 (set-current-module m)
2900 m)))
2901
2902;; The guts of the use-modules macro. Add the interfaces of the named
2903;; modules to the use-list of the current module, in order.
2904
2905;; This function is called by "modules.c". If you change it, be sure
2906;; to change scm_c_use_module as well.
2907
2908(define (process-use-modules module-interface-args)
2909 (let ((interfaces (map (lambda (mif-args)
2910 (or (apply resolve-interface mif-args)
2911 (error "no such module" mif-args)))
2912 module-interface-args)))
2913 (call-with-deferred-observers
2914 (lambda ()
2915 (module-use-interfaces! (current-module) interfaces)))))
2916
2917(defmacro use-modules modules
2918 `(eval-when
2919 (eval load compile)
2920 (process-use-modules
2921 (list ,@(map (lambda (m)
2922 `(list ,@(compile-interface-spec m)))
2923 modules)))
2924 *unspecified*))
2925
2926(defmacro use-syntax (spec)
2927 `(eval-when
2928 (eval load compile)
2929 (issue-deprecation-warning
2930 "`use-syntax' is deprecated. Please contact guile-devel for more info.")
2931 (process-use-modules (list (list ,@(compile-interface-spec spec))))
2932 *unspecified*))
2933
2934;; Dirk:FIXME:: This incorrect (according to R5RS) syntax needs to be changed
2935;; as soon as guile supports hygienic macros.
2936(define-syntax define-private
2937 (syntax-rules ()
2938 ((_ foo bar)
2939 (define foo bar))))
2940
2941(define-syntax define-public
2942 (syntax-rules ()
2943 ((_ (name . args) . body)
2944 (define-public name (lambda args . body)))
2945 ((_ name val)
2946 (begin
2947 (define name val)
2948 (export name)))))
2949
2950(define-syntax defmacro-public
2951 (syntax-rules ()
2952 ((_ name args . body)
2953 (begin
2954 (defmacro name args . body)
2955 (export-syntax name)))))
2956
2957;; Export a local variable
2958
2959;; This function is called from "modules.c". If you change it, be
2960;; sure to update "modules.c" as well.
2961
2962(define (module-export! m names)
2963 (let ((public-i (module-public-interface m)))
2964 (for-each (lambda (name)
2965 (let ((var (module-ensure-local-variable! m name)))
2966 (module-add! public-i name var)))
2967 names)))
2968
2969(define (module-replace! m names)
2970 (let ((public-i (module-public-interface m)))
2971 (for-each (lambda (name)
2972 (let ((var (module-ensure-local-variable! m name)))
2973 (set-object-property! var 'replace #t)
2974 (module-add! public-i name var)))
2975 names)))
2976
2977;; Re-export a imported variable
2978;;
2979(define (module-re-export! m names)
2980 (let ((public-i (module-public-interface m)))
2981 (for-each (lambda (name)
2982 (let ((var (module-variable m name)))
2983 (cond ((not var)
2984 (error "Undefined variable:" name))
2985 ((eq? var (module-local-variable m name))
2986 (error "re-exporting local variable:" name))
2987 (else
2988 (module-add! public-i name var)))))
2989 names)))
2990
2991(defmacro export names
2992 `(call-with-deferred-observers
2993 (lambda ()
2994 (module-export! (current-module) ',names))))
2995
2996(defmacro re-export names
2997 `(call-with-deferred-observers
2998 (lambda ()
2999 (module-re-export! (current-module) ',names))))
3000
3001(defmacro export-syntax names
3002 `(export ,@names))
3003
3004(defmacro re-export-syntax names
3005 `(re-export ,@names))
3006
3007(define load load-module)
3008
3009\f
3010
3011;;; {Parameters}
3012;;;
3013
3014(define make-mutable-parameter
3015 (let ((make (lambda (fluid converter)
3016 (lambda args
3017 (if (null? args)
3018 (fluid-ref fluid)
3019 (fluid-set! fluid (converter (car args))))))))
3020 (lambda (init . converter)
3021 (let ((fluid (make-fluid))
3022 (converter (if (null? converter)
3023 identity
3024 (car converter))))
3025 (fluid-set! fluid (converter init))
3026 (make fluid converter)))))
3027
3028\f
3029
3030;;; {Handling of duplicate imported bindings}
3031;;;
3032
3033;; Duplicate handlers take the following arguments:
3034;;
3035;; module importing module
3036;; name conflicting name
3037;; int1 old interface where name occurs
3038;; val1 value of binding in old interface
3039;; int2 new interface where name occurs
3040;; val2 value of binding in new interface
3041;; var previous resolution or #f
3042;; val value of previous resolution
3043;;
3044;; A duplicate handler can take three alternative actions:
3045;;
3046;; 1. return #f => leave responsibility to next handler
3047;; 2. exit with an error
3048;; 3. return a variable resolving the conflict
3049;;
3050
3051(define duplicate-handlers
3052 (let ((m (make-module 7)))
3053
3054 (define (check module name int1 val1 int2 val2 var val)
3055 (scm-error 'misc-error
3056 #f
3057 "~A: `~A' imported from both ~A and ~A"
3058 (list (module-name module)
3059 name
3060 (module-name int1)
3061 (module-name int2))
3062 #f))
3063
3064 (define (warn module name int1 val1 int2 val2 var val)
3065 (format (current-error-port)
3066 "WARNING: ~A: `~A' imported from both ~A and ~A\n"
3067 (module-name module)
3068 name
3069 (module-name int1)
3070 (module-name int2))
3071 #f)
3072
3073 (define (replace module name int1 val1 int2 val2 var val)
3074 (let ((old (or (and var (object-property var 'replace) var)
3075 (module-variable int1 name)))
3076 (new (module-variable int2 name)))
3077 (if (object-property old 'replace)
3078 (and (or (eq? old new)
3079 (not (object-property new 'replace)))
3080 old)
3081 (and (object-property new 'replace)
3082 new))))
3083
3084 (define (warn-override-core module name int1 val1 int2 val2 var val)
3085 (and (eq? int1 the-scm-module)
3086 (begin
3087 (format (current-error-port)
3088 "WARNING: ~A: imported module ~A overrides core binding `~A'\n"
3089 (module-name module)
3090 (module-name int2)
3091 name)
3092 (module-local-variable int2 name))))
3093
3094 (define (first module name int1 val1 int2 val2 var val)
3095 (or var (module-local-variable int1 name)))
3096
3097 (define (last module name int1 val1 int2 val2 var val)
3098 (module-local-variable int2 name))
3099
3100 (define (noop module name int1 val1 int2 val2 var val)
3101 #f)
3102
3103 (set-module-name! m 'duplicate-handlers)
3104 (set-module-kind! m 'interface)
3105 (module-define! m 'check check)
3106 (module-define! m 'warn warn)
3107 (module-define! m 'replace replace)
3108 (module-define! m 'warn-override-core warn-override-core)
3109 (module-define! m 'first first)
3110 (module-define! m 'last last)
3111 (module-define! m 'merge-generics noop)
3112 (module-define! m 'merge-accessors noop)
3113 m))
3114
3115(define (lookup-duplicates-handlers handler-names)
3116 (and handler-names
3117 (map (lambda (handler-name)
3118 (or (module-symbol-local-binding
3119 duplicate-handlers handler-name #f)
3120 (error "invalid duplicate handler name:"
3121 handler-name)))
3122 (if (list? handler-names)
3123 handler-names
3124 (list handler-names)))))
3125
3126(define default-duplicate-binding-procedures
3127 (make-mutable-parameter #f))
3128
3129(define default-duplicate-binding-handler
3130 (make-mutable-parameter '(replace warn-override-core warn last)
3131 (lambda (handler-names)
3132 (default-duplicate-binding-procedures
3133 (lookup-duplicates-handlers handler-names))
3134 handler-names)))
3135
3136\f
3137
3138;;; {`cond-expand' for SRFI-0 support.}
3139;;;
3140;;; This syntactic form expands into different commands or
3141;;; definitions, depending on the features provided by the Scheme
3142;;; implementation.
3143;;;
3144;;; Syntax:
3145;;;
3146;;; <cond-expand>
3147;;; --> (cond-expand <cond-expand-clause>+)
3148;;; | (cond-expand <cond-expand-clause>* (else <command-or-definition>))
3149;;; <cond-expand-clause>
3150;;; --> (<feature-requirement> <command-or-definition>*)
3151;;; <feature-requirement>
3152;;; --> <feature-identifier>
3153;;; | (and <feature-requirement>*)
3154;;; | (or <feature-requirement>*)
3155;;; | (not <feature-requirement>)
3156;;; <feature-identifier>
3157;;; --> <a symbol which is the name or alias of a SRFI>
3158;;;
3159;;; Additionally, this implementation provides the
3160;;; <feature-identifier>s `guile' and `r5rs', so that programs can
3161;;; determine the implementation type and the supported standard.
3162;;;
3163;;; Currently, the following feature identifiers are supported:
3164;;;
3165;;; guile r5rs srfi-0 srfi-4 srfi-6 srfi-13 srfi-14 srfi-55 srfi-61
3166;;;
3167;;; Remember to update the features list when adding more SRFIs.
3168;;;
3169
3170(define %cond-expand-features
3171 ;; Adjust the above comment when changing this.
3172 '(guile
3173 r5rs
3174 srfi-0 ;; cond-expand itself
3175 srfi-4 ;; homogenous numeric vectors
3176 srfi-6 ;; open-input-string etc, in the guile core
3177 srfi-13 ;; string library
3178 srfi-14 ;; character sets
3179 srfi-55 ;; require-extension
3180 srfi-61 ;; general cond clause
3181 ))
3182
3183;; This table maps module public interfaces to the list of features.
3184;;
3185(define %cond-expand-table (make-hash-table 31))
3186
3187;; Add one or more features to the `cond-expand' feature list of the
3188;; module `module'.
3189;;
3190(define (cond-expand-provide module features)
3191 (let ((mod (module-public-interface module)))
3192 (and mod
3193 (hashq-set! %cond-expand-table mod
3194 (append (hashq-ref %cond-expand-table mod '())
3195 features)))))
3196
3197(define cond-expand
3198 (procedure->memoizing-macro
3199 (lambda (exp env)
3200 (let ((clauses (cdr exp))
3201 (syntax-error (lambda (cl)
3202 (error "invalid clause in `cond-expand'" cl))))
3203 (letrec
3204 ((test-clause
3205 (lambda (clause)
3206 (cond
3207 ((symbol? clause)
3208 (or (memq clause %cond-expand-features)
3209 (let lp ((uses (module-uses (env-module env))))
3210 (if (pair? uses)
3211 (or (memq clause
3212 (hashq-ref %cond-expand-table
3213 (car uses) '()))
3214 (lp (cdr uses)))
3215 #f))))
3216 ((pair? clause)
3217 (cond
3218 ((eq? 'and (car clause))
3219 (let lp ((l (cdr clause)))
3220 (cond ((null? l)
3221 #t)
3222 ((pair? l)
3223 (and (test-clause (car l)) (lp (cdr l))))
3224 (else
3225 (syntax-error clause)))))
3226 ((eq? 'or (car clause))
3227 (let lp ((l (cdr clause)))
3228 (cond ((null? l)
3229 #f)
3230 ((pair? l)
3231 (or (test-clause (car l)) (lp (cdr l))))
3232 (else
3233 (syntax-error clause)))))
3234 ((eq? 'not (car clause))
3235 (cond ((not (pair? (cdr clause)))
3236 (syntax-error clause))
3237 ((pair? (cddr clause))
3238 ((syntax-error clause))))
3239 (not (test-clause (cadr clause))))
3240 (else
3241 (syntax-error clause))))
3242 (else
3243 (syntax-error clause))))))
3244 (let lp ((c clauses))
3245 (cond
3246 ((null? c)
3247 (error "Unfulfilled `cond-expand'"))
3248 ((not (pair? c))
3249 (syntax-error c))
3250 ((not (pair? (car c)))
3251 (syntax-error (car c)))
3252 ((test-clause (caar c))
3253 `(begin ,@(cdar c)))
3254 ((eq? (caar c) 'else)
3255 (if (pair? (cdr c))
3256 (syntax-error c))
3257 `(begin ,@(cdar c)))
3258 (else
3259 (lp (cdr c))))))))))
3260
3261;; This procedure gets called from the startup code with a list of
3262;; numbers, which are the numbers of the SRFIs to be loaded on startup.
3263;;
3264(define (use-srfis srfis)
3265 (process-use-modules
3266 (map (lambda (num)
3267 (list (list 'srfi (string->symbol
3268 (string-append "srfi-" (number->string num))))))
3269 srfis)))
3270
3271\f
3272
3273;;; srfi-55: require-extension
3274;;;
3275
3276(define-macro (require-extension extension-spec)
3277 ;; This macro only handles the srfi extension, which, at present, is
3278 ;; the only one defined by the standard.
3279 (if (not (pair? extension-spec))
3280 (scm-error 'wrong-type-arg "require-extension"
3281 "Not an extension: ~S" (list extension-spec) #f))
3282 (let ((extension (car extension-spec))
3283 (extension-args (cdr extension-spec)))
3284 (case extension
3285 ((srfi)
3286 (let ((use-list '()))
3287 (for-each
3288 (lambda (i)
3289 (if (not (integer? i))
3290 (scm-error 'wrong-type-arg "require-extension"
3291 "Invalid srfi name: ~S" (list i) #f))
3292 (let ((srfi-sym (string->symbol
3293 (string-append "srfi-" (number->string i)))))
3294 (if (not (memq srfi-sym %cond-expand-features))
3295 (set! use-list (cons `(use-modules (srfi ,srfi-sym))
3296 use-list)))))
3297 extension-args)
3298 (if (pair? use-list)
3299 ;; i.e. (begin (use-modules x) (use-modules y) (use-modules z))
3300 `(begin ,@(reverse! use-list)))))
3301 (else
3302 (scm-error
3303 'wrong-type-arg "require-extension"
3304 "Not a recognized extension type: ~S" (list extension) #f)))))
3305
3306\f
3307
3308;;; {Load emacs interface support if emacs option is given.}
3309;;;
3310
3311(define (named-module-use! user usee)
3312 (module-use! (resolve-module user) (resolve-interface usee)))
3313
3314(define (load-emacs-interface)
3315 (and (provided? 'debug-extensions)
3316 (debug-enable 'backtrace))
3317 (named-module-use! '(guile-user) '(ice-9 emacs)))
3318
3319\f
3320
3321(define using-readline?
3322 (let ((using-readline? (make-fluid)))
3323 (make-procedure-with-setter
3324 (lambda () (fluid-ref using-readline?))
3325 (lambda (v) (fluid-set! using-readline? v)))))
3326
3327(define (top-repl)
3328 (let ((guile-user-module (resolve-module '(guile-user))))
3329
3330 ;; Load emacs interface support if emacs option is given.
3331 (if (and (module-defined? guile-user-module 'use-emacs-interface)
3332 (module-ref guile-user-module 'use-emacs-interface))
3333 (load-emacs-interface))
3334
3335 ;; Use some convenient modules (in reverse order)
3336
3337 (set-current-module guile-user-module)
3338 (process-use-modules
3339 (append
3340 '(((ice-9 r5rs))
3341 ((ice-9 session))
3342 ((ice-9 debug)))
3343 (if (provided? 'regex)
3344 '(((ice-9 regex)))
3345 '())
3346 (if (provided? 'threads)
3347 '(((ice-9 threads)))
3348 '())))
3349 ;; load debugger on demand
3350 (module-autoload! guile-user-module '(ice-9 debugger) '(debug))
3351
3352 ;; Note: SIGFPE, SIGSEGV and SIGBUS are actually "query-only" (see
3353 ;; scmsigs.c scm_sigaction_for_thread), so the handlers setup here have
3354 ;; no effect.
3355 (let ((old-handlers #f)
3356 (start-repl (module-ref (resolve-interface '(system repl repl))
3357 'start-repl))
3358 (signals (if (provided? 'posix)
3359 `((,SIGINT . "User interrupt")
3360 (,SIGFPE . "Arithmetic error")
3361 (,SIGSEGV
3362 . "Bad memory access (Segmentation violation)"))
3363 '())))
3364 ;; no SIGBUS on mingw
3365 (if (defined? 'SIGBUS)
3366 (set! signals (acons SIGBUS "Bad memory access (bus error)"
3367 signals)))
3368
3369 (dynamic-wind
3370
3371 ;; call at entry
3372 (lambda ()
3373 (let ((make-handler (lambda (msg)
3374 (lambda (sig)
3375 ;; Make a backup copy of the stack
3376 (fluid-set! before-signal-stack
3377 (fluid-ref the-last-stack))
3378 (save-stack 2)
3379 (scm-error 'signal
3380 #f
3381 msg
3382 #f
3383 (list sig))))))
3384 (set! old-handlers
3385 (map (lambda (sig-msg)
3386 (sigaction (car sig-msg)
3387 (make-handler (cdr sig-msg))))
3388 signals))))
3389
3390 ;; the protected thunk.
3391 (lambda ()
3392 (let ((status (start-repl 'scheme)))
3393 (run-hook exit-hook)
3394 status))
3395
3396 ;; call at exit.
3397 (lambda ()
3398 (map (lambda (sig-msg old-handler)
3399 (if (not (car old-handler))
3400 ;; restore original C handler.
3401 (sigaction (car sig-msg) #f)
3402 ;; restore Scheme handler, SIG_IGN or SIG_DFL.
3403 (sigaction (car sig-msg)
3404 (car old-handler)
3405 (cdr old-handler))))
3406 signals old-handlers))))))
3407
3408;;; This hook is run at the very end of an interactive session.
3409;;;
3410(define exit-hook (make-hook))
3411
3412\f
3413
3414;;; {Deprecated stuff}
3415;;;
3416
3417(begin-deprecated
3418 (define (feature? sym)
3419 (issue-deprecation-warning
3420 "`feature?' is deprecated. Use `provided?' instead.")
3421 (provided? sym)))
3422
3423(begin-deprecated
3424 (primitive-load-path "ice-9/deprecated"))
3425
3426\f
3427
3428;;; Place the user in the guile-user module.
3429;;;
3430
3431;;; FIXME: annotate ?
3432;; (define (syncase exp)
3433;; (with-fluids ((expansion-eval-closure
3434;; (module-eval-closure (current-module))))
3435;; (deannotate/source-properties (sc-expand (annotate exp)))))
3436
3437(define-module (guile-user)
3438 #:autoload (system base compile) (compile))
3439
3440;;; boot-9.scm ends here