Support serialization of uniform vector literals
[bpt/guile.git] / libguile / vm-engine.c
... / ...
CommitLineData
1/* Copyright (C) 2001, 2009, 2010, 2011, 2012, 2013 Free Software Foundation, Inc.
2 *
3 * This library is free software; you can redistribute it and/or
4 * modify it under the terms of the GNU Lesser General Public License
5 * as published by the Free Software Foundation; either version 3 of
6 * the License, or (at your option) any later version.
7 *
8 * This library is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * Lesser General Public License for more details.
12 *
13 * You should have received a copy of the GNU Lesser General Public
14 * License along with this library; if not, write to the Free Software
15 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
16 * 02110-1301 USA
17 */
18
19/* This file is included in vm.c multiple times. */
20
21
22/* Virtual Machine
23
24 This file contains two virtual machines. First, the old one -- the
25 one that is currently used, and corresponds to Guile 2.0. It's a
26 stack machine, meaning that most instructions pop their operands from
27 the top of the stack, and push results there too.
28
29 Following it is the new virtual machine. It's a register machine,
30 meaning that intructions address their operands by index, and store
31 results in indexed slots as well. Those slots are on the stack.
32 It's somewhat confusing to call it a register machine, given that the
33 values are on the stack. Perhaps it needs a new name.
34
35 Anyway, things are in a transitional state. We're going to try to
36 avoid munging the old VM very much while we flesh out the new one.
37 We're also going to try to make them interoperable, as much as
38 possible -- to have the old VM be able to call procedures for the new
39 VM, and vice versa. This should ease the bootstrapping process. */
40
41
42/* The old VM. */
43static SCM VM_NAME (SCM, SCM, SCM*, int);
44/* The new VM. */
45static SCM RTL_VM_NAME (SCM, SCM, SCM*, size_t);
46
47
48#if (VM_ENGINE == SCM_VM_REGULAR_ENGINE)
49# define VM_USE_HOOKS 0 /* Various hooks */
50#elif (VM_ENGINE == SCM_VM_DEBUG_ENGINE)
51# define VM_USE_HOOKS 1
52#else
53# error unknown debug engine VM_ENGINE
54#endif
55
56/* Assign some registers by hand. There used to be a bigger list here,
57 but it was never tested, and in the case of x86-32, was a source of
58 compilation failures. It can be revived if it's useful, but my naive
59 hope is that simply annotating the locals with "register" will be a
60 sufficient hint to the compiler. */
61#ifdef __GNUC__
62# if defined __x86_64__
63/* GCC 4.6 chooses %rbp for IP_REG and %rbx for SP_REG, which works
64 well. Tell it to keep the jump table in a r12, which is
65 callee-saved. */
66# define JT_REG asm ("r12")
67# endif
68#endif
69
70#ifndef IP_REG
71# define IP_REG
72#endif
73#ifndef SP_REG
74# define SP_REG
75#endif
76#ifndef FP_REG
77# define FP_REG
78#endif
79#ifndef JT_REG
80# define JT_REG
81#endif
82
83#define VM_ASSERT(condition, handler) \
84 do { \
85 if (SCM_UNLIKELY (!(condition))) \
86 { \
87 SYNC_ALL(); \
88 handler; \
89 } \
90 } while (0)
91
92#ifdef VM_ENABLE_ASSERTIONS
93# define ASSERT(condition) VM_ASSERT (condition, abort())
94#else
95# define ASSERT(condition)
96#endif
97
98#if VM_USE_HOOKS
99#define RUN_HOOK(h, args, n) \
100 do { \
101 if (SCM_UNLIKELY (vp->trace_level > 0)) \
102 { \
103 SYNC_REGISTER (); \
104 vm_dispatch_hook (vm, h, args, n); \
105 } \
106 } while (0)
107#else
108#define RUN_HOOK(h, args, n)
109#endif
110#define RUN_HOOK0(h) RUN_HOOK(h, NULL, 0)
111
112#define APPLY_HOOK() \
113 RUN_HOOK0 (SCM_VM_APPLY_HOOK)
114#define PUSH_CONTINUATION_HOOK() \
115 RUN_HOOK0 (SCM_VM_PUSH_CONTINUATION_HOOK)
116#define POP_CONTINUATION_HOOK(vals, n) \
117 RUN_HOOK (SCM_VM_POP_CONTINUATION_HOOK, vals, n)
118#define NEXT_HOOK() \
119 RUN_HOOK0 (SCM_VM_NEXT_HOOK)
120#define ABORT_CONTINUATION_HOOK(vals, n) \
121 RUN_HOOK (SCM_VM_ABORT_CONTINUATION_HOOK, vals, n)
122#define RESTORE_CONTINUATION_HOOK() \
123 RUN_HOOK0 (SCM_VM_RESTORE_CONTINUATION_HOOK)
124
125#define VM_HANDLE_INTERRUPTS \
126 SCM_ASYNC_TICK_WITH_CODE (current_thread, SYNC_REGISTER ())
127
128
129\f
130
131/* Cache the VM's instruction, stack, and frame pointer in local variables. */
132#define CACHE_REGISTER() \
133{ \
134 ip = vp->ip; \
135 sp = vp->sp; \
136 fp = vp->fp; \
137}
138
139/* Update the registers in VP, a pointer to the current VM. This must be done
140 at least before any GC invocation so that `vp->sp' is up-to-date and the
141 whole stack gets marked. */
142#define SYNC_REGISTER() \
143{ \
144 vp->ip = ip; \
145 vp->sp = sp; \
146 vp->fp = fp; \
147}
148
149/* FIXME */
150#define ASSERT_VARIABLE(x) \
151 VM_ASSERT (SCM_VARIABLEP (x), abort())
152#define ASSERT_BOUND_VARIABLE(x) \
153 VM_ASSERT (SCM_VARIABLEP (x) \
154 && !scm_is_eq (SCM_VARIABLE_REF (x), SCM_UNDEFINED), \
155 abort())
156
157#ifdef VM_ENABLE_PARANOID_ASSERTIONS
158#define CHECK_IP() \
159 do { if (ip < bp->base || ip - bp->base > bp->len) abort (); } while (0)
160#define ASSERT_ALIGNED_PROCEDURE() \
161 do { if ((scm_t_bits)bp % 8) abort (); } while (0)
162#define ASSERT_BOUND(x) \
163 VM_ASSERT (!scm_is_eq ((x), SCM_UNDEFINED), abort())
164#else
165#define CHECK_IP()
166#define ASSERT_ALIGNED_PROCEDURE()
167#define ASSERT_BOUND(x)
168#endif
169
170/* Cache the object table and free variables. */
171#define CACHE_PROGRAM() \
172{ \
173 if (bp != SCM_PROGRAM_DATA (program)) { \
174 bp = SCM_PROGRAM_DATA (program); \
175 ASSERT_ALIGNED_PROCEDURE (); \
176 if (SCM_I_IS_VECTOR (SCM_PROGRAM_OBJTABLE (program))) { \
177 objects = SCM_I_VECTOR_WELTS (SCM_PROGRAM_OBJTABLE (program)); \
178 } else { \
179 objects = NULL; \
180 } \
181 } \
182}
183
184#define SYNC_BEFORE_GC() \
185{ \
186 SYNC_REGISTER (); \
187}
188
189#define SYNC_ALL() \
190{ \
191 SYNC_REGISTER (); \
192}
193
194\f
195/*
196 * Error check
197 */
198
199/* Accesses to a program's object table. */
200#define CHECK_OBJECT(_num)
201#define CHECK_FREE_VARIABLE(_num)
202
203\f
204/*
205 * Stack operation
206 */
207
208#ifdef VM_ENABLE_STACK_NULLING
209# define CHECK_STACK_LEAKN(_n) ASSERT (!sp[_n]);
210# define CHECK_STACK_LEAK() CHECK_STACK_LEAKN(1)
211# define NULLSTACK(_n) { int __x = _n; CHECK_STACK_LEAKN (_n+1); while (__x > 0) sp[__x--] = NULL; }
212/* If you have a nonlocal exit in a pre-wind proc while invoking a continuation
213 inside a dynwind (phew!), the stack is fully rewound but vm_reset_stack for
214 that continuation doesn't have a chance to run. It's not important on a
215 semantic level, but it does mess up our stack nulling -- so this macro is to
216 fix that. */
217# define NULLSTACK_FOR_NONLOCAL_EXIT() if (vp->sp > sp) NULLSTACK (vp->sp - sp);
218#else
219# define CHECK_STACK_LEAKN(_n)
220# define CHECK_STACK_LEAK()
221# define NULLSTACK(_n)
222# define NULLSTACK_FOR_NONLOCAL_EXIT()
223#endif
224
225/* For this check, we don't use VM_ASSERT, because that leads to a
226 per-site SYNC_ALL, which is too much code growth. The real problem
227 of course is having to check for overflow all the time... */
228#define CHECK_OVERFLOW() \
229 do { if (SCM_UNLIKELY (sp >= stack_limit)) goto handle_overflow; } while (0)
230
231#ifdef VM_CHECK_UNDERFLOW
232#define PRE_CHECK_UNDERFLOW(N) \
233 VM_ASSERT (sp - (N) > SCM_FRAME_UPPER_ADDRESS (fp), vm_error_stack_underflow ())
234#define CHECK_UNDERFLOW() PRE_CHECK_UNDERFLOW (0)
235#else
236#define PRE_CHECK_UNDERFLOW(N) /* nop */
237#define CHECK_UNDERFLOW() /* nop */
238#endif
239
240
241#define PUSH(x) do { sp++; CHECK_OVERFLOW (); *sp = x; } while (0)
242#define DROP() do { sp--; CHECK_UNDERFLOW (); NULLSTACK (1); } while (0)
243#define DROPN(_n) do { sp -= (_n); CHECK_UNDERFLOW (); NULLSTACK (_n); } while (0)
244#define POP(x) do { PRE_CHECK_UNDERFLOW (1); x = *sp--; NULLSTACK (1); } while (0)
245#define POP2(x,y) do { PRE_CHECK_UNDERFLOW (2); x = *sp--; y = *sp--; NULLSTACK (2); } while (0)
246#define POP3(x,y,z) do { PRE_CHECK_UNDERFLOW (3); x = *sp--; y = *sp--; z = *sp--; NULLSTACK (3); } while (0)
247
248/* Pop the N objects on top of the stack and push a list that contains
249 them. */
250#define POP_LIST(n) \
251do \
252{ \
253 int i; \
254 SCM l = SCM_EOL, x; \
255 SYNC_BEFORE_GC (); \
256 for (i = n; i; i--) \
257 { \
258 POP (x); \
259 l = scm_cons (x, l); \
260 } \
261 PUSH (l); \
262} while (0)
263
264/* The opposite: push all of the elements in L onto the list. */
265#define PUSH_LIST(l, NILP) \
266do \
267{ \
268 for (; scm_is_pair (l); l = SCM_CDR (l)) \
269 PUSH (SCM_CAR (l)); \
270 VM_ASSERT (NILP (l), vm_error_improper_list (l)); \
271} while (0)
272
273\f
274/*
275 * Instruction operation
276 */
277
278#define FETCH() (*ip++)
279#define FETCH_LENGTH(len) do { len=*ip++; len<<=8; len+=*ip++; len<<=8; len+=*ip++; } while (0)
280
281#undef NEXT_JUMP
282#ifdef HAVE_LABELS_AS_VALUES
283# define NEXT_JUMP() goto *jump_table[FETCH () & SCM_VM_INSTRUCTION_MASK]
284#else
285# define NEXT_JUMP() goto vm_start
286#endif
287
288#define NEXT \
289{ \
290 NEXT_HOOK (); \
291 CHECK_STACK_LEAK (); \
292 NEXT_JUMP (); \
293}
294
295\f
296/* See frames.h for the layout of stack frames */
297/* When this is called, bp points to the new program data,
298 and the arguments are already on the stack */
299#define DROP_FRAME() \
300 { \
301 sp -= 3; \
302 NULLSTACK (3); \
303 CHECK_UNDERFLOW (); \
304 }
305
306
307static SCM
308VM_NAME (SCM vm, SCM program, SCM *argv, int nargs)
309{
310 /* VM registers */
311 register scm_t_uint8 *ip IP_REG; /* instruction pointer */
312 register SCM *sp SP_REG; /* stack pointer */
313 register SCM *fp FP_REG; /* frame pointer */
314 struct scm_vm *vp = SCM_VM_DATA (vm);
315
316 /* Cache variables */
317 struct scm_objcode *bp = NULL; /* program base pointer */
318 SCM *objects = NULL; /* constant objects */
319 SCM *stack_limit = vp->stack_limit; /* stack limit address */
320
321 scm_i_thread *current_thread = SCM_I_CURRENT_THREAD;
322
323 /* Internal variables */
324 int nvalues = 0;
325 scm_i_jmp_buf registers; /* used for prompts */
326
327#ifdef HAVE_LABELS_AS_VALUES
328 static const void **jump_table_pointer = NULL;
329#endif
330
331#ifdef HAVE_LABELS_AS_VALUES
332 register const void **jump_table JT_REG;
333
334 if (SCM_UNLIKELY (!jump_table_pointer))
335 {
336 int i;
337 jump_table_pointer = malloc (SCM_VM_NUM_INSTRUCTIONS * sizeof (void*));
338 for (i = 0; i < SCM_VM_NUM_INSTRUCTIONS; i++)
339 jump_table_pointer[i] = &&vm_error_bad_instruction;
340#define VM_INSTRUCTION_TO_LABEL 1
341#define jump_table jump_table_pointer
342#include <libguile/vm-expand.h>
343#include <libguile/vm-i-system.i>
344#include <libguile/vm-i-scheme.i>
345#include <libguile/vm-i-loader.i>
346#undef jump_table
347#undef VM_INSTRUCTION_TO_LABEL
348 }
349
350 /* Attempt to keep JUMP_TABLE_POINTER in a register. This saves one
351 load instruction at each instruction dispatch. */
352 jump_table = jump_table_pointer;
353#endif
354
355 if (SCM_I_SETJMP (registers))
356 {
357 /* Non-local return. Cache the VM registers back from the vp, and
358 go to the handler.
359
360 Note, at this point, we must assume that any variable local to
361 vm_engine that can be assigned *has* been assigned. So we need to pull
362 all our state back from the ip/fp/sp.
363 */
364 CACHE_REGISTER ();
365 program = SCM_FRAME_PROGRAM (fp);
366 CACHE_PROGRAM ();
367 /* The stack contains the values returned to this continuation,
368 along with a number-of-values marker -- like an MV return. */
369 ABORT_CONTINUATION_HOOK (sp - SCM_I_INUM (*sp), SCM_I_INUM (*sp));
370 NEXT;
371 }
372
373 CACHE_REGISTER ();
374
375 /* Since it's possible to receive the arguments on the stack itself,
376 and indeed the RTL VM invokes us that way, shuffle up the
377 arguments first. */
378 VM_ASSERT (sp + 8 + nargs < stack_limit, vm_error_too_many_args (nargs));
379 {
380 int i;
381 for (i = nargs - 1; i >= 0; i--)
382 sp[9 + i] = argv[i];
383 }
384
385 /* Initial frame */
386 PUSH (SCM_PACK (fp)); /* dynamic link */
387 PUSH (SCM_PACK (0)); /* mvra */
388 PUSH (SCM_PACK (ip)); /* ra */
389 PUSH (boot_continuation);
390 fp = sp + 1;
391 ip = SCM_C_OBJCODE_BASE (SCM_PROGRAM_DATA (boot_continuation));
392
393 /* MV-call frame, function & arguments */
394 PUSH (SCM_PACK (fp)); /* dynamic link */
395 PUSH (SCM_PACK (ip + 1)); /* mvra */
396 PUSH (SCM_PACK (ip)); /* ra */
397 PUSH (program);
398 fp = sp + 1;
399 sp += nargs;
400
401 PUSH_CONTINUATION_HOOK ();
402
403 apply:
404 program = fp[-1];
405 if (!SCM_PROGRAM_P (program))
406 {
407 if (SCM_STRUCTP (program) && SCM_STRUCT_APPLICABLE_P (program))
408 fp[-1] = SCM_STRUCT_PROCEDURE (program);
409 else if (SCM_HAS_TYP7 (program, scm_tc7_rtl_program))
410 {
411 SCM ret;
412 SYNC_ALL ();
413
414 ret = RTL_VM_NAME (vm, program, fp, sp - fp + 1);
415
416 NULLSTACK_FOR_NONLOCAL_EXIT ();
417
418 if (SCM_UNLIKELY (SCM_VALUESP (ret)))
419 {
420 /* multiple values returned to continuation */
421 ret = scm_struct_ref (ret, SCM_INUM0);
422 nvalues = scm_ilength (ret);
423 PUSH_LIST (ret, scm_is_null);
424 goto vm_return_values;
425 }
426 else
427 {
428 PUSH (ret);
429 goto vm_return;
430 }
431 }
432 else if (SCM_HAS_TYP7 (program, scm_tc7_smob)
433 && SCM_SMOB_APPLICABLE_P (program))
434 {
435 /* (smob arg0 ... argN) => (apply-smob smob arg0 ... argN) */
436 int i;
437 PUSH (SCM_BOOL_F);
438 for (i = sp - fp; i >= 0; i--)
439 fp[i] = fp[i - 1];
440 fp[-1] = SCM_SMOB_DESCRIPTOR (program).apply_trampoline;
441 }
442 else
443 {
444 SYNC_ALL();
445 vm_error_wrong_type_apply (program);
446 }
447 goto apply;
448 }
449
450 CACHE_PROGRAM ();
451 ip = SCM_C_OBJCODE_BASE (bp);
452
453 APPLY_HOOK ();
454
455 /* Let's go! */
456 NEXT;
457
458#ifndef HAVE_LABELS_AS_VALUES
459 vm_start:
460 switch ((*ip++) & SCM_VM_INSTRUCTION_MASK) {
461#endif
462
463#include "vm-expand.h"
464#include "vm-i-system.c"
465#include "vm-i-scheme.c"
466#include "vm-i-loader.c"
467
468#ifndef HAVE_LABELS_AS_VALUES
469 default:
470 goto vm_error_bad_instruction;
471 }
472#endif
473
474 abort (); /* never reached */
475
476 vm_error_bad_instruction:
477 vm_error_bad_instruction (ip[-1]);
478 abort (); /* never reached */
479
480 handle_overflow:
481 SYNC_ALL ();
482 vm_error_stack_overflow (vp);
483 abort (); /* never reached */
484}
485
486#undef ALIGNED_P
487#undef CACHE_REGISTER
488#undef CHECK_OVERFLOW
489#undef FUNC2
490#undef INIT
491#undef INUM_MAX
492#undef INUM_MIN
493#undef INUM_STEP
494#undef jump_table
495#undef LOCAL_REF
496#undef LOCAL_SET
497#undef NEXT
498#undef NEXT_JUMP
499#undef REL
500#undef RETURN
501#undef RETURN_ONE_VALUE
502#undef RETURN_VALUE_LIST
503#undef SYNC_ALL
504#undef SYNC_BEFORE_GC
505#undef SYNC_IP
506#undef SYNC_REGISTER
507#undef VARIABLE_BOUNDP
508#undef VARIABLE_REF
509#undef VARIABLE_SET
510#undef VM_DEFINE_OP
511#undef VM_INSTRUCTION_TO_LABEL
512
513
514\f
515
516/* Virtual Machine
517
518 This is Guile's new virtual machine. When I say "new", I mean
519 relative to the current virtual machine. At some point it will
520 become "the" virtual machine, and we'll delete this paragraph. As
521 such, the rest of the comments speak as if there's only one VM.
522 In difference from the old VM, local 0 is the procedure, and the
523 first argument is local 1. At some point in the future we should
524 change the fp to point to the procedure and not to local 1.
525
526 <more overview here>
527 */
528
529
530/* The VM has three state bits: the instruction pointer (IP), the frame
531 pointer (FP), and the top-of-stack pointer (SP). We cache the first
532 two of these in machine registers, local to the VM, because they are
533 used extensively by the VM. As the SP is used more by code outside
534 the VM than by the VM itself, we don't bother caching it locally.
535
536 Since the FP changes infrequently, relative to the IP, we keep vp->fp
537 in sync with the local FP. This would be a big lose for the IP,
538 though, so instead of updating vp->ip all the time, we call SYNC_IP
539 whenever we would need to know the IP of the top frame. In practice,
540 we need to SYNC_IP whenever we call out of the VM to a function that
541 would like to walk the stack, perhaps as the result of an
542 exception. */
543
544#define SYNC_IP() \
545 vp->ip = (scm_t_uint8 *) (ip)
546
547#define SYNC_REGISTER() \
548 SYNC_IP()
549#define SYNC_BEFORE_GC() /* Only SP and FP needed to trace GC */
550#define SYNC_ALL() /* FP already saved */ \
551 SYNC_IP()
552
553#define CHECK_OVERFLOW(sp) \
554 do { \
555 if (SCM_UNLIKELY ((sp) >= stack_limit)) \
556 vm_error_stack_overflow (vp); \
557 } while (0)
558
559/* Reserve stack space for a frame. Will check that there is sufficient
560 stack space for N locals, including the procedure, in addition to
561 3 words to set up the next frame. Invoke after preparing the new
562 frame and setting the fp and ip. */
563#define ALLOC_FRAME(n) \
564 do { \
565 SCM *new_sp = vp->sp = fp - 1 + n - 1; \
566 CHECK_OVERFLOW (new_sp + 4); \
567 } while (0)
568
569/* Reset the current frame to hold N locals. Used when we know that no
570 stack expansion is needed. */
571#define RESET_FRAME(n) \
572 do { \
573 vp->sp = fp - 2 + n; \
574 } while (0)
575
576/* Compute the number of locals in the frame. This is equal to the
577 number of actual arguments when a function is first called, plus
578 one for the function. */
579#define FRAME_LOCALS_COUNT() \
580 (vp->sp + 1 - (fp - 1))
581
582/* Restore registers after returning from a frame. */
583#define RESTORE_FRAME() \
584 do { \
585 } while (0)
586
587
588#define CACHE_REGISTER() \
589 do { \
590 ip = (scm_t_uint32 *) vp->ip; \
591 fp = vp->fp; \
592 } while (0)
593
594#ifdef HAVE_LABELS_AS_VALUES
595# define BEGIN_DISPATCH_SWITCH /* */
596# define END_DISPATCH_SWITCH /* */
597# define NEXT(n) \
598 do \
599 { \
600 ip += n; \
601 NEXT_HOOK (); \
602 op = *ip; \
603 goto *jump_table[op & 0xff]; \
604 } \
605 while (0)
606# define VM_DEFINE_OP(opcode, tag, name, meta) \
607 op_##tag:
608#else
609# define BEGIN_DISPATCH_SWITCH \
610 vm_start: \
611 NEXT_HOOK (); \
612 op = *ip; \
613 switch (op & 0xff) \
614 {
615# define END_DISPATCH_SWITCH \
616 default: \
617 goto vm_error_bad_instruction; \
618 }
619# define NEXT(n) \
620 do \
621 { \
622 ip += n; \
623 goto vm_start; \
624 } \
625 while (0)
626# define VM_DEFINE_OP(opcode, tag, name, meta) \
627 op_##tag: \
628 case opcode:
629#endif
630
631#define LOCAL_REF(i) SCM_FRAME_VARIABLE ((fp - 1), i)
632#define LOCAL_SET(i,o) SCM_FRAME_VARIABLE ((fp - 1), i) = o
633
634#define VARIABLE_REF(v) SCM_VARIABLE_REF (v)
635#define VARIABLE_SET(v,o) SCM_VARIABLE_SET (v, o)
636#define VARIABLE_BOUNDP(v) (!scm_is_eq (VARIABLE_REF (v), SCM_UNDEFINED))
637
638#define RETURN_ONE_VALUE(ret) \
639 do { \
640 SCM val = ret; \
641 SCM *sp = SCM_FRAME_LOWER_ADDRESS (fp); \
642 VM_HANDLE_INTERRUPTS; \
643 ip = SCM_FRAME_RTL_RETURN_ADDRESS (fp); \
644 fp = vp->fp = SCM_FRAME_DYNAMIC_LINK (fp); \
645 /* Clear frame. */ \
646 sp[0] = SCM_BOOL_F; \
647 sp[1] = SCM_BOOL_F; \
648 sp[2] = SCM_BOOL_F; \
649 /* Leave proc. */ \
650 sp[4] = val; \
651 vp->sp = sp + 4; \
652 POP_CONTINUATION_HOOK (sp, 1); \
653 NEXT (0); \
654 } while (0)
655
656/* While we could generate the list-unrolling code here, it's fine for
657 now to just tail-call (apply values vals). */
658#define RETURN_VALUE_LIST(vals_) \
659 do { \
660 SCM vals = vals_; \
661 VM_HANDLE_INTERRUPTS; \
662 fp[-1] = vm_builtin_apply; \
663 fp[0] = vm_builtin_values; \
664 fp[1] = vals; \
665 RESET_FRAME (3); \
666 ip = (scm_t_uint32 *) vm_builtin_apply_code; \
667 goto op_tail_apply; \
668 } while (0)
669
670#define BR_NARGS(rel) \
671 scm_t_uint16 expected; \
672 SCM_UNPACK_RTL_24 (op, expected); \
673 if (FRAME_LOCALS_COUNT() rel expected) \
674 { \
675 scm_t_int32 offset = ip[1]; \
676 offset >>= 8; /* Sign-extending shift. */ \
677 NEXT (offset); \
678 } \
679 NEXT (2)
680
681#define BR_UNARY(x, exp) \
682 scm_t_uint32 test; \
683 SCM x; \
684 SCM_UNPACK_RTL_24 (op, test); \
685 x = LOCAL_REF (test); \
686 if ((ip[1] & 0x1) ? !(exp) : (exp)) \
687 { \
688 scm_t_int32 offset = ip[1]; \
689 offset >>= 8; /* Sign-extending shift. */ \
690 if (offset < 0) \
691 VM_HANDLE_INTERRUPTS; \
692 NEXT (offset); \
693 } \
694 NEXT (2)
695
696#define BR_BINARY(x, y, exp) \
697 scm_t_uint16 a, b; \
698 SCM x, y; \
699 SCM_UNPACK_RTL_12_12 (op, a, b); \
700 x = LOCAL_REF (a); \
701 y = LOCAL_REF (b); \
702 if ((ip[1] & 0x1) ? !(exp) : (exp)) \
703 { \
704 scm_t_int32 offset = ip[1]; \
705 offset >>= 8; /* Sign-extending shift. */ \
706 if (offset < 0) \
707 VM_HANDLE_INTERRUPTS; \
708 NEXT (offset); \
709 } \
710 NEXT (2)
711
712#define BR_ARITHMETIC(crel,srel) \
713 { \
714 scm_t_uint16 a, b; \
715 SCM x, y; \
716 SCM_UNPACK_RTL_12_12 (op, a, b); \
717 x = LOCAL_REF (a); \
718 y = LOCAL_REF (b); \
719 if (SCM_I_INUMP (x) && SCM_I_INUMP (y)) \
720 { \
721 scm_t_signed_bits x_bits = SCM_UNPACK (x); \
722 scm_t_signed_bits y_bits = SCM_UNPACK (y); \
723 if ((ip[1] & 0x1) ? !(x_bits crel y_bits) : (x_bits crel y_bits)) \
724 { \
725 scm_t_int32 offset = ip[1]; \
726 offset >>= 8; /* Sign-extending shift. */ \
727 if (offset < 0) \
728 VM_HANDLE_INTERRUPTS; \
729 NEXT (offset); \
730 } \
731 NEXT (2); \
732 } \
733 else \
734 { \
735 SCM res; \
736 SYNC_IP (); \
737 res = srel (x, y); \
738 if ((ip[1] & 0x1) ? scm_is_false (res) : scm_is_true (res)) \
739 { \
740 scm_t_int32 offset = ip[1]; \
741 offset >>= 8; /* Sign-extending shift. */ \
742 if (offset < 0) \
743 VM_HANDLE_INTERRUPTS; \
744 NEXT (offset); \
745 } \
746 NEXT (2); \
747 } \
748 }
749
750#define ARGS1(a1) \
751 scm_t_uint16 dst, src; \
752 SCM a1; \
753 SCM_UNPACK_RTL_12_12 (op, dst, src); \
754 a1 = LOCAL_REF (src)
755#define ARGS2(a1, a2) \
756 scm_t_uint8 dst, src1, src2; \
757 SCM a1, a2; \
758 SCM_UNPACK_RTL_8_8_8 (op, dst, src1, src2); \
759 a1 = LOCAL_REF (src1); \
760 a2 = LOCAL_REF (src2)
761#define RETURN(x) \
762 do { LOCAL_SET (dst, x); NEXT (1); } while (0)
763
764/* The maximum/minimum tagged integers. */
765#define INUM_MAX \
766 ((scm_t_signed_bits) SCM_UNPACK (SCM_I_MAKINUM (SCM_MOST_POSITIVE_FIXNUM)))
767#define INUM_MIN \
768 ((scm_t_signed_bits) SCM_UNPACK (SCM_I_MAKINUM (SCM_MOST_NEGATIVE_FIXNUM)))
769#define INUM_STEP \
770 ((scm_t_signed_bits) SCM_UNPACK (SCM_INUM1) \
771 - (scm_t_signed_bits) SCM_UNPACK (SCM_INUM0))
772
773#define BINARY_INTEGER_OP(CFUNC,SFUNC) \
774 { \
775 ARGS2 (x, y); \
776 if (SCM_I_INUMP (x) && SCM_I_INUMP (y)) \
777 { \
778 scm_t_int64 n = SCM_I_INUM (x) CFUNC SCM_I_INUM (y); \
779 if (SCM_FIXABLE (n)) \
780 RETURN (SCM_I_MAKINUM (n)); \
781 } \
782 SYNC_IP (); \
783 RETURN (SFUNC (x, y)); \
784 }
785
786#define VM_VALIDATE_PAIR(x, proc) \
787 VM_ASSERT (scm_is_pair (x), vm_error_not_a_pair (proc, x))
788
789#define VM_VALIDATE_STRUCT(obj, proc) \
790 VM_ASSERT (SCM_STRUCTP (obj), vm_error_not_a_pair (proc, obj))
791
792#define VM_VALIDATE_BYTEVECTOR(x, proc) \
793 VM_ASSERT (SCM_BYTEVECTOR_P (x), vm_error_not_a_bytevector (proc, x))
794
795/* Return true (non-zero) if PTR has suitable alignment for TYPE. */
796#define ALIGNED_P(ptr, type) \
797 ((scm_t_uintptr) (ptr) % alignof_type (type) == 0)
798
799static SCM
800RTL_VM_NAME (SCM vm, SCM program, SCM *argv, size_t nargs_)
801{
802 /* Instruction pointer: A pointer to the opcode that is currently
803 running. */
804 register scm_t_uint32 *ip IP_REG;
805
806 /* Frame pointer: A pointer into the stack, off of which we index
807 arguments and local variables. Pushed at function calls, popped on
808 returns. */
809 register SCM *fp FP_REG;
810
811 /* Current opcode: A cache of *ip. */
812 register scm_t_uint32 op;
813
814 /* Cached variables. */
815 struct scm_vm *vp = SCM_VM_DATA (vm);
816 SCM *stack_limit = vp->stack_limit; /* stack limit address */
817 scm_i_thread *current_thread = SCM_I_CURRENT_THREAD;
818 scm_i_jmp_buf registers; /* used for prompts */
819
820#ifdef HAVE_LABELS_AS_VALUES
821 static const void **jump_table_pointer = NULL;
822 register const void **jump_table JT_REG;
823
824 if (SCM_UNLIKELY (!jump_table_pointer))
825 {
826 int i;
827 jump_table_pointer = malloc (SCM_VM_NUM_INSTRUCTIONS * sizeof (void*));
828 for (i = 0; i < SCM_VM_NUM_INSTRUCTIONS; i++)
829 jump_table_pointer[i] = &&vm_error_bad_instruction;
830#define INIT(opcode, tag, name, meta) jump_table_pointer[opcode] = &&op_##tag;
831 FOR_EACH_VM_OPERATION(INIT);
832#undef INIT
833 }
834
835 /* Attempt to keep JUMP_TABLE_POINTER in a register. This saves one
836 load instruction at each instruction dispatch. */
837 jump_table = jump_table_pointer;
838#endif
839
840 if (SCM_I_SETJMP (registers))
841 {
842 /* Non-local return. The values are on the stack, on a new frame
843 set up to call `values' to return the values to the handler.
844 Cache the VM registers back from the vp, and dispatch to the
845 body of `values'.
846
847 Note, at this point, we must assume that any variable local to
848 vm_engine that can be assigned *has* been assigned. So we need
849 to pull all our state back from the ip/fp/sp.
850 */
851 CACHE_REGISTER ();
852 ABORT_CONTINUATION_HOOK (fp, FRAME_LOCALS_COUNT () - 1);
853 NEXT (0);
854 }
855
856 /* Load previous VM registers. */
857 CACHE_REGISTER ();
858
859 VM_HANDLE_INTERRUPTS;
860
861 /* Initialization */
862 {
863 SCM *base;
864
865 /* Check that we have enough space: 4 words for the boot
866 continuation, 4 + nargs for the procedure application, and 4 for
867 setting up a new frame. */
868 base = vp->sp + 1;
869 CHECK_OVERFLOW (vp->sp + 4 + 4 + nargs_ + 4);
870
871 /* Since it's possible to receive the arguments on the stack itself,
872 and indeed the regular VM invokes us that way, shuffle up the
873 arguments first. */
874 {
875 int i;
876 for (i = nargs_ - 1; i >= 0; i--)
877 base[8 + i] = argv[i];
878 }
879
880 /* Initial frame, saving previous fp and ip, with the boot
881 continuation. */
882 base[0] = SCM_PACK (fp); /* dynamic link */
883 base[1] = SCM_PACK (0); /* the boot continuation does not return to scheme */
884 base[2] = SCM_PACK (ip); /* ra */
885 base[3] = rtl_boot_continuation;
886 fp = &base[4];
887 ip = (scm_t_uint32 *) rtl_boot_continuation_code;
888
889 /* MV-call frame, function & arguments */
890 base[4] = SCM_PACK (fp); /* dynamic link */
891 base[5] = SCM_PACK (ip); /* in RTL programs, MVRA same as RA */
892 base[6] = SCM_PACK (ip); /* ra */
893 base[7] = program;
894 fp = vp->fp = &base[8];
895 RESET_FRAME (nargs_ + 1);
896 }
897
898 apply:
899 while (!SCM_RTL_PROGRAM_P (SCM_FRAME_PROGRAM (fp)))
900 {
901 SCM proc = SCM_FRAME_PROGRAM (fp);
902
903 if (SCM_STRUCTP (proc) && SCM_STRUCT_APPLICABLE_P (proc))
904 {
905 fp[-1] = SCM_STRUCT_PROCEDURE (proc);
906 continue;
907 }
908 if (SCM_HAS_TYP7 (proc, scm_tc7_smob) && SCM_SMOB_APPLICABLE_P (proc))
909 {
910 scm_t_uint32 n = FRAME_LOCALS_COUNT();
911
912 /* Shuffle args up. */
913 RESET_FRAME (n + 1);
914 while (n--)
915 LOCAL_SET (n + 1, LOCAL_REF (n));
916
917 LOCAL_SET (0, SCM_SMOB_DESCRIPTOR (proc).apply_trampoline);
918 continue;
919 }
920
921#if 0
922 SYNC_IP();
923 vm_error_wrong_type_apply (proc);
924#else
925 {
926 SCM ret;
927 SYNC_ALL ();
928
929 ret = VM_NAME (vm, fp[-1], fp, FRAME_LOCALS_COUNT () - 1);
930
931 if (SCM_UNLIKELY (SCM_VALUESP (ret)))
932 RETURN_VALUE_LIST (scm_struct_ref (ret, SCM_INUM0));
933 else
934 RETURN_ONE_VALUE (ret);
935 }
936#endif
937 }
938
939 /* Let's go! */
940 ip = SCM_RTL_PROGRAM_CODE (SCM_FRAME_PROGRAM (fp));
941 NEXT (0);
942
943 BEGIN_DISPATCH_SWITCH;
944
945
946 \f
947
948 /*
949 * Call and return
950 */
951
952 /* halt _:24
953 *
954 * Bring the VM to a halt, returning all the values from the stack.
955 */
956 VM_DEFINE_OP (0, halt, "halt", OP1 (U8_X24))
957 {
958 scm_t_uint32 nvals = FRAME_LOCALS_COUNT() - 5;
959 SCM ret;
960
961 /* Boot closure in r0, empty frame in r1/r2/r3, proc in r4, values from r5. */
962
963 if (nvals == 1)
964 ret = LOCAL_REF (5);
965 else
966 {
967 scm_t_uint32 n;
968 ret = SCM_EOL;
969 SYNC_BEFORE_GC();
970 for (n = nvals; n > 0; n--)
971 ret = scm_cons (LOCAL_REF (5 + n - 1), ret);
972 ret = scm_values (ret);
973 }
974
975 vp->ip = SCM_FRAME_RETURN_ADDRESS (fp);
976 vp->sp = SCM_FRAME_LOWER_ADDRESS (fp) - 1;
977 vp->fp = SCM_FRAME_DYNAMIC_LINK (fp);
978
979 return ret;
980 }
981
982 /* call proc:24 _:8 nlocals:24
983 *
984 * Call a procedure. PROC is the local corresponding to a procedure.
985 * The three values below PROC will be overwritten by the saved call
986 * frame data. The new frame will have space for NLOCALS locals: one
987 * for the procedure, and the rest for the arguments which should
988 * already have been pushed on.
989 *
990 * When the call returns, execution proceeds with the next
991 * instruction. There may be any number of values on the return
992 * stack; the precise number can be had by subtracting the address of
993 * PROC from the post-call SP.
994 */
995 VM_DEFINE_OP (1, call, "call", OP2 (U8_U24, X8_U24))
996 {
997 scm_t_uint32 proc, nlocals;
998 SCM *old_fp = fp;
999
1000 SCM_UNPACK_RTL_24 (op, proc);
1001 SCM_UNPACK_RTL_24 (ip[1], nlocals);
1002
1003 VM_HANDLE_INTERRUPTS;
1004
1005 fp = vp->fp = old_fp + proc;
1006 SCM_FRAME_SET_DYNAMIC_LINK (fp, old_fp);
1007 SCM_FRAME_SET_RTL_MV_RETURN_ADDRESS (fp, ip + 2);
1008 SCM_FRAME_SET_RTL_RETURN_ADDRESS (fp, ip + 2);
1009
1010 RESET_FRAME (nlocals);
1011
1012 PUSH_CONTINUATION_HOOK ();
1013 APPLY_HOOK ();
1014
1015 if (SCM_UNLIKELY (!SCM_RTL_PROGRAM_P (SCM_FRAME_PROGRAM (fp))))
1016 goto apply;
1017
1018 ip = SCM_RTL_PROGRAM_CODE (SCM_FRAME_PROGRAM (fp));
1019 NEXT (0);
1020 }
1021
1022 /* tail-call nlocals:24
1023 *
1024 * Tail-call a procedure. Requires that the procedure and all of the
1025 * arguments have already been shuffled into position. Will reset the
1026 * frame to NLOCALS.
1027 */
1028 VM_DEFINE_OP (2, tail_call, "tail-call", OP1 (U8_U24))
1029 {
1030 scm_t_uint32 nlocals;
1031
1032 SCM_UNPACK_RTL_24 (op, nlocals);
1033
1034 VM_HANDLE_INTERRUPTS;
1035
1036 RESET_FRAME (nlocals);
1037
1038 APPLY_HOOK ();
1039
1040 if (SCM_UNLIKELY (!SCM_RTL_PROGRAM_P (SCM_FRAME_PROGRAM (fp))))
1041 goto apply;
1042
1043 ip = SCM_RTL_PROGRAM_CODE (SCM_FRAME_PROGRAM (fp));
1044 NEXT (0);
1045 }
1046
1047 /* tail-call/shuffle from:24
1048 *
1049 * Tail-call a procedure. The procedure should already be set to slot
1050 * 0. The rest of the args are taken from the frame, starting at
1051 * FROM, shuffled down to start at slot 0. This is part of the
1052 * implementation of the call-with-values builtin.
1053 */
1054 VM_DEFINE_OP (3, tail_call_shuffle, "tail-call/shuffle", OP1 (U8_U24))
1055 {
1056 scm_t_uint32 n, from, nlocals;
1057
1058 SCM_UNPACK_RTL_24 (op, from);
1059
1060 VM_HANDLE_INTERRUPTS;
1061
1062 VM_ASSERT (from > 0, abort ());
1063 nlocals = FRAME_LOCALS_COUNT ();
1064
1065 for (n = 0; from + n < nlocals; n++)
1066 LOCAL_SET (n + 1, LOCAL_REF (from + n));
1067
1068 RESET_FRAME (n + 1);
1069
1070 APPLY_HOOK ();
1071
1072 if (SCM_UNLIKELY (!SCM_RTL_PROGRAM_P (SCM_FRAME_PROGRAM (fp))))
1073 goto apply;
1074
1075 ip = SCM_RTL_PROGRAM_CODE (SCM_FRAME_PROGRAM (fp));
1076 NEXT (0);
1077 }
1078
1079 /* receive dst:12 proc:12 _:8 nlocals:24
1080 *
1081 * Receive a single return value from a call whose procedure was in
1082 * PROC, asserting that the call actually returned at least one
1083 * value. Afterwards, resets the frame to NLOCALS locals.
1084 */
1085 VM_DEFINE_OP (4, receive, "receive", OP2 (U8_U12_U12, X8_U24) | OP_DST)
1086 {
1087 scm_t_uint16 dst, proc;
1088 scm_t_uint32 nlocals;
1089 SCM_UNPACK_RTL_12_12 (op, dst, proc);
1090 SCM_UNPACK_RTL_24 (ip[1], nlocals);
1091 VM_ASSERT (FRAME_LOCALS_COUNT () > proc + 1, vm_error_no_values ());
1092 LOCAL_SET (dst, LOCAL_REF (proc + 1));
1093 RESET_FRAME (nlocals);
1094 NEXT (2);
1095 }
1096
1097 /* receive-values proc:24 allow-extra?:1 _:7 nvalues:24
1098 *
1099 * Receive a return of multiple values from a call whose procedure was
1100 * in PROC. If fewer than NVALUES values were returned, signal an
1101 * error. Unless ALLOW-EXTRA? is true, require that the number of
1102 * return values equals NVALUES exactly. After receive-values has
1103 * run, the values can be copied down via `mov'.
1104 */
1105 VM_DEFINE_OP (5, receive_values, "receive-values", OP2 (U8_U24, B1_X7_U24))
1106 {
1107 scm_t_uint32 proc, nvalues;
1108 SCM_UNPACK_RTL_24 (op, proc);
1109 SCM_UNPACK_RTL_24 (ip[1], nvalues);
1110 if (ip[1] & 0x1)
1111 VM_ASSERT (FRAME_LOCALS_COUNT () > proc + nvalues,
1112 vm_error_not_enough_values ());
1113 else
1114 VM_ASSERT (FRAME_LOCALS_COUNT () == proc + 1 + nvalues,
1115 vm_error_wrong_number_of_values (nvalues));
1116 NEXT (2);
1117 }
1118
1119 /* return src:24
1120 *
1121 * Return a value.
1122 */
1123 VM_DEFINE_OP (6, return, "return", OP1 (U8_U24))
1124 {
1125 scm_t_uint32 src;
1126 SCM_UNPACK_RTL_24 (op, src);
1127 RETURN_ONE_VALUE (LOCAL_REF (src));
1128 }
1129
1130 /* return-values _:24
1131 *
1132 * Return a number of values from a call frame. This opcode
1133 * corresponds to an application of `values' in tail position. As
1134 * with tail calls, we expect that the values have already been
1135 * shuffled down to a contiguous array starting at slot 1.
1136 * We also expect the frame has already been reset.
1137 */
1138 VM_DEFINE_OP (7, return_values, "return-values", OP1 (U8_X24))
1139 {
1140 scm_t_uint32 nvalues _GL_UNUSED = FRAME_LOCALS_COUNT();
1141 SCM *base = fp;
1142
1143 VM_HANDLE_INTERRUPTS;
1144 ip = SCM_FRAME_RTL_MV_RETURN_ADDRESS (fp);
1145 fp = vp->fp = SCM_FRAME_DYNAMIC_LINK (fp);
1146
1147 /* Clear stack frame. */
1148 base[-2] = SCM_BOOL_F;
1149 base[-3] = SCM_BOOL_F;
1150 base[-4] = SCM_BOOL_F;
1151
1152 POP_CONTINUATION_HOOK (base, nvalues);
1153
1154 NEXT (0);
1155 }
1156
1157
1158 \f
1159
1160 /*
1161 * Specialized call stubs
1162 */
1163
1164 /* subr-call ptr-idx:24
1165 *
1166 * Call a subr, passing all locals in this frame as arguments. Fetch
1167 * the foreign pointer from PTR-IDX, a free variable. Return from the
1168 * calling frame. This instruction is part of the trampolines
1169 * created in gsubr.c, and is not generated by the compiler.
1170 */
1171 VM_DEFINE_OP (8, subr_call, "subr-call", OP1 (U8_U24))
1172 {
1173 scm_t_uint32 ptr_idx;
1174 SCM pointer, ret;
1175 SCM (*subr)();
1176
1177 SCM_UNPACK_RTL_24 (op, ptr_idx);
1178
1179 pointer = SCM_RTL_PROGRAM_FREE_VARIABLE_REF (LOCAL_REF (0), ptr_idx);
1180 subr = SCM_POINTER_VALUE (pointer);
1181
1182 VM_HANDLE_INTERRUPTS;
1183 SYNC_IP ();
1184
1185 switch (FRAME_LOCALS_COUNT () - 1)
1186 {
1187 case 0:
1188 ret = subr ();
1189 break;
1190 case 1:
1191 ret = subr (fp[0]);
1192 break;
1193 case 2:
1194 ret = subr (fp[0], fp[1]);
1195 break;
1196 case 3:
1197 ret = subr (fp[0], fp[1], fp[2]);
1198 break;
1199 case 4:
1200 ret = subr (fp[0], fp[1], fp[2], fp[3]);
1201 break;
1202 case 5:
1203 ret = subr (fp[0], fp[1], fp[2], fp[3], fp[4]);
1204 break;
1205 case 6:
1206 ret = subr (fp[0], fp[1], fp[2], fp[3], fp[4], fp[5]);
1207 break;
1208 case 7:
1209 ret = subr (fp[0], fp[1], fp[2], fp[3], fp[4], fp[5], fp[6]);
1210 break;
1211 case 8:
1212 ret = subr (fp[0], fp[1], fp[2], fp[3], fp[4], fp[5], fp[6], fp[7]);
1213 break;
1214 case 9:
1215 ret = subr (fp[0], fp[1], fp[2], fp[3], fp[4], fp[5], fp[6], fp[7], fp[8]);
1216 break;
1217 case 10:
1218 ret = subr (fp[0], fp[1], fp[2], fp[3], fp[4], fp[5], fp[6], fp[7], fp[8], fp[9]);
1219 break;
1220 default:
1221 abort ();
1222 }
1223
1224 // NULLSTACK_FOR_NONLOCAL_EXIT ();
1225
1226 if (SCM_UNLIKELY (SCM_VALUESP (ret)))
1227 /* multiple values returned to continuation */
1228 RETURN_VALUE_LIST (scm_struct_ref (ret, SCM_INUM0));
1229 else
1230 RETURN_ONE_VALUE (ret);
1231 }
1232
1233 /* foreign-call cif-idx:12 ptr-idx:12
1234 *
1235 * Call a foreign function. Fetch the CIF and foreign pointer from
1236 * CIF-IDX and PTR-IDX, both free variables. Return from the calling
1237 * frame. Arguments are taken from the stack. This instruction is
1238 * part of the trampolines created by the FFI, and is not generated by
1239 * the compiler.
1240 */
1241 VM_DEFINE_OP (9, foreign_call, "foreign-call", OP1 (U8_U12_U12))
1242 {
1243 scm_t_uint16 cif_idx, ptr_idx;
1244 SCM closure, cif, pointer, ret;
1245
1246 SCM_UNPACK_RTL_12_12 (op, cif_idx, ptr_idx);
1247
1248 closure = LOCAL_REF (0);
1249 cif = SCM_RTL_PROGRAM_FREE_VARIABLE_REF (closure, cif_idx);
1250 pointer = SCM_RTL_PROGRAM_FREE_VARIABLE_REF (closure, ptr_idx);
1251
1252 SYNC_IP ();
1253 VM_HANDLE_INTERRUPTS;
1254
1255 // FIXME: separate args
1256 ret = scm_i_foreign_call (scm_cons (cif, pointer), fp);
1257
1258 // NULLSTACK_FOR_NONLOCAL_EXIT ();
1259
1260 if (SCM_UNLIKELY (SCM_VALUESP (ret)))
1261 /* multiple values returned to continuation */
1262 RETURN_VALUE_LIST (scm_struct_ref (ret, SCM_INUM0));
1263 else
1264 RETURN_ONE_VALUE (ret);
1265 }
1266
1267 /* continuation-call contregs:24
1268 *
1269 * Return to a continuation, nonlocally. The arguments to the
1270 * continuation are taken from the stack. CONTREGS is a free variable
1271 * containing the reified continuation. This instruction is part of
1272 * the implementation of undelimited continuations, and is not
1273 * generated by the compiler.
1274 */
1275 VM_DEFINE_OP (10, continuation_call, "continuation-call", OP1 (U8_U24))
1276 {
1277 SCM contregs;
1278 scm_t_uint32 contregs_idx;
1279
1280 SCM_UNPACK_RTL_24 (op, contregs_idx);
1281
1282 contregs =
1283 SCM_RTL_PROGRAM_FREE_VARIABLE_REF (LOCAL_REF (0), contregs_idx);
1284
1285 SYNC_IP ();
1286 scm_i_check_continuation (contregs);
1287 vm_return_to_continuation (scm_i_contregs_vm (contregs),
1288 scm_i_contregs_vm_cont (contregs),
1289 FRAME_LOCALS_COUNT () - 1, fp);
1290 scm_i_reinstate_continuation (contregs);
1291
1292 /* no NEXT */
1293 abort ();
1294 }
1295
1296 /* compose-continuation cont:24
1297 *
1298 * Compose a partial continution with the current continuation. The
1299 * arguments to the continuation are taken from the stack. CONT is a
1300 * free variable containing the reified continuation. This
1301 * instruction is part of the implementation of partial continuations,
1302 * and is not generated by the compiler.
1303 */
1304 VM_DEFINE_OP (11, compose_continuation, "compose-continuation", OP1 (U8_U24))
1305 {
1306 SCM vmcont;
1307 scm_t_uint32 cont_idx;
1308
1309 SCM_UNPACK_RTL_24 (op, cont_idx);
1310 vmcont = SCM_RTL_PROGRAM_FREE_VARIABLE_REF (LOCAL_REF (0), cont_idx);
1311
1312 SYNC_IP ();
1313 VM_ASSERT (SCM_VM_CONT_REWINDABLE_P (vmcont),
1314 vm_error_continuation_not_rewindable (vmcont));
1315 vm_reinstate_partial_continuation (vm, vmcont, FRAME_LOCALS_COUNT () - 1, fp,
1316 &current_thread->dynstack,
1317 &registers);
1318 CACHE_REGISTER ();
1319 NEXT (0);
1320 }
1321
1322 /* tail-apply _:24
1323 *
1324 * Tail-apply the procedure in local slot 0 to the rest of the
1325 * arguments. This instruction is part of the implementation of
1326 * `apply', and is not generated by the compiler.
1327 */
1328 VM_DEFINE_OP (12, tail_apply, "tail-apply", OP1 (U8_X24))
1329 {
1330 int i, list_idx, list_len, nlocals;
1331 SCM list;
1332
1333 VM_HANDLE_INTERRUPTS;
1334
1335 nlocals = FRAME_LOCALS_COUNT ();
1336 // At a minimum, there should be apply, f, and the list.
1337 VM_ASSERT (nlocals >= 3, abort ());
1338 list_idx = nlocals - 1;
1339 list = LOCAL_REF (list_idx);
1340 list_len = scm_ilength (list);
1341
1342 VM_ASSERT (list_len >= 0, vm_error_apply_to_non_list (list));
1343
1344 nlocals = nlocals - 2 + list_len;
1345 ALLOC_FRAME (nlocals);
1346
1347 for (i = 1; i < list_idx; i++)
1348 LOCAL_SET (i - 1, LOCAL_REF (i));
1349
1350 /* Null out these slots, just in case there are less than 2 elements
1351 in the list. */
1352 LOCAL_SET (list_idx - 1, SCM_UNDEFINED);
1353 LOCAL_SET (list_idx, SCM_UNDEFINED);
1354
1355 for (i = 0; i < list_len; i++, list = SCM_CDR (list))
1356 LOCAL_SET (list_idx - 1 + i, SCM_CAR (list));
1357
1358 APPLY_HOOK ();
1359
1360 if (SCM_UNLIKELY (!SCM_RTL_PROGRAM_P (SCM_FRAME_PROGRAM (fp))))
1361 goto apply;
1362
1363 ip = SCM_RTL_PROGRAM_CODE (SCM_FRAME_PROGRAM (fp));
1364 NEXT (0);
1365 }
1366
1367 /* call/cc _:24
1368 *
1369 * Capture the current continuation, and tail-apply the procedure in
1370 * local slot 1 to it. This instruction is part of the implementation
1371 * of `call/cc', and is not generated by the compiler.
1372 */
1373 VM_DEFINE_OP (13, call_cc, "call/cc", OP1 (U8_X24))
1374 {
1375 SCM vm_cont, cont;
1376 scm_t_dynstack *dynstack;
1377 int first;
1378
1379 VM_HANDLE_INTERRUPTS;
1380
1381 SYNC_IP ();
1382 dynstack = scm_dynstack_capture_all (&current_thread->dynstack);
1383 vm_cont = scm_i_vm_capture_stack (vp->stack_base,
1384 SCM_FRAME_DYNAMIC_LINK (fp),
1385 SCM_FRAME_LOWER_ADDRESS (fp) - 1,
1386 SCM_FRAME_RETURN_ADDRESS (fp),
1387 SCM_FRAME_MV_RETURN_ADDRESS (fp),
1388 dynstack,
1389 0);
1390 /* FIXME: Seems silly to capture the registers here, when they are
1391 already captured in the registers local, which here we are
1392 copying out to the heap; and likewise, the setjmp(&registers)
1393 code already has the non-local return handler. But oh
1394 well! */
1395 cont = scm_i_make_continuation (&first, vm, vm_cont);
1396
1397 if (first)
1398 {
1399 LOCAL_SET (0, LOCAL_REF (1));
1400 LOCAL_SET (1, cont);
1401 RESET_FRAME (2);
1402
1403 APPLY_HOOK ();
1404
1405 if (SCM_UNLIKELY (!SCM_RTL_PROGRAM_P (SCM_FRAME_PROGRAM (fp))))
1406 goto apply;
1407
1408 ip = SCM_RTL_PROGRAM_CODE (SCM_FRAME_PROGRAM (fp));
1409 NEXT (0);
1410 }
1411 else
1412 {
1413 CACHE_REGISTER ();
1414 ABORT_CONTINUATION_HOOK (fp, FRAME_LOCALS_COUNT () - 1);
1415 NEXT (0);
1416 }
1417 }
1418
1419 /* abort _:24
1420 *
1421 * Abort to a prompt handler. The tag is expected in r1, and the rest
1422 * of the values in the frame are returned to the prompt handler.
1423 * This corresponds to a tail application of abort-to-prompt.
1424 */
1425 VM_DEFINE_OP (14, abort, "abort", OP1 (U8_X24))
1426 {
1427 scm_t_uint32 nlocals = FRAME_LOCALS_COUNT ();
1428
1429 ASSERT (nlocals >= 2);
1430 /* FIXME: Really we should capture the caller's registers. Until
1431 then, manually advance the IP so that when the prompt resumes,
1432 it continues with the next instruction. */
1433 ip++;
1434 SYNC_IP ();
1435 vm_abort (vm, LOCAL_REF (1), nlocals - 2, &LOCAL_REF (2),
1436 SCM_EOL, &LOCAL_REF (0), &registers);
1437
1438 /* vm_abort should not return */
1439 abort ();
1440 }
1441
1442 /* builtin-ref dst:12 idx:12
1443 *
1444 * Load a builtin stub by index into DST.
1445 */
1446 VM_DEFINE_OP (15, builtin_ref, "builtin-ref", OP1 (U8_U12_U12) | OP_DST)
1447 {
1448 scm_t_uint16 dst, idx;
1449
1450 SCM_UNPACK_RTL_12_12 (op, dst, idx);
1451 LOCAL_SET (dst, scm_vm_builtin_ref (idx));
1452
1453 NEXT (1);
1454 }
1455
1456
1457 \f
1458
1459 /*
1460 * Function prologues
1461 */
1462
1463 /* br-if-nargs-ne expected:24 _:8 offset:24
1464 * br-if-nargs-lt expected:24 _:8 offset:24
1465 * br-if-nargs-gt expected:24 _:8 offset:24
1466 *
1467 * If the number of actual arguments is not equal, less than, or greater
1468 * than EXPECTED, respectively, add OFFSET, a signed 24-bit number, to
1469 * the current instruction pointer.
1470 */
1471 VM_DEFINE_OP (16, br_if_nargs_ne, "br-if-nargs-ne", OP2 (U8_U24, X8_L24))
1472 {
1473 BR_NARGS (!=);
1474 }
1475 VM_DEFINE_OP (17, br_if_nargs_lt, "br-if-nargs-lt", OP2 (U8_U24, X8_L24))
1476 {
1477 BR_NARGS (<);
1478 }
1479 VM_DEFINE_OP (18, br_if_nargs_gt, "br-if-nargs-gt", OP2 (U8_U24, X8_L24))
1480 {
1481 BR_NARGS (>);
1482 }
1483
1484 /* assert-nargs-ee expected:24
1485 * assert-nargs-ge expected:24
1486 * assert-nargs-le expected:24
1487 *
1488 * If the number of actual arguments is not ==, >=, or <= EXPECTED,
1489 * respectively, signal an error.
1490 */
1491 VM_DEFINE_OP (19, assert_nargs_ee, "assert-nargs-ee", OP1 (U8_U24))
1492 {
1493 scm_t_uint32 expected;
1494 SCM_UNPACK_RTL_24 (op, expected);
1495 VM_ASSERT (FRAME_LOCALS_COUNT () == expected,
1496 vm_error_wrong_num_args (SCM_FRAME_PROGRAM (fp)));
1497 NEXT (1);
1498 }
1499 VM_DEFINE_OP (20, assert_nargs_ge, "assert-nargs-ge", OP1 (U8_U24))
1500 {
1501 scm_t_uint32 expected;
1502 SCM_UNPACK_RTL_24 (op, expected);
1503 VM_ASSERT (FRAME_LOCALS_COUNT () >= expected,
1504 vm_error_wrong_num_args (SCM_FRAME_PROGRAM (fp)));
1505 NEXT (1);
1506 }
1507 VM_DEFINE_OP (21, assert_nargs_le, "assert-nargs-le", OP1 (U8_U24))
1508 {
1509 scm_t_uint32 expected;
1510 SCM_UNPACK_RTL_24 (op, expected);
1511 VM_ASSERT (FRAME_LOCALS_COUNT () <= expected,
1512 vm_error_wrong_num_args (SCM_FRAME_PROGRAM (fp)));
1513 NEXT (1);
1514 }
1515
1516 /* alloc-frame nlocals:24
1517 *
1518 * Ensure that there is space on the stack for NLOCALS local variables,
1519 * setting them all to SCM_UNDEFINED, except those nargs values that
1520 * were passed as arguments and procedure.
1521 */
1522 VM_DEFINE_OP (22, alloc_frame, "alloc-frame", OP1 (U8_U24))
1523 {
1524 scm_t_uint32 nlocals, nargs;
1525 SCM_UNPACK_RTL_24 (op, nlocals);
1526
1527 nargs = FRAME_LOCALS_COUNT ();
1528 ALLOC_FRAME (nlocals);
1529 while (nlocals-- > nargs)
1530 LOCAL_SET (nlocals, SCM_UNDEFINED);
1531
1532 NEXT (1);
1533 }
1534
1535 /* reset-frame nlocals:24
1536 *
1537 * Like alloc-frame, but doesn't check that the stack is big enough.
1538 * Used to reset the frame size to something less than the size that
1539 * was previously set via alloc-frame.
1540 */
1541 VM_DEFINE_OP (23, reset_frame, "reset-frame", OP1 (U8_U24))
1542 {
1543 scm_t_uint32 nlocals;
1544 SCM_UNPACK_RTL_24 (op, nlocals);
1545 RESET_FRAME (nlocals);
1546 NEXT (1);
1547 }
1548
1549 /* assert-nargs-ee/locals expected:12 nlocals:12
1550 *
1551 * Equivalent to a sequence of assert-nargs-ee and reserve-locals. The
1552 * number of locals reserved is EXPECTED + NLOCALS.
1553 */
1554 VM_DEFINE_OP (24, assert_nargs_ee_locals, "assert-nargs-ee/locals", OP1 (U8_U12_U12))
1555 {
1556 scm_t_uint16 expected, nlocals;
1557 SCM_UNPACK_RTL_12_12 (op, expected, nlocals);
1558 VM_ASSERT (FRAME_LOCALS_COUNT () == expected,
1559 vm_error_wrong_num_args (SCM_FRAME_PROGRAM (fp)));
1560 ALLOC_FRAME (expected + nlocals);
1561 while (nlocals--)
1562 LOCAL_SET (expected + nlocals, SCM_UNDEFINED);
1563
1564 NEXT (1);
1565 }
1566
1567 /* bind-kwargs nreq:24 allow-other-keys:1 has-rest:1 _:6 nreq-and-opt:24
1568 * _:8 ntotal:24 kw-offset:32
1569 *
1570 * Find the last positional argument, and shuffle all the rest above
1571 * NTOTAL. Initialize the intervening locals to SCM_UNDEFINED. Then
1572 * load the constant at KW-OFFSET words from the current IP, and use it
1573 * to bind keyword arguments. If HAS-REST, collect all shuffled
1574 * arguments into a list, and store it in NREQ-AND-OPT. Finally, clear
1575 * the arguments that we shuffled up.
1576 *
1577 * A macro-mega-instruction.
1578 */
1579 VM_DEFINE_OP (25, bind_kwargs, "bind-kwargs", OP4 (U8_U24, U8_U24, X8_U24, N32))
1580 {
1581 scm_t_uint32 nreq, nreq_and_opt, ntotal, npositional, nkw, n, nargs;
1582 scm_t_int32 kw_offset;
1583 scm_t_bits kw_bits;
1584 SCM kw;
1585 char allow_other_keys, has_rest;
1586
1587 SCM_UNPACK_RTL_24 (op, nreq);
1588 allow_other_keys = ip[1] & 0x1;
1589 has_rest = ip[1] & 0x2;
1590 SCM_UNPACK_RTL_24 (ip[1], nreq_and_opt);
1591 SCM_UNPACK_RTL_24 (ip[2], ntotal);
1592 kw_offset = ip[3];
1593 kw_bits = (scm_t_bits) (ip + kw_offset);
1594 VM_ASSERT (!(kw_bits & 0x7), abort());
1595 kw = SCM_PACK (kw_bits);
1596
1597 nargs = FRAME_LOCALS_COUNT ();
1598
1599 /* look in optionals for first keyword or last positional */
1600 /* starting after the last required positional arg */
1601 npositional = nreq;
1602 while (/* while we have args */
1603 npositional < nargs
1604 /* and we still have positionals to fill */
1605 && npositional < nreq_and_opt
1606 /* and we haven't reached a keyword yet */
1607 && !scm_is_keyword (LOCAL_REF (npositional)))
1608 /* bind this optional arg (by leaving it in place) */
1609 npositional++;
1610 nkw = nargs - npositional;
1611 /* shuffle non-positional arguments above ntotal */
1612 ALLOC_FRAME (ntotal + nkw);
1613 n = nkw;
1614 while (n--)
1615 LOCAL_SET (ntotal + n, LOCAL_REF (npositional + n));
1616 /* and fill optionals & keyword args with SCM_UNDEFINED */
1617 n = npositional;
1618 while (n < ntotal)
1619 LOCAL_SET (n++, SCM_UNDEFINED);
1620
1621 VM_ASSERT (has_rest || (nkw % 2) == 0,
1622 vm_error_kwargs_length_not_even (SCM_FRAME_PROGRAM (fp)));
1623
1624 /* Now bind keywords, in the order given. */
1625 for (n = 0; n < nkw; n++)
1626 if (scm_is_keyword (LOCAL_REF (ntotal + n)))
1627 {
1628 SCM walk;
1629 for (walk = kw; scm_is_pair (walk); walk = SCM_CDR (walk))
1630 if (scm_is_eq (SCM_CAAR (walk), LOCAL_REF (ntotal + n)))
1631 {
1632 SCM si = SCM_CDAR (walk);
1633 LOCAL_SET (SCM_I_INUMP (si) ? SCM_I_INUM (si) : scm_to_uint32 (si),
1634 LOCAL_REF (ntotal + n + 1));
1635 break;
1636 }
1637 VM_ASSERT (scm_is_pair (walk) || allow_other_keys,
1638 vm_error_kwargs_unrecognized_keyword (SCM_FRAME_PROGRAM (fp),
1639 LOCAL_REF (ntotal + n)));
1640 n++;
1641 }
1642 else
1643 VM_ASSERT (has_rest, vm_error_kwargs_invalid_keyword (SCM_FRAME_PROGRAM (fp),
1644 LOCAL_REF (ntotal + n)));
1645
1646 if (has_rest)
1647 {
1648 SCM rest = SCM_EOL;
1649 n = nkw;
1650 while (n--)
1651 rest = scm_cons (LOCAL_REF (ntotal + n), rest);
1652 LOCAL_SET (nreq_and_opt, rest);
1653 }
1654
1655 RESET_FRAME (ntotal);
1656
1657 NEXT (4);
1658 }
1659
1660 /* bind-rest dst:24
1661 *
1662 * Collect any arguments at or above DST into a list, and store that
1663 * list at DST.
1664 */
1665 VM_DEFINE_OP (26, bind_rest, "bind-rest", OP1 (U8_U24) | OP_DST)
1666 {
1667 scm_t_uint32 dst, nargs;
1668 SCM rest = SCM_EOL;
1669
1670 SCM_UNPACK_RTL_24 (op, dst);
1671 nargs = FRAME_LOCALS_COUNT ();
1672
1673 if (nargs <= dst)
1674 {
1675 ALLOC_FRAME (dst + 1);
1676 while (nargs < dst)
1677 LOCAL_SET (nargs++, SCM_UNDEFINED);
1678 }
1679 else
1680 {
1681 while (nargs-- > dst)
1682 {
1683 rest = scm_cons (LOCAL_REF (nargs), rest);
1684 LOCAL_SET (nargs, SCM_UNDEFINED);
1685 }
1686
1687 RESET_FRAME (dst + 1);
1688 }
1689
1690 LOCAL_SET (dst, rest);
1691
1692 NEXT (1);
1693 }
1694
1695
1696 \f
1697
1698 /*
1699 * Branching instructions
1700 */
1701
1702 /* br offset:24
1703 *
1704 * Add OFFSET, a signed 24-bit number, to the current instruction
1705 * pointer.
1706 */
1707 VM_DEFINE_OP (27, br, "br", OP1 (U8_L24))
1708 {
1709 scm_t_int32 offset = op;
1710 offset >>= 8; /* Sign-extending shift. */
1711 NEXT (offset);
1712 }
1713
1714 /* br-if-true test:24 invert:1 _:7 offset:24
1715 *
1716 * If the value in TEST is true for the purposes of Scheme, add
1717 * OFFSET, a signed 24-bit number, to the current instruction pointer.
1718 */
1719 VM_DEFINE_OP (28, br_if_true, "br-if-true", OP2 (U8_U24, B1_X7_L24))
1720 {
1721 BR_UNARY (x, scm_is_true (x));
1722 }
1723
1724 /* br-if-null test:24 invert:1 _:7 offset:24
1725 *
1726 * If the value in TEST is the end-of-list or Lisp nil, add OFFSET, a
1727 * signed 24-bit number, to the current instruction pointer.
1728 */
1729 VM_DEFINE_OP (29, br_if_null, "br-if-null", OP2 (U8_U24, B1_X7_L24))
1730 {
1731 BR_UNARY (x, scm_is_null (x));
1732 }
1733
1734 /* br-if-nil test:24 invert:1 _:7 offset:24
1735 *
1736 * If the value in TEST is false to Lisp, add OFFSET, a signed 24-bit
1737 * number, to the current instruction pointer.
1738 */
1739 VM_DEFINE_OP (30, br_if_nil, "br-if-nil", OP2 (U8_U24, B1_X7_L24))
1740 {
1741 BR_UNARY (x, scm_is_lisp_false (x));
1742 }
1743
1744 /* br-if-pair test:24 invert:1 _:7 offset:24
1745 *
1746 * If the value in TEST is a pair, add OFFSET, a signed 24-bit number,
1747 * to the current instruction pointer.
1748 */
1749 VM_DEFINE_OP (31, br_if_pair, "br-if-pair", OP2 (U8_U24, B1_X7_L24))
1750 {
1751 BR_UNARY (x, scm_is_pair (x));
1752 }
1753
1754 /* br-if-struct test:24 invert:1 _:7 offset:24
1755 *
1756 * If the value in TEST is a struct, add OFFSET, a signed 24-bit
1757 * number, to the current instruction pointer.
1758 */
1759 VM_DEFINE_OP (32, br_if_struct, "br-if-struct", OP2 (U8_U24, B1_X7_L24))
1760 {
1761 BR_UNARY (x, SCM_STRUCTP (x));
1762 }
1763
1764 /* br-if-char test:24 invert:1 _:7 offset:24
1765 *
1766 * If the value in TEST is a char, add OFFSET, a signed 24-bit number,
1767 * to the current instruction pointer.
1768 */
1769 VM_DEFINE_OP (33, br_if_char, "br-if-char", OP2 (U8_U24, B1_X7_L24))
1770 {
1771 BR_UNARY (x, SCM_CHARP (x));
1772 }
1773
1774 /* br-if-tc7 test:24 invert:1 tc7:7 offset:24
1775 *
1776 * If the value in TEST has the TC7 given in the second word, add
1777 * OFFSET, a signed 24-bit number, to the current instruction pointer.
1778 */
1779 VM_DEFINE_OP (34, br_if_tc7, "br-if-tc7", OP2 (U8_U24, B1_U7_L24))
1780 {
1781 BR_UNARY (x, SCM_HAS_TYP7 (x, (ip[1] >> 1) & 0x7f));
1782 }
1783
1784 /* br-if-eq a:12 b:12 invert:1 _:7 offset:24
1785 *
1786 * If the value in A is eq? to the value in B, add OFFSET, a signed
1787 * 24-bit number, to the current instruction pointer.
1788 */
1789 VM_DEFINE_OP (35, br_if_eq, "br-if-eq", OP2 (U8_U12_U12, B1_X7_L24))
1790 {
1791 BR_BINARY (x, y, scm_is_eq (x, y));
1792 }
1793
1794 /* br-if-eqv a:12 b:12 invert:1 _:7 offset:24
1795 *
1796 * If the value in A is eqv? to the value in B, add OFFSET, a signed
1797 * 24-bit number, to the current instruction pointer.
1798 */
1799 VM_DEFINE_OP (36, br_if_eqv, "br-if-eqv", OP2 (U8_U12_U12, B1_X7_L24))
1800 {
1801 BR_BINARY (x, y,
1802 scm_is_eq (x, y)
1803 || (SCM_NIMP (x) && SCM_NIMP (y)
1804 && scm_is_true (scm_eqv_p (x, y))));
1805 }
1806
1807 // FIXME: remove, have compiler inline eqv test instead
1808 /* br-if-equal a:12 b:12 invert:1 _:7 offset:24
1809 *
1810 * If the value in A is equal? to the value in B, add OFFSET, a signed
1811 * 24-bit number, to the current instruction pointer.
1812 */
1813 // FIXME: should sync_ip before calling out?
1814 VM_DEFINE_OP (37, br_if_equal, "br-if-equal", OP2 (U8_U12_U12, B1_X7_L24))
1815 {
1816 BR_BINARY (x, y,
1817 scm_is_eq (x, y)
1818 || (SCM_NIMP (x) && SCM_NIMP (y)
1819 && scm_is_true (scm_equal_p (x, y))));
1820 }
1821
1822 /* br-if-= a:12 b:12 invert:1 _:7 offset:24
1823 *
1824 * If the value in A is = to the value in B, add OFFSET, a signed
1825 * 24-bit number, to the current instruction pointer.
1826 */
1827 VM_DEFINE_OP (38, br_if_ee, "br-if-=", OP2 (U8_U12_U12, B1_X7_L24))
1828 {
1829 BR_ARITHMETIC (==, scm_num_eq_p);
1830 }
1831
1832 /* br-if-< a:12 b:12 _:8 offset:24
1833 *
1834 * If the value in A is < to the value in B, add OFFSET, a signed
1835 * 24-bit number, to the current instruction pointer.
1836 */
1837 VM_DEFINE_OP (39, br_if_lt, "br-if-<", OP2 (U8_U12_U12, B1_X7_L24))
1838 {
1839 BR_ARITHMETIC (<, scm_less_p);
1840 }
1841
1842 /* br-if-<= a:12 b:12 _:8 offset:24
1843 *
1844 * If the value in A is <= to the value in B, add OFFSET, a signed
1845 * 24-bit number, to the current instruction pointer.
1846 */
1847 VM_DEFINE_OP (40, br_if_le, "br-if-<=", OP2 (U8_U12_U12, B1_X7_L24))
1848 {
1849 BR_ARITHMETIC (<=, scm_leq_p);
1850 }
1851
1852
1853 \f
1854
1855 /*
1856 * Lexical binding instructions
1857 */
1858
1859 /* mov dst:12 src:12
1860 *
1861 * Copy a value from one local slot to another.
1862 */
1863 VM_DEFINE_OP (41, mov, "mov", OP1 (U8_U12_U12) | OP_DST)
1864 {
1865 scm_t_uint16 dst;
1866 scm_t_uint16 src;
1867
1868 SCM_UNPACK_RTL_12_12 (op, dst, src);
1869 LOCAL_SET (dst, LOCAL_REF (src));
1870
1871 NEXT (1);
1872 }
1873
1874 /* long-mov dst:24 _:8 src:24
1875 *
1876 * Copy a value from one local slot to another.
1877 */
1878 VM_DEFINE_OP (42, long_mov, "long-mov", OP2 (U8_U24, X8_U24) | OP_DST)
1879 {
1880 scm_t_uint32 dst;
1881 scm_t_uint32 src;
1882
1883 SCM_UNPACK_RTL_24 (op, dst);
1884 SCM_UNPACK_RTL_24 (ip[1], src);
1885 LOCAL_SET (dst, LOCAL_REF (src));
1886
1887 NEXT (2);
1888 }
1889
1890 /* box dst:12 src:12
1891 *
1892 * Create a new variable holding SRC, and place it in DST.
1893 */
1894 VM_DEFINE_OP (43, box, "box", OP1 (U8_U12_U12) | OP_DST)
1895 {
1896 scm_t_uint16 dst, src;
1897 SCM_UNPACK_RTL_12_12 (op, dst, src);
1898 LOCAL_SET (dst, scm_cell (scm_tc7_variable, SCM_UNPACK (LOCAL_REF (src))));
1899 NEXT (1);
1900 }
1901
1902 /* box-ref dst:12 src:12
1903 *
1904 * Unpack the variable at SRC into DST, asserting that the variable is
1905 * actually bound.
1906 */
1907 VM_DEFINE_OP (44, box_ref, "box-ref", OP1 (U8_U12_U12) | OP_DST)
1908 {
1909 scm_t_uint16 dst, src;
1910 SCM var;
1911 SCM_UNPACK_RTL_12_12 (op, dst, src);
1912 var = LOCAL_REF (src);
1913 VM_ASSERT (SCM_VARIABLEP (var),
1914 vm_error_not_a_variable ("variable-ref", var));
1915 VM_ASSERT (VARIABLE_BOUNDP (var),
1916 vm_error_unbound (SCM_FRAME_PROGRAM (fp), var));
1917 LOCAL_SET (dst, VARIABLE_REF (var));
1918 NEXT (1);
1919 }
1920
1921 /* box-set! dst:12 src:12
1922 *
1923 * Set the contents of the variable at DST to SET.
1924 */
1925 VM_DEFINE_OP (45, box_set, "box-set!", OP1 (U8_U12_U12))
1926 {
1927 scm_t_uint16 dst, src;
1928 SCM var;
1929 SCM_UNPACK_RTL_12_12 (op, dst, src);
1930 var = LOCAL_REF (dst);
1931 VM_ASSERT (SCM_VARIABLEP (var),
1932 vm_error_not_a_variable ("variable-set!", var));
1933 VARIABLE_SET (var, LOCAL_REF (src));
1934 NEXT (1);
1935 }
1936
1937 /* make-closure dst:24 offset:32 _:8 nfree:24
1938 *
1939 * Make a new closure, and write it to DST. The code for the closure
1940 * will be found at OFFSET words from the current IP. OFFSET is a
1941 * signed 32-bit integer. Space for NFREE free variables will be
1942 * allocated.
1943 */
1944 VM_DEFINE_OP (46, make_closure, "make-closure", OP3 (U8_U24, L32, X8_U24) | OP_DST)
1945 {
1946 scm_t_uint32 dst, nfree, n;
1947 scm_t_int32 offset;
1948 SCM closure;
1949
1950 SCM_UNPACK_RTL_24 (op, dst);
1951 offset = ip[1];
1952 SCM_UNPACK_RTL_24 (ip[2], nfree);
1953
1954 // FIXME: Assert range of nfree?
1955 closure = scm_words (scm_tc7_rtl_program | (nfree << 16), nfree + 2);
1956 SCM_SET_CELL_WORD_1 (closure, ip + offset);
1957 // FIXME: Elide these initializations?
1958 for (n = 0; n < nfree; n++)
1959 SCM_RTL_PROGRAM_FREE_VARIABLE_SET (closure, n, SCM_BOOL_F);
1960 LOCAL_SET (dst, closure);
1961 NEXT (3);
1962 }
1963
1964 /* free-ref dst:12 src:12 _:8 idx:24
1965 *
1966 * Load free variable IDX from the closure SRC into local slot DST.
1967 */
1968 VM_DEFINE_OP (47, free_ref, "free-ref", OP2 (U8_U12_U12, X8_U24) | OP_DST)
1969 {
1970 scm_t_uint16 dst, src;
1971 scm_t_uint32 idx;
1972 SCM_UNPACK_RTL_12_12 (op, dst, src);
1973 SCM_UNPACK_RTL_24 (ip[1], idx);
1974 /* CHECK_FREE_VARIABLE (src); */
1975 LOCAL_SET (dst, SCM_RTL_PROGRAM_FREE_VARIABLE_REF (LOCAL_REF (src), idx));
1976 NEXT (2);
1977 }
1978
1979 /* free-set! dst:12 src:12 _8 idx:24
1980 *
1981 * Set free variable IDX from the closure DST to SRC.
1982 */
1983 VM_DEFINE_OP (48, free_set, "free-set!", OP2 (U8_U12_U12, X8_U24))
1984 {
1985 scm_t_uint16 dst, src;
1986 scm_t_uint32 idx;
1987 SCM_UNPACK_RTL_12_12 (op, dst, src);
1988 SCM_UNPACK_RTL_24 (ip[1], idx);
1989 /* CHECK_FREE_VARIABLE (src); */
1990 SCM_RTL_PROGRAM_FREE_VARIABLE_SET (LOCAL_REF (dst), idx, LOCAL_REF (src));
1991 NEXT (2);
1992 }
1993
1994
1995 \f
1996
1997 /*
1998 * Immediates and statically allocated non-immediates
1999 */
2000
2001 /* make-short-immediate dst:8 low-bits:16
2002 *
2003 * Make an immediate whose low bits are LOW-BITS, and whose top bits are
2004 * 0.
2005 */
2006 VM_DEFINE_OP (49, make_short_immediate, "make-short-immediate", OP1 (U8_U8_I16) | OP_DST)
2007 {
2008 scm_t_uint8 dst;
2009 scm_t_bits val;
2010
2011 SCM_UNPACK_RTL_8_16 (op, dst, val);
2012 LOCAL_SET (dst, SCM_PACK (val));
2013 NEXT (1);
2014 }
2015
2016 /* make-long-immediate dst:24 low-bits:32
2017 *
2018 * Make an immediate whose low bits are LOW-BITS, and whose top bits are
2019 * 0.
2020 */
2021 VM_DEFINE_OP (50, make_long_immediate, "make-long-immediate", OP2 (U8_U24, I32))
2022 {
2023 scm_t_uint8 dst;
2024 scm_t_bits val;
2025
2026 SCM_UNPACK_RTL_24 (op, dst);
2027 val = ip[1];
2028 LOCAL_SET (dst, SCM_PACK (val));
2029 NEXT (2);
2030 }
2031
2032 /* make-long-long-immediate dst:24 high-bits:32 low-bits:32
2033 *
2034 * Make an immediate with HIGH-BITS and LOW-BITS.
2035 */
2036 VM_DEFINE_OP (51, make_long_long_immediate, "make-long-long-immediate", OP3 (U8_U24, A32, B32) | OP_DST)
2037 {
2038 scm_t_uint8 dst;
2039 scm_t_bits val;
2040
2041 SCM_UNPACK_RTL_24 (op, dst);
2042#if SIZEOF_SCM_T_BITS > 4
2043 val = ip[1];
2044 val <<= 32;
2045 val |= ip[2];
2046#else
2047 ASSERT (ip[1] == 0);
2048 val = ip[2];
2049#endif
2050 LOCAL_SET (dst, SCM_PACK (val));
2051 NEXT (3);
2052 }
2053
2054 /* make-non-immediate dst:24 offset:32
2055 *
2056 * Load a pointer to statically allocated memory into DST. The
2057 * object's memory is will be found OFFSET 32-bit words away from the
2058 * current instruction pointer. OFFSET is a signed value. The
2059 * intention here is that the compiler would produce an object file
2060 * containing the words of a non-immediate object, and this
2061 * instruction creates a pointer to that memory, effectively
2062 * resurrecting that object.
2063 *
2064 * Whether the object is mutable or immutable depends on where it was
2065 * allocated by the compiler, and loaded by the loader.
2066 */
2067 VM_DEFINE_OP (52, make_non_immediate, "make-non-immediate", OP2 (U8_U24, N32) | OP_DST)
2068 {
2069 scm_t_uint32 dst;
2070 scm_t_int32 offset;
2071 scm_t_uint32* loc;
2072 scm_t_bits unpacked;
2073
2074 SCM_UNPACK_RTL_24 (op, dst);
2075 offset = ip[1];
2076 loc = ip + offset;
2077 unpacked = (scm_t_bits) loc;
2078
2079 VM_ASSERT (!(unpacked & 0x7), abort());
2080
2081 LOCAL_SET (dst, SCM_PACK (unpacked));
2082
2083 NEXT (2);
2084 }
2085
2086 /* static-ref dst:24 offset:32
2087 *
2088 * Load a SCM value into DST. The SCM value will be fetched from
2089 * memory, OFFSET 32-bit words away from the current instruction
2090 * pointer. OFFSET is a signed value.
2091 *
2092 * The intention is for this instruction to be used to load constants
2093 * that the compiler is unable to statically allocate, like symbols.
2094 * These values would be initialized when the object file loads.
2095 */
2096 VM_DEFINE_OP (53, static_ref, "static-ref", OP2 (U8_U24, S32))
2097 {
2098 scm_t_uint32 dst;
2099 scm_t_int32 offset;
2100 scm_t_uint32* loc;
2101 scm_t_uintptr loc_bits;
2102
2103 SCM_UNPACK_RTL_24 (op, dst);
2104 offset = ip[1];
2105 loc = ip + offset;
2106 loc_bits = (scm_t_uintptr) loc;
2107 VM_ASSERT (ALIGNED_P (loc, SCM), abort());
2108
2109 LOCAL_SET (dst, *((SCM *) loc_bits));
2110
2111 NEXT (2);
2112 }
2113
2114 /* static-set! src:24 offset:32
2115 *
2116 * Store a SCM value into memory, OFFSET 32-bit words away from the
2117 * current instruction pointer. OFFSET is a signed value.
2118 */
2119 VM_DEFINE_OP (54, static_set, "static-set!", OP2 (U8_U24, LO32))
2120 {
2121 scm_t_uint32 src;
2122 scm_t_int32 offset;
2123 scm_t_uint32* loc;
2124
2125 SCM_UNPACK_RTL_24 (op, src);
2126 offset = ip[1];
2127 loc = ip + offset;
2128 VM_ASSERT (ALIGNED_P (loc, SCM), abort());
2129
2130 *((SCM *) loc) = LOCAL_REF (src);
2131
2132 NEXT (2);
2133 }
2134
2135 /* static-patch! _:24 dst-offset:32 src-offset:32
2136 *
2137 * Patch a pointer at DST-OFFSET to point to SRC-OFFSET. Both offsets
2138 * are signed 32-bit values, indicating a memory address as a number
2139 * of 32-bit words away from the current instruction pointer.
2140 */
2141 VM_DEFINE_OP (55, static_patch, "static-patch!", OP3 (U8_X24, LO32, L32))
2142 {
2143 scm_t_int32 dst_offset, src_offset;
2144 void *src;
2145 void** dst_loc;
2146
2147 dst_offset = ip[1];
2148 src_offset = ip[2];
2149
2150 dst_loc = (void **) (ip + dst_offset);
2151 src = ip + src_offset;
2152 VM_ASSERT (ALIGNED_P (dst_loc, void*), abort());
2153
2154 *dst_loc = src;
2155
2156 NEXT (3);
2157 }
2158
2159 \f
2160
2161 /*
2162 * Mutable top-level bindings
2163 */
2164
2165 /* There are three slightly different ways to resolve toplevel
2166 variables.
2167
2168 1. A toplevel reference outside of a function. These need to be
2169 looked up when the expression is evaluated -- no later, and no
2170 before. They are looked up relative to the module that is
2171 current when the expression is evaluated. For example:
2172
2173 (if (foo) a b)
2174
2175 The "resolve" instruction resolves the variable (box), and then
2176 access is via box-ref or box-set!.
2177
2178 2. A toplevel reference inside a function. These are looked up
2179 relative to the module that was current when the function was
2180 defined. Unlike code at the toplevel, which is usually run only
2181 once, these bindings benefit from memoized lookup, in which the
2182 variable resulting from the lookup is cached in the function.
2183
2184 (lambda () (if (foo) a b))
2185
2186 The toplevel-box instruction is equivalent to "resolve", but
2187 caches the resulting variable in statically allocated memory.
2188
2189 3. A reference to an identifier with respect to a particular
2190 module. This can happen for primitive references, and
2191 references residualized by macro expansions. These can always
2192 be cached. Use module-box for these.
2193 */
2194
2195 /* current-module dst:24
2196 *
2197 * Store the current module in DST.
2198 */
2199 VM_DEFINE_OP (56, current_module, "current-module", OP1 (U8_U24) | OP_DST)
2200 {
2201 scm_t_uint32 dst;
2202
2203 SCM_UNPACK_RTL_24 (op, dst);
2204
2205 SYNC_IP ();
2206 LOCAL_SET (dst, scm_current_module ());
2207
2208 NEXT (1);
2209 }
2210
2211 /* resolve dst:24 bound?:1 _:7 sym:24
2212 *
2213 * Resolve SYM in the current module, and place the resulting variable
2214 * in DST.
2215 */
2216 VM_DEFINE_OP (57, resolve, "resolve", OP2 (U8_U24, B1_X7_U24) | OP_DST)
2217 {
2218 scm_t_uint32 dst;
2219 scm_t_uint32 sym;
2220 SCM var;
2221
2222 SCM_UNPACK_RTL_24 (op, dst);
2223 SCM_UNPACK_RTL_24 (ip[1], sym);
2224
2225 SYNC_IP ();
2226 var = scm_lookup (LOCAL_REF (sym));
2227 if (ip[1] & 0x1)
2228 VM_ASSERT (VARIABLE_BOUNDP (var),
2229 vm_error_unbound (fp[-1], LOCAL_REF (sym)));
2230 LOCAL_SET (dst, var);
2231
2232 NEXT (2);
2233 }
2234
2235 /* define sym:12 val:12
2236 *
2237 * Look up a binding for SYM in the current module, creating it if
2238 * necessary. Set its value to VAL.
2239 */
2240 VM_DEFINE_OP (58, define, "define", OP1 (U8_U12_U12))
2241 {
2242 scm_t_uint16 sym, val;
2243 SCM_UNPACK_RTL_12_12 (op, sym, val);
2244 SYNC_IP ();
2245 scm_define (LOCAL_REF (sym), LOCAL_REF (val));
2246 NEXT (1);
2247 }
2248
2249 /* toplevel-box dst:24 var-offset:32 mod-offset:32 sym-offset:32 bound?:1 _:31
2250 *
2251 * Load a SCM value. The SCM value will be fetched from memory,
2252 * VAR-OFFSET 32-bit words away from the current instruction pointer.
2253 * VAR-OFFSET is a signed value. Up to here, toplevel-box is like
2254 * static-ref.
2255 *
2256 * Then, if the loaded value is a variable, it is placed in DST, and control
2257 * flow continues.
2258 *
2259 * Otherwise, we have to resolve the variable. In that case we load
2260 * the module from MOD-OFFSET, just as we loaded the variable.
2261 * Usually the module gets set when the closure is created. The name
2262 * is an offset to a symbol.
2263 *
2264 * We use the module and the symbol to resolve the variable, placing it in
2265 * DST, and caching the resolved variable so that we will hit the cache next
2266 * time.
2267 */
2268 VM_DEFINE_OP (59, toplevel_box, "toplevel-box", OP5 (U8_U24, S32, S32, N32, B1_X31) | OP_DST)
2269 {
2270 scm_t_uint32 dst;
2271 scm_t_int32 var_offset;
2272 scm_t_uint32* var_loc_u32;
2273 SCM *var_loc;
2274 SCM var;
2275
2276 SCM_UNPACK_RTL_24 (op, dst);
2277 var_offset = ip[1];
2278 var_loc_u32 = ip + var_offset;
2279 VM_ASSERT (ALIGNED_P (var_loc_u32, SCM), abort());
2280 var_loc = (SCM *) var_loc_u32;
2281 var = *var_loc;
2282
2283 if (SCM_UNLIKELY (!SCM_VARIABLEP (var)))
2284 {
2285 SCM mod, sym;
2286 scm_t_int32 mod_offset = ip[2]; /* signed */
2287 scm_t_int32 sym_offset = ip[3]; /* signed */
2288 scm_t_uint32 *mod_loc = ip + mod_offset;
2289 scm_t_uint32 *sym_loc = ip + sym_offset;
2290
2291 SYNC_IP ();
2292
2293 VM_ASSERT (ALIGNED_P (mod_loc, SCM), abort());
2294 VM_ASSERT (ALIGNED_P (sym_loc, SCM), abort());
2295
2296 mod = *((SCM *) mod_loc);
2297 sym = *((SCM *) sym_loc);
2298
2299 /* If the toplevel scope was captured before modules were
2300 booted, use the root module. */
2301 if (scm_is_false (mod))
2302 mod = scm_the_root_module ();
2303
2304 var = scm_module_lookup (mod, sym);
2305 if (ip[4] & 0x1)
2306 VM_ASSERT (VARIABLE_BOUNDP (var), vm_error_unbound (fp[-1], sym));
2307
2308 *var_loc = var;
2309 }
2310
2311 LOCAL_SET (dst, var);
2312 NEXT (5);
2313 }
2314
2315 /* module-box dst:24 var-offset:32 mod-offset:32 sym-offset:32 bound?:1 _:31
2316 *
2317 * Like toplevel-box, except MOD-OFFSET points at the name of a module
2318 * instead of the module itself.
2319 */
2320 VM_DEFINE_OP (60, module_box, "module-box", OP5 (U8_U24, S32, N32, N32, B1_X31) | OP_DST)
2321 {
2322 scm_t_uint32 dst;
2323 scm_t_int32 var_offset;
2324 scm_t_uint32* var_loc_u32;
2325 SCM *var_loc;
2326 SCM var;
2327
2328 SCM_UNPACK_RTL_24 (op, dst);
2329 var_offset = ip[1];
2330 var_loc_u32 = ip + var_offset;
2331 VM_ASSERT (ALIGNED_P (var_loc_u32, SCM), abort());
2332 var_loc = (SCM *) var_loc_u32;
2333 var = *var_loc;
2334
2335 if (SCM_UNLIKELY (!SCM_VARIABLEP (var)))
2336 {
2337 SCM modname, sym;
2338 scm_t_int32 modname_offset = ip[2]; /* signed */
2339 scm_t_int32 sym_offset = ip[3]; /* signed */
2340 scm_t_uint32 *modname_words = ip + modname_offset;
2341 scm_t_uint32 *sym_loc = ip + sym_offset;
2342
2343 SYNC_IP ();
2344
2345 VM_ASSERT (!(((scm_t_uintptr) modname_words) & 0x7), abort());
2346 VM_ASSERT (ALIGNED_P (sym_loc, SCM), abort());
2347
2348 modname = SCM_PACK ((scm_t_bits) modname_words);
2349 sym = *((SCM *) sym_loc);
2350
2351 if (!scm_module_system_booted_p)
2352 {
2353#ifdef VM_ENABLE_PARANOID_ASSERTIONS
2354 ASSERT
2355 (scm_is_true
2356 scm_equal_p (modname,
2357 scm_list_2 (SCM_BOOL_T,
2358 scm_from_utf8_symbol ("guile"))));
2359#endif
2360 var = scm_lookup (sym);
2361 }
2362 else if (scm_is_true (SCM_CAR (modname)))
2363 var = scm_public_lookup (SCM_CDR (modname), sym);
2364 else
2365 var = scm_private_lookup (SCM_CDR (modname), sym);
2366
2367 if (ip[4] & 0x1)
2368 VM_ASSERT (VARIABLE_BOUNDP (var), vm_error_unbound (fp[-1], sym));
2369
2370 *var_loc = var;
2371 }
2372
2373 LOCAL_SET (dst, var);
2374 NEXT (5);
2375 }
2376
2377 \f
2378
2379 /*
2380 * The dynamic environment
2381 */
2382
2383 /* prompt tag:24 escape-only?:1 _:7 proc-slot:24 _:8 handler-offset:24
2384 *
2385 * Push a new prompt on the dynamic stack, with a tag from TAG and a
2386 * handler at HANDLER-OFFSET words from the current IP. The handler
2387 * will expect a multiple-value return as if from a call with the
2388 * procedure at PROC-SLOT.
2389 */
2390 VM_DEFINE_OP (61, prompt, "prompt", OP3 (U8_U24, B1_X7_U24, X8_L24))
2391 {
2392 scm_t_uint32 tag, proc_slot;
2393 scm_t_int32 offset;
2394 scm_t_uint8 escape_only_p;
2395 scm_t_dynstack_prompt_flags flags;
2396
2397 SCM_UNPACK_RTL_24 (op, tag);
2398 escape_only_p = ip[1] & 0x1;
2399 SCM_UNPACK_RTL_24 (ip[1], proc_slot);
2400 offset = ip[2];
2401 offset >>= 8; /* Sign extension */
2402
2403 /* Push the prompt onto the dynamic stack. */
2404 flags = escape_only_p ? SCM_F_DYNSTACK_PROMPT_ESCAPE_ONLY : 0;
2405 scm_dynstack_push_prompt (&current_thread->dynstack, flags,
2406 LOCAL_REF (tag),
2407 fp,
2408 &LOCAL_REF (proc_slot),
2409 (scm_t_uint8 *)(ip + offset),
2410 &registers);
2411 NEXT (3);
2412 }
2413
2414 /* wind winder:12 unwinder:12
2415 *
2416 * Push wind and unwind procedures onto the dynamic stack. Note that
2417 * neither are actually called; the compiler should emit calls to wind
2418 * and unwind for the normal dynamic-wind control flow. Also note that
2419 * the compiler should have inserted checks that they wind and unwind
2420 * procs are thunks, if it could not prove that to be the case.
2421 */
2422 VM_DEFINE_OP (62, wind, "wind", OP1 (U8_U12_U12))
2423 {
2424 scm_t_uint16 winder, unwinder;
2425 SCM_UNPACK_RTL_12_12 (op, winder, unwinder);
2426 scm_dynstack_push_dynwind (&current_thread->dynstack,
2427 LOCAL_REF (winder), LOCAL_REF (unwinder));
2428 NEXT (1);
2429 }
2430
2431 /* unwind _:24
2432 *
2433 * A normal exit from the dynamic extent of an expression. Pop the top
2434 * entry off of the dynamic stack.
2435 */
2436 VM_DEFINE_OP (63, unwind, "unwind", OP1 (U8_X24))
2437 {
2438 scm_dynstack_pop (&current_thread->dynstack);
2439 NEXT (1);
2440 }
2441
2442 /* push-fluid fluid:12 value:12
2443 *
2444 * Dynamically bind N fluids to values. The fluids are expected to be
2445 * allocated in a continguous range on the stack, starting from
2446 * FLUID-BASE. The values do not have this restriction.
2447 */
2448 VM_DEFINE_OP (64, push_fluid, "push-fluid", OP1 (U8_U12_U12))
2449 {
2450 scm_t_uint32 fluid, value;
2451
2452 SCM_UNPACK_RTL_12_12 (op, fluid, value);
2453
2454 scm_dynstack_push_fluid (&current_thread->dynstack,
2455 LOCAL_REF (fluid), LOCAL_REF (value),
2456 current_thread->dynamic_state);
2457 NEXT (1);
2458 }
2459
2460 /* pop-fluid _:24
2461 *
2462 * Leave the dynamic extent of a with-fluids expression, restoring the
2463 * fluids to their previous values.
2464 */
2465 VM_DEFINE_OP (65, pop_fluid, "pop-fluid", OP1 (U8_X24))
2466 {
2467 /* This function must not allocate. */
2468 scm_dynstack_unwind_fluid (&current_thread->dynstack,
2469 current_thread->dynamic_state);
2470 NEXT (1);
2471 }
2472
2473 /* fluid-ref dst:12 src:12
2474 *
2475 * Reference the fluid in SRC, and place the value in DST.
2476 */
2477 VM_DEFINE_OP (66, fluid_ref, "fluid-ref", OP1 (U8_U12_U12) | OP_DST)
2478 {
2479 scm_t_uint16 dst, src;
2480 size_t num;
2481 SCM fluid, fluids;
2482
2483 SCM_UNPACK_RTL_12_12 (op, dst, src);
2484 fluid = LOCAL_REF (src);
2485 fluids = SCM_I_DYNAMIC_STATE_FLUIDS (current_thread->dynamic_state);
2486 if (SCM_UNLIKELY (!SCM_FLUID_P (fluid))
2487 || ((num = SCM_I_FLUID_NUM (fluid)) >= SCM_SIMPLE_VECTOR_LENGTH (fluids)))
2488 {
2489 /* Punt dynstate expansion and error handling to the C proc. */
2490 SYNC_IP ();
2491 LOCAL_SET (dst, scm_fluid_ref (fluid));
2492 }
2493 else
2494 {
2495 SCM val = SCM_SIMPLE_VECTOR_REF (fluids, num);
2496 if (scm_is_eq (val, SCM_UNDEFINED))
2497 val = SCM_I_FLUID_DEFAULT (fluid);
2498 VM_ASSERT (!scm_is_eq (val, SCM_UNDEFINED),
2499 vm_error_unbound_fluid (program, fluid));
2500 LOCAL_SET (dst, val);
2501 }
2502
2503 NEXT (1);
2504 }
2505
2506 /* fluid-set fluid:12 val:12
2507 *
2508 * Set the value of the fluid in DST to the value in SRC.
2509 */
2510 VM_DEFINE_OP (67, fluid_set, "fluid-set", OP1 (U8_U12_U12))
2511 {
2512 scm_t_uint16 a, b;
2513 size_t num;
2514 SCM fluid, fluids;
2515
2516 SCM_UNPACK_RTL_12_12 (op, a, b);
2517 fluid = LOCAL_REF (a);
2518 fluids = SCM_I_DYNAMIC_STATE_FLUIDS (current_thread->dynamic_state);
2519 if (SCM_UNLIKELY (!SCM_FLUID_P (fluid))
2520 || ((num = SCM_I_FLUID_NUM (fluid)) >= SCM_SIMPLE_VECTOR_LENGTH (fluids)))
2521 {
2522 /* Punt dynstate expansion and error handling to the C proc. */
2523 SYNC_IP ();
2524 scm_fluid_set_x (fluid, LOCAL_REF (b));
2525 }
2526 else
2527 SCM_SIMPLE_VECTOR_SET (fluids, num, LOCAL_REF (b));
2528
2529 NEXT (1);
2530 }
2531
2532
2533 \f
2534
2535 /*
2536 * Strings, symbols, and keywords
2537 */
2538
2539 /* string-length dst:12 src:12
2540 *
2541 * Store the length of the string in SRC in DST.
2542 */
2543 VM_DEFINE_OP (68, string_length, "string-length", OP1 (U8_U12_U12) | OP_DST)
2544 {
2545 ARGS1 (str);
2546 if (SCM_LIKELY (scm_is_string (str)))
2547 RETURN (SCM_I_MAKINUM (scm_i_string_length (str)));
2548 else
2549 {
2550 SYNC_IP ();
2551 RETURN (scm_string_length (str));
2552 }
2553 }
2554
2555 /* string-ref dst:8 src:8 idx:8
2556 *
2557 * Fetch the character at position IDX in the string in SRC, and store
2558 * it in DST.
2559 */
2560 VM_DEFINE_OP (69, string_ref, "string-ref", OP1 (U8_U8_U8_U8) | OP_DST)
2561 {
2562 scm_t_signed_bits i = 0;
2563 ARGS2 (str, idx);
2564 if (SCM_LIKELY (scm_is_string (str)
2565 && SCM_I_INUMP (idx)
2566 && ((i = SCM_I_INUM (idx)) >= 0)
2567 && i < scm_i_string_length (str)))
2568 RETURN (SCM_MAKE_CHAR (scm_i_string_ref (str, i)));
2569 else
2570 {
2571 SYNC_IP ();
2572 RETURN (scm_string_ref (str, idx));
2573 }
2574 }
2575
2576 /* No string-set! instruction, as there is no good fast path there. */
2577
2578 /* string-to-number dst:12 src:12
2579 *
2580 * Parse a string in SRC to a number, and store in DST.
2581 */
2582 VM_DEFINE_OP (70, string_to_number, "string->number", OP1 (U8_U12_U12) | OP_DST)
2583 {
2584 scm_t_uint16 dst, src;
2585
2586 SCM_UNPACK_RTL_12_12 (op, dst, src);
2587 SYNC_IP ();
2588 LOCAL_SET (dst,
2589 scm_string_to_number (LOCAL_REF (src),
2590 SCM_UNDEFINED /* radix = 10 */));
2591 NEXT (1);
2592 }
2593
2594 /* string-to-symbol dst:12 src:12
2595 *
2596 * Parse a string in SRC to a symbol, and store in DST.
2597 */
2598 VM_DEFINE_OP (71, string_to_symbol, "string->symbol", OP1 (U8_U12_U12) | OP_DST)
2599 {
2600 scm_t_uint16 dst, src;
2601
2602 SCM_UNPACK_RTL_12_12 (op, dst, src);
2603 SYNC_IP ();
2604 LOCAL_SET (dst, scm_string_to_symbol (LOCAL_REF (src)));
2605 NEXT (1);
2606 }
2607
2608 /* symbol->keyword dst:12 src:12
2609 *
2610 * Make a keyword from the symbol in SRC, and store it in DST.
2611 */
2612 VM_DEFINE_OP (72, symbol_to_keyword, "symbol->keyword", OP1 (U8_U12_U12) | OP_DST)
2613 {
2614 scm_t_uint16 dst, src;
2615 SCM_UNPACK_RTL_12_12 (op, dst, src);
2616 SYNC_IP ();
2617 LOCAL_SET (dst, scm_symbol_to_keyword (LOCAL_REF (src)));
2618 NEXT (1);
2619 }
2620
2621 \f
2622
2623 /*
2624 * Pairs
2625 */
2626
2627 /* cons dst:8 car:8 cdr:8
2628 *
2629 * Cons CAR and CDR, and store the result in DST.
2630 */
2631 VM_DEFINE_OP (73, cons, "cons", OP1 (U8_U8_U8_U8) | OP_DST)
2632 {
2633 ARGS2 (x, y);
2634 RETURN (scm_cons (x, y));
2635 }
2636
2637 /* car dst:12 src:12
2638 *
2639 * Place the car of SRC in DST.
2640 */
2641 VM_DEFINE_OP (74, car, "car", OP1 (U8_U12_U12) | OP_DST)
2642 {
2643 ARGS1 (x);
2644 VM_VALIDATE_PAIR (x, "car");
2645 RETURN (SCM_CAR (x));
2646 }
2647
2648 /* cdr dst:12 src:12
2649 *
2650 * Place the cdr of SRC in DST.
2651 */
2652 VM_DEFINE_OP (75, cdr, "cdr", OP1 (U8_U12_U12) | OP_DST)
2653 {
2654 ARGS1 (x);
2655 VM_VALIDATE_PAIR (x, "cdr");
2656 RETURN (SCM_CDR (x));
2657 }
2658
2659 /* set-car! pair:12 car:12
2660 *
2661 * Set the car of DST to SRC.
2662 */
2663 VM_DEFINE_OP (76, set_car, "set-car!", OP1 (U8_U12_U12))
2664 {
2665 scm_t_uint16 a, b;
2666 SCM x, y;
2667 SCM_UNPACK_RTL_12_12 (op, a, b);
2668 x = LOCAL_REF (a);
2669 y = LOCAL_REF (b);
2670 VM_VALIDATE_PAIR (x, "set-car!");
2671 SCM_SETCAR (x, y);
2672 NEXT (1);
2673 }
2674
2675 /* set-cdr! pair:12 cdr:12
2676 *
2677 * Set the cdr of DST to SRC.
2678 */
2679 VM_DEFINE_OP (77, set_cdr, "set-cdr!", OP1 (U8_U12_U12))
2680 {
2681 scm_t_uint16 a, b;
2682 SCM x, y;
2683 SCM_UNPACK_RTL_12_12 (op, a, b);
2684 x = LOCAL_REF (a);
2685 y = LOCAL_REF (b);
2686 VM_VALIDATE_PAIR (x, "set-car!");
2687 SCM_SETCDR (x, y);
2688 NEXT (1);
2689 }
2690
2691
2692 \f
2693
2694 /*
2695 * Numeric operations
2696 */
2697
2698 /* add dst:8 a:8 b:8
2699 *
2700 * Add A to B, and place the result in DST.
2701 */
2702 VM_DEFINE_OP (78, add, "add", OP1 (U8_U8_U8_U8) | OP_DST)
2703 {
2704 BINARY_INTEGER_OP (+, scm_sum);
2705 }
2706
2707 /* add1 dst:12 src:12
2708 *
2709 * Add 1 to the value in SRC, and place the result in DST.
2710 */
2711 VM_DEFINE_OP (79, add1, "add1", OP1 (U8_U12_U12) | OP_DST)
2712 {
2713 ARGS1 (x);
2714
2715 /* Check for overflow. We must avoid overflow in the signed
2716 addition below, even if X is not an inum. */
2717 if (SCM_LIKELY ((scm_t_signed_bits) SCM_UNPACK (x) <= INUM_MAX - INUM_STEP))
2718 {
2719 SCM result;
2720
2721 /* Add 1 to the integer without untagging. */
2722 result = SCM_PACK ((scm_t_signed_bits) SCM_UNPACK (x) + INUM_STEP);
2723
2724 if (SCM_LIKELY (SCM_I_INUMP (result)))
2725 RETURN (result);
2726 }
2727
2728 SYNC_IP ();
2729 RETURN (scm_sum (x, SCM_I_MAKINUM (1)));
2730 }
2731
2732 /* sub dst:8 a:8 b:8
2733 *
2734 * Subtract B from A, and place the result in DST.
2735 */
2736 VM_DEFINE_OP (80, sub, "sub", OP1 (U8_U8_U8_U8) | OP_DST)
2737 {
2738 BINARY_INTEGER_OP (-, scm_difference);
2739 }
2740
2741 /* sub1 dst:12 src:12
2742 *
2743 * Subtract 1 from SRC, and place the result in DST.
2744 */
2745 VM_DEFINE_OP (81, sub1, "sub1", OP1 (U8_U12_U12) | OP_DST)
2746 {
2747 ARGS1 (x);
2748
2749 /* Check for overflow. We must avoid overflow in the signed
2750 subtraction below, even if X is not an inum. */
2751 if (SCM_LIKELY ((scm_t_signed_bits) SCM_UNPACK (x) >= INUM_MIN + INUM_STEP))
2752 {
2753 SCM result;
2754
2755 /* Substract 1 from the integer without untagging. */
2756 result = SCM_PACK ((scm_t_signed_bits) SCM_UNPACK (x) - INUM_STEP);
2757
2758 if (SCM_LIKELY (SCM_I_INUMP (result)))
2759 RETURN (result);
2760 }
2761
2762 SYNC_IP ();
2763 RETURN (scm_difference (x, SCM_I_MAKINUM (1)));
2764 }
2765
2766 /* mul dst:8 a:8 b:8
2767 *
2768 * Multiply A and B, and place the result in DST.
2769 */
2770 VM_DEFINE_OP (82, mul, "mul", OP1 (U8_U8_U8_U8) | OP_DST)
2771 {
2772 ARGS2 (x, y);
2773 SYNC_IP ();
2774 RETURN (scm_product (x, y));
2775 }
2776
2777 /* div dst:8 a:8 b:8
2778 *
2779 * Divide A by B, and place the result in DST.
2780 */
2781 VM_DEFINE_OP (83, div, "div", OP1 (U8_U8_U8_U8) | OP_DST)
2782 {
2783 ARGS2 (x, y);
2784 SYNC_IP ();
2785 RETURN (scm_divide (x, y));
2786 }
2787
2788 /* quo dst:8 a:8 b:8
2789 *
2790 * Divide A by B, and place the quotient in DST.
2791 */
2792 VM_DEFINE_OP (84, quo, "quo", OP1 (U8_U8_U8_U8) | OP_DST)
2793 {
2794 ARGS2 (x, y);
2795 SYNC_IP ();
2796 RETURN (scm_quotient (x, y));
2797 }
2798
2799 /* rem dst:8 a:8 b:8
2800 *
2801 * Divide A by B, and place the remainder in DST.
2802 */
2803 VM_DEFINE_OP (85, rem, "rem", OP1 (U8_U8_U8_U8) | OP_DST)
2804 {
2805 ARGS2 (x, y);
2806 SYNC_IP ();
2807 RETURN (scm_remainder (x, y));
2808 }
2809
2810 /* mod dst:8 a:8 b:8
2811 *
2812 * Place the modulo of A by B in DST.
2813 */
2814 VM_DEFINE_OP (86, mod, "mod", OP1 (U8_U8_U8_U8) | OP_DST)
2815 {
2816 ARGS2 (x, y);
2817 SYNC_IP ();
2818 RETURN (scm_modulo (x, y));
2819 }
2820
2821 /* ash dst:8 a:8 b:8
2822 *
2823 * Shift A arithmetically by B bits, and place the result in DST.
2824 */
2825 VM_DEFINE_OP (87, ash, "ash", OP1 (U8_U8_U8_U8) | OP_DST)
2826 {
2827 ARGS2 (x, y);
2828 if (SCM_I_INUMP (x) && SCM_I_INUMP (y))
2829 {
2830 if (SCM_I_INUM (y) < 0)
2831 /* Right shift, will be a fixnum. */
2832 RETURN (SCM_I_MAKINUM
2833 (SCM_SRS (SCM_I_INUM (x),
2834 (-SCM_I_INUM (y) <= SCM_I_FIXNUM_BIT-1)
2835 ? -SCM_I_INUM (y) : SCM_I_FIXNUM_BIT-1)));
2836 else
2837 /* Left shift. See comments in scm_ash. */
2838 {
2839 scm_t_signed_bits nn, bits_to_shift;
2840
2841 nn = SCM_I_INUM (x);
2842 bits_to_shift = SCM_I_INUM (y);
2843
2844 if (bits_to_shift < SCM_I_FIXNUM_BIT-1
2845 && ((scm_t_bits)
2846 (SCM_SRS (nn, (SCM_I_FIXNUM_BIT-1 - bits_to_shift)) + 1)
2847 <= 1))
2848 RETURN (SCM_I_MAKINUM (nn << bits_to_shift));
2849 /* fall through */
2850 }
2851 /* fall through */
2852 }
2853 SYNC_IP ();
2854 RETURN (scm_ash (x, y));
2855 }
2856
2857 /* logand dst:8 a:8 b:8
2858 *
2859 * Place the bitwise AND of A and B into DST.
2860 */
2861 VM_DEFINE_OP (88, logand, "logand", OP1 (U8_U8_U8_U8) | OP_DST)
2862 {
2863 ARGS2 (x, y);
2864 if (SCM_I_INUMP (x) && SCM_I_INUMP (y))
2865 /* Compute bitwise AND without untagging */
2866 RETURN (SCM_PACK (SCM_UNPACK (x) & SCM_UNPACK (y)));
2867 SYNC_IP ();
2868 RETURN (scm_logand (x, y));
2869 }
2870
2871 /* logior dst:8 a:8 b:8
2872 *
2873 * Place the bitwise inclusive OR of A with B in DST.
2874 */
2875 VM_DEFINE_OP (89, logior, "logior", OP1 (U8_U8_U8_U8) | OP_DST)
2876 {
2877 ARGS2 (x, y);
2878 if (SCM_I_INUMP (x) && SCM_I_INUMP (y))
2879 /* Compute bitwise OR without untagging */
2880 RETURN (SCM_PACK (SCM_UNPACK (x) | SCM_UNPACK (y)));
2881 SYNC_IP ();
2882 RETURN (scm_logior (x, y));
2883 }
2884
2885 /* logxor dst:8 a:8 b:8
2886 *
2887 * Place the bitwise exclusive OR of A with B in DST.
2888 */
2889 VM_DEFINE_OP (90, logxor, "logxor", OP1 (U8_U8_U8_U8) | OP_DST)
2890 {
2891 ARGS2 (x, y);
2892 if (SCM_I_INUMP (x) && SCM_I_INUMP (y))
2893 RETURN (SCM_I_MAKINUM (SCM_I_INUM (x) ^ SCM_I_INUM (y)));
2894 SYNC_IP ();
2895 RETURN (scm_logxor (x, y));
2896 }
2897
2898 /* make-vector dst:8 length:8 init:8
2899 *
2900 * Make a vector and write it to DST. The vector will have space for
2901 * LENGTH slots. They will be filled with the value in slot INIT.
2902 */
2903 VM_DEFINE_OP (91, make_vector, "make-vector", OP1 (U8_U8_U8_U8) | OP_DST)
2904 {
2905 scm_t_uint8 dst, length, init;
2906
2907 SCM_UNPACK_RTL_8_8_8 (op, dst, length, init);
2908
2909 LOCAL_SET (dst, scm_make_vector (LOCAL_REF (length), LOCAL_REF (init)));
2910
2911 NEXT (1);
2912 }
2913
2914 /* constant-make-vector dst:8 length:8 init:8
2915 *
2916 * Make a short vector of known size and write it to DST. The vector
2917 * will have space for LENGTH slots, an immediate value. They will be
2918 * filled with the value in slot INIT.
2919 */
2920 VM_DEFINE_OP (92, constant_make_vector, "constant-make-vector", OP1 (U8_U8_U8_U8) | OP_DST)
2921 {
2922 scm_t_uint8 dst, init;
2923 scm_t_int32 length, n;
2924 SCM val, vector;
2925
2926 SCM_UNPACK_RTL_8_8_8 (op, dst, length, init);
2927
2928 val = LOCAL_REF (init);
2929 vector = scm_words (scm_tc7_vector | (length << 8), length + 1);
2930 for (n = 0; n < length; n++)
2931 SCM_SIMPLE_VECTOR_SET (vector, n, val);
2932 LOCAL_SET (dst, vector);
2933 NEXT (1);
2934 }
2935
2936 /* vector-length dst:12 src:12
2937 *
2938 * Store the length of the vector in SRC in DST.
2939 */
2940 VM_DEFINE_OP (93, vector_length, "vector-length", OP1 (U8_U12_U12) | OP_DST)
2941 {
2942 ARGS1 (vect);
2943 if (SCM_LIKELY (SCM_I_IS_VECTOR (vect)))
2944 RETURN (SCM_I_MAKINUM (SCM_I_VECTOR_LENGTH (vect)));
2945 else
2946 {
2947 SYNC_IP ();
2948 RETURN (scm_vector_length (vect));
2949 }
2950 }
2951
2952 /* vector-ref dst:8 src:8 idx:8
2953 *
2954 * Fetch the item at position IDX in the vector in SRC, and store it
2955 * in DST.
2956 */
2957 VM_DEFINE_OP (94, vector_ref, "vector-ref", OP1 (U8_U8_U8_U8) | OP_DST)
2958 {
2959 scm_t_signed_bits i = 0;
2960 ARGS2 (vect, idx);
2961 if (SCM_LIKELY (SCM_I_IS_NONWEAK_VECTOR (vect)
2962 && SCM_I_INUMP (idx)
2963 && ((i = SCM_I_INUM (idx)) >= 0)
2964 && i < SCM_I_VECTOR_LENGTH (vect)))
2965 RETURN (SCM_I_VECTOR_ELTS (vect)[i]);
2966 else
2967 {
2968 SYNC_IP ();
2969 RETURN (scm_vector_ref (vect, idx));
2970 }
2971 }
2972
2973 /* constant-vector-ref dst:8 src:8 idx:8
2974 *
2975 * Fill DST with the item IDX elements into the vector at SRC. Useful
2976 * for building data types using vectors.
2977 */
2978 VM_DEFINE_OP (95, constant_vector_ref, "constant-vector-ref", OP1 (U8_U8_U8_U8) | OP_DST)
2979 {
2980 scm_t_uint8 dst, src, idx;
2981 SCM v;
2982
2983 SCM_UNPACK_RTL_8_8_8 (op, dst, src, idx);
2984 v = LOCAL_REF (src);
2985 if (SCM_LIKELY (SCM_I_IS_NONWEAK_VECTOR (v)
2986 && idx < SCM_I_VECTOR_LENGTH (v)))
2987 LOCAL_SET (dst, SCM_I_VECTOR_ELTS (LOCAL_REF (src))[idx]);
2988 else
2989 LOCAL_SET (dst, scm_c_vector_ref (v, idx));
2990 NEXT (1);
2991 }
2992
2993 /* vector-set! dst:8 idx:8 src:8
2994 *
2995 * Store SRC into the vector DST at index IDX.
2996 */
2997 VM_DEFINE_OP (96, vector_set, "vector-set!", OP1 (U8_U8_U8_U8))
2998 {
2999 scm_t_uint8 dst, idx_var, src;
3000 SCM vect, idx, val;
3001 scm_t_signed_bits i = 0;
3002
3003 SCM_UNPACK_RTL_8_8_8 (op, dst, idx_var, src);
3004 vect = LOCAL_REF (dst);
3005 idx = LOCAL_REF (idx_var);
3006 val = LOCAL_REF (src);
3007
3008 if (SCM_LIKELY (SCM_I_IS_NONWEAK_VECTOR (vect)
3009 && SCM_I_INUMP (idx)
3010 && ((i = SCM_I_INUM (idx)) >= 0)
3011 && i < SCM_I_VECTOR_LENGTH (vect)))
3012 SCM_I_VECTOR_WELTS (vect)[i] = val;
3013 else
3014 {
3015 SYNC_IP ();
3016 scm_vector_set_x (vect, idx, val);
3017 }
3018 NEXT (1);
3019 }
3020
3021 /* constant-vector-set! dst:8 idx:8 src:8
3022 *
3023 * Store SRC into the vector DST at index IDX. Here IDX is an
3024 * immediate value.
3025 */
3026 VM_DEFINE_OP (97, constant_vector_set, "constant-vector-set!", OP1 (U8_U8_U8_U8))
3027 {
3028 scm_t_uint8 dst, idx, src;
3029 SCM vect, val;
3030
3031 SCM_UNPACK_RTL_8_8_8 (op, dst, idx, src);
3032 vect = LOCAL_REF (dst);
3033 val = LOCAL_REF (src);
3034
3035 if (SCM_LIKELY (SCM_I_IS_NONWEAK_VECTOR (vect)
3036 && idx < SCM_I_VECTOR_LENGTH (vect)))
3037 SCM_I_VECTOR_WELTS (vect)[idx] = val;
3038 else
3039 {
3040 SYNC_IP ();
3041 scm_vector_set_x (vect, scm_from_uint8 (idx), val);
3042 }
3043 NEXT (1);
3044 }
3045
3046
3047 \f
3048
3049 /*
3050 * Structs and GOOPS
3051 */
3052
3053 /* struct-vtable dst:12 src:12
3054 *
3055 * Store the vtable of SRC into DST.
3056 */
3057 VM_DEFINE_OP (98, struct_vtable, "struct-vtable", OP1 (U8_U12_U12) | OP_DST)
3058 {
3059 ARGS1 (obj);
3060 VM_VALIDATE_STRUCT (obj, "struct_vtable");
3061 RETURN (SCM_STRUCT_VTABLE (obj));
3062 }
3063
3064 /* allocate-struct dst:8 vtable:8 nfields:8
3065 *
3066 * Allocate a new struct with VTABLE, and place it in DST. The struct
3067 * will be constructed with space for NFIELDS fields, which should
3068 * correspond to the field count of the VTABLE.
3069 */
3070 VM_DEFINE_OP (99, allocate_struct, "allocate-struct", OP1 (U8_U8_U8_U8) | OP_DST)
3071 {
3072 scm_t_uint8 dst, vtable, nfields;
3073 SCM ret;
3074
3075 SCM_UNPACK_RTL_8_8_8 (op, dst, vtable, nfields);
3076
3077 SYNC_IP ();
3078 ret = scm_allocate_struct (LOCAL_REF (vtable), SCM_I_MAKINUM (nfields));
3079 LOCAL_SET (dst, ret);
3080
3081 NEXT (1);
3082 }
3083
3084 /* struct-ref dst:8 src:8 idx:8
3085 *
3086 * Fetch the item at slot IDX in the struct in SRC, and store it
3087 * in DST.
3088 */
3089 VM_DEFINE_OP (100, struct_ref, "struct-ref", OP1 (U8_U8_U8_U8) | OP_DST)
3090 {
3091 ARGS2 (obj, pos);
3092
3093 if (SCM_LIKELY (SCM_STRUCTP (obj)
3094 && SCM_STRUCT_VTABLE_FLAG_IS_SET (obj,
3095 SCM_VTABLE_FLAG_SIMPLE)
3096 && SCM_I_INUMP (pos)))
3097 {
3098 SCM vtable;
3099 scm_t_bits index, len;
3100
3101 /* True, an inum is a signed value, but cast to unsigned it will
3102 certainly be more than the length, so we will fall through if
3103 index is negative. */
3104 index = SCM_I_INUM (pos);
3105 vtable = SCM_STRUCT_VTABLE (obj);
3106 len = SCM_STRUCT_DATA_REF (vtable, scm_vtable_index_size);
3107
3108 if (SCM_LIKELY (index < len))
3109 {
3110 scm_t_bits *data = SCM_STRUCT_DATA (obj);
3111 RETURN (SCM_PACK (data[index]));
3112 }
3113 }
3114
3115 SYNC_IP ();
3116 RETURN (scm_struct_ref (obj, pos));
3117 }
3118
3119 /* struct-set! dst:8 idx:8 src:8
3120 *
3121 * Store SRC into the struct DST at slot IDX.
3122 */
3123 VM_DEFINE_OP (101, struct_set, "struct-set!", OP1 (U8_U8_U8_U8))
3124 {
3125 scm_t_uint8 dst, idx, src;
3126 SCM obj, pos, val;
3127
3128 SCM_UNPACK_RTL_8_8_8 (op, dst, idx, src);
3129 obj = LOCAL_REF (dst);
3130 pos = LOCAL_REF (idx);
3131 val = LOCAL_REF (src);
3132
3133 if (SCM_LIKELY (SCM_STRUCTP (obj)
3134 && SCM_STRUCT_VTABLE_FLAG_IS_SET (obj,
3135 SCM_VTABLE_FLAG_SIMPLE)
3136 && SCM_STRUCT_VTABLE_FLAG_IS_SET (obj,
3137 SCM_VTABLE_FLAG_SIMPLE_RW)
3138 && SCM_I_INUMP (pos)))
3139 {
3140 SCM vtable;
3141 scm_t_bits index, len;
3142
3143 /* See above regarding index being >= 0. */
3144 index = SCM_I_INUM (pos);
3145 vtable = SCM_STRUCT_VTABLE (obj);
3146 len = SCM_STRUCT_DATA_REF (vtable, scm_vtable_index_size);
3147 if (SCM_LIKELY (index < len))
3148 {
3149 scm_t_bits *data = SCM_STRUCT_DATA (obj);
3150 data[index] = SCM_UNPACK (val);
3151 NEXT (1);
3152 }
3153 }
3154
3155 SYNC_IP ();
3156 scm_struct_set_x (obj, pos, val);
3157 NEXT (1);
3158 }
3159
3160 /* class-of dst:12 type:12
3161 *
3162 * Store the vtable of SRC into DST.
3163 */
3164 VM_DEFINE_OP (102, class_of, "class-of", OP1 (U8_U12_U12) | OP_DST)
3165 {
3166 ARGS1 (obj);
3167 if (SCM_INSTANCEP (obj))
3168 RETURN (SCM_CLASS_OF (obj));
3169 SYNC_IP ();
3170 RETURN (scm_class_of (obj));
3171 }
3172
3173 /* slot-ref dst:8 src:8 idx:8
3174 *
3175 * Fetch the item at slot IDX in the struct in SRC, and store it in
3176 * DST. Unlike struct-ref, IDX is an 8-bit immediate value, not an
3177 * index into the stack.
3178 */
3179 VM_DEFINE_OP (103, slot_ref, "slot-ref", OP1 (U8_U8_U8_U8) | OP_DST)
3180 {
3181 scm_t_uint8 dst, src, idx;
3182 SCM_UNPACK_RTL_8_8_8 (op, dst, src, idx);
3183 LOCAL_SET (dst,
3184 SCM_PACK (SCM_STRUCT_DATA (LOCAL_REF (src))[idx]));
3185 NEXT (1);
3186 }
3187
3188 /* slot-set! dst:8 idx:8 src:8
3189 *
3190 * Store SRC into slot IDX of the struct in DST. Unlike struct-set!,
3191 * IDX is an 8-bit immediate value, not an index into the stack.
3192 */
3193 VM_DEFINE_OP (104, slot_set, "slot-set!", OP1 (U8_U8_U8_U8))
3194 {
3195 scm_t_uint8 dst, idx, src;
3196 SCM_UNPACK_RTL_8_8_8 (op, dst, idx, src);
3197 SCM_STRUCT_DATA (LOCAL_REF (dst))[idx] = SCM_UNPACK (LOCAL_REF (src));
3198 NEXT (1);
3199 }
3200
3201
3202 \f
3203
3204 /*
3205 * Arrays, packed uniform arrays, and bytevectors.
3206 */
3207
3208 /* load-typed-array dst:8 type:8 shape:8 offset:32 len:32
3209 *
3210 * Load the contiguous typed array located at OFFSET 32-bit words away
3211 * from the instruction pointer, and store into DST. LEN is a byte
3212 * length. OFFSET is signed.
3213 */
3214 VM_DEFINE_OP (105, load_typed_array, "load-typed-array", OP3 (U8_U8_U8_U8, N32, U32) | OP_DST)
3215 {
3216 scm_t_uint8 dst, type, shape;
3217 scm_t_int32 offset;
3218 scm_t_uint32 len;
3219
3220 SCM_UNPACK_RTL_8_8_8 (op, dst, type, shape);
3221 offset = ip[1];
3222 len = ip[2];
3223 SYNC_IP ();
3224 LOCAL_SET (dst, scm_from_contiguous_typed_array (LOCAL_REF (type),
3225 LOCAL_REF (shape),
3226 ip + offset, len));
3227 NEXT (3);
3228 }
3229
3230 /* make-array dst:12 type:12 _:8 fill:12 bounds:12
3231 *
3232 * Make a new array with TYPE, FILL, and BOUNDS, storing it in DST.
3233 */
3234 VM_DEFINE_OP (106, make_array, "make-array", OP2 (U8_U12_U12, X8_U12_U12) | OP_DST)
3235 {
3236 scm_t_uint16 dst, type, fill, bounds;
3237 SCM_UNPACK_RTL_12_12 (op, dst, type);
3238 SCM_UNPACK_RTL_12_12 (ip[1], fill, bounds);
3239 SYNC_IP ();
3240 LOCAL_SET (dst, scm_make_typed_array (LOCAL_REF (type), LOCAL_REF (fill),
3241 LOCAL_REF (bounds)));
3242 NEXT (2);
3243 }
3244
3245 /* bv-u8-ref dst:8 src:8 idx:8
3246 * bv-s8-ref dst:8 src:8 idx:8
3247 * bv-u16-ref dst:8 src:8 idx:8
3248 * bv-s16-ref dst:8 src:8 idx:8
3249 * bv-u32-ref dst:8 src:8 idx:8
3250 * bv-s32-ref dst:8 src:8 idx:8
3251 * bv-u64-ref dst:8 src:8 idx:8
3252 * bv-s64-ref dst:8 src:8 idx:8
3253 * bv-f32-ref dst:8 src:8 idx:8
3254 * bv-f64-ref dst:8 src:8 idx:8
3255 *
3256 * Fetch the item at byte offset IDX in the bytevector SRC, and store
3257 * it in DST. All accesses use native endianness.
3258 */
3259#define BV_FIXABLE_INT_REF(stem, fn_stem, type, size) \
3260 do { \
3261 scm_t_signed_bits i; \
3262 const scm_t_ ## type *int_ptr; \
3263 ARGS2 (bv, idx); \
3264 \
3265 VM_VALIDATE_BYTEVECTOR (bv, "bv-" #stem "-ref"); \
3266 i = SCM_I_INUM (idx); \
3267 int_ptr = (scm_t_ ## type *) (SCM_BYTEVECTOR_CONTENTS (bv) + i); \
3268 \
3269 if (SCM_LIKELY (SCM_I_INUMP (idx) \
3270 && (i >= 0) \
3271 && (i + size <= SCM_BYTEVECTOR_LENGTH (bv)) \
3272 && (ALIGNED_P (int_ptr, scm_t_ ## type)))) \
3273 RETURN (SCM_I_MAKINUM (*int_ptr)); \
3274 else \
3275 { \
3276 SYNC_IP (); \
3277 RETURN (scm_bytevector_ ## fn_stem ## _ref (bv, idx)); \
3278 } \
3279 } while (0)
3280
3281#define BV_INT_REF(stem, type, size) \
3282 do { \
3283 scm_t_signed_bits i; \
3284 const scm_t_ ## type *int_ptr; \
3285 ARGS2 (bv, idx); \
3286 \
3287 VM_VALIDATE_BYTEVECTOR (bv, "bv-" #stem "-ref"); \
3288 i = SCM_I_INUM (idx); \
3289 int_ptr = (scm_t_ ## type *) (SCM_BYTEVECTOR_CONTENTS (bv) + i); \
3290 \
3291 if (SCM_LIKELY (SCM_I_INUMP (idx) \
3292 && (i >= 0) \
3293 && (i + size <= SCM_BYTEVECTOR_LENGTH (bv)) \
3294 && (ALIGNED_P (int_ptr, scm_t_ ## type)))) \
3295 { \
3296 scm_t_ ## type x = *int_ptr; \
3297 if (SCM_FIXABLE (x)) \
3298 RETURN (SCM_I_MAKINUM (x)); \
3299 else \
3300 { \
3301 SYNC_IP (); \
3302 RETURN (scm_from_ ## type (x)); \
3303 } \
3304 } \
3305 else \
3306 { \
3307 SYNC_IP (); \
3308 RETURN (scm_bytevector_ ## stem ## _native_ref (bv, idx)); \
3309 } \
3310 } while (0)
3311
3312#define BV_FLOAT_REF(stem, fn_stem, type, size) \
3313 do { \
3314 scm_t_signed_bits i; \
3315 const type *float_ptr; \
3316 ARGS2 (bv, idx); \
3317 \
3318 VM_VALIDATE_BYTEVECTOR (bv, "bv-" #stem "-ref"); \
3319 i = SCM_I_INUM (idx); \
3320 float_ptr = (type *) (SCM_BYTEVECTOR_CONTENTS (bv) + i); \
3321 \
3322 SYNC_IP (); \
3323 if (SCM_LIKELY (SCM_I_INUMP (idx) \
3324 && (i >= 0) \
3325 && (i + size <= SCM_BYTEVECTOR_LENGTH (bv)) \
3326 && (ALIGNED_P (float_ptr, type)))) \
3327 RETURN (scm_from_double (*float_ptr)); \
3328 else \
3329 RETURN (scm_bytevector_ ## fn_stem ## _native_ref (bv, idx)); \
3330 } while (0)
3331
3332 VM_DEFINE_OP (107, bv_u8_ref, "bv-u8-ref", OP1 (U8_U8_U8_U8) | OP_DST)
3333 BV_FIXABLE_INT_REF (u8, u8, uint8, 1);
3334
3335 VM_DEFINE_OP (108, bv_s8_ref, "bv-s8-ref", OP1 (U8_U8_U8_U8) | OP_DST)
3336 BV_FIXABLE_INT_REF (s8, s8, int8, 1);
3337
3338 VM_DEFINE_OP (109, bv_u16_ref, "bv-u16-ref", OP1 (U8_U8_U8_U8) | OP_DST)
3339 BV_FIXABLE_INT_REF (u16, u16_native, uint16, 2);
3340
3341 VM_DEFINE_OP (110, bv_s16_ref, "bv-s16-ref", OP1 (U8_U8_U8_U8) | OP_DST)
3342 BV_FIXABLE_INT_REF (s16, s16_native, int16, 2);
3343
3344 VM_DEFINE_OP (111, bv_u32_ref, "bv-u32-ref", OP1 (U8_U8_U8_U8) | OP_DST)
3345#if SIZEOF_VOID_P > 4
3346 BV_FIXABLE_INT_REF (u32, u32_native, uint32, 4);
3347#else
3348 BV_INT_REF (u32, uint32, 4);
3349#endif
3350
3351 VM_DEFINE_OP (112, bv_s32_ref, "bv-s32-ref", OP1 (U8_U8_U8_U8) | OP_DST)
3352#if SIZEOF_VOID_P > 4
3353 BV_FIXABLE_INT_REF (s32, s32_native, int32, 4);
3354#else
3355 BV_INT_REF (s32, int32, 4);
3356#endif
3357
3358 VM_DEFINE_OP (113, bv_u64_ref, "bv-u64-ref", OP1 (U8_U8_U8_U8) | OP_DST)
3359 BV_INT_REF (u64, uint64, 8);
3360
3361 VM_DEFINE_OP (114, bv_s64_ref, "bv-s64-ref", OP1 (U8_U8_U8_U8) | OP_DST)
3362 BV_INT_REF (s64, int64, 8);
3363
3364 VM_DEFINE_OP (115, bv_f32_ref, "bv-f32-ref", OP1 (U8_U8_U8_U8) | OP_DST)
3365 BV_FLOAT_REF (f32, ieee_single, float, 4);
3366
3367 VM_DEFINE_OP (116, bv_f64_ref, "bv-f64-ref", OP1 (U8_U8_U8_U8) | OP_DST)
3368 BV_FLOAT_REF (f64, ieee_double, double, 8);
3369
3370 /* bv-u8-set! dst:8 idx:8 src:8
3371 * bv-s8-set! dst:8 idx:8 src:8
3372 * bv-u16-set! dst:8 idx:8 src:8
3373 * bv-s16-set! dst:8 idx:8 src:8
3374 * bv-u32-set! dst:8 idx:8 src:8
3375 * bv-s32-set! dst:8 idx:8 src:8
3376 * bv-u64-set! dst:8 idx:8 src:8
3377 * bv-s64-set! dst:8 idx:8 src:8
3378 * bv-f32-set! dst:8 idx:8 src:8
3379 * bv-f64-set! dst:8 idx:8 src:8
3380 *
3381 * Store SRC into the bytevector DST at byte offset IDX. Multibyte
3382 * values are written using native endianness.
3383 */
3384#define BV_FIXABLE_INT_SET(stem, fn_stem, type, min, max, size) \
3385 do { \
3386 scm_t_uint8 dst, idx, src; \
3387 scm_t_signed_bits i, j = 0; \
3388 SCM bv, scm_idx, val; \
3389 scm_t_ ## type *int_ptr; \
3390 \
3391 SCM_UNPACK_RTL_8_8_8 (op, dst, idx, src); \
3392 bv = LOCAL_REF (dst); \
3393 scm_idx = LOCAL_REF (idx); \
3394 val = LOCAL_REF (src); \
3395 VM_VALIDATE_BYTEVECTOR (bv, "bv-" #stem "-set"); \
3396 i = SCM_I_INUM (scm_idx); \
3397 int_ptr = (scm_t_ ## type *) (SCM_BYTEVECTOR_CONTENTS (bv) + i); \
3398 \
3399 if (SCM_LIKELY (SCM_I_INUMP (scm_idx) \
3400 && (i >= 0) \
3401 && (i + size <= SCM_BYTEVECTOR_LENGTH (bv)) \
3402 && (ALIGNED_P (int_ptr, scm_t_ ## type)) \
3403 && (SCM_I_INUMP (val)) \
3404 && ((j = SCM_I_INUM (val)) >= min) \
3405 && (j <= max))) \
3406 *int_ptr = (scm_t_ ## type) j; \
3407 else \
3408 { \
3409 SYNC_IP (); \
3410 scm_bytevector_ ## fn_stem ## _set_x (bv, scm_idx, val); \
3411 } \
3412 NEXT (1); \
3413 } while (0)
3414
3415#define BV_INT_SET(stem, type, size) \
3416 do { \
3417 scm_t_uint8 dst, idx, src; \
3418 scm_t_signed_bits i; \
3419 SCM bv, scm_idx, val; \
3420 scm_t_ ## type *int_ptr; \
3421 \
3422 SCM_UNPACK_RTL_8_8_8 (op, dst, idx, src); \
3423 bv = LOCAL_REF (dst); \
3424 scm_idx = LOCAL_REF (idx); \
3425 val = LOCAL_REF (src); \
3426 VM_VALIDATE_BYTEVECTOR (bv, "bv-" #stem "-set"); \
3427 i = SCM_I_INUM (scm_idx); \
3428 int_ptr = (scm_t_ ## type *) (SCM_BYTEVECTOR_CONTENTS (bv) + i); \
3429 \
3430 if (SCM_LIKELY (SCM_I_INUMP (scm_idx) \
3431 && (i >= 0) \
3432 && (i + size <= SCM_BYTEVECTOR_LENGTH (bv)) \
3433 && (ALIGNED_P (int_ptr, scm_t_ ## type)))) \
3434 *int_ptr = scm_to_ ## type (val); \
3435 else \
3436 { \
3437 SYNC_IP (); \
3438 scm_bytevector_ ## stem ## _native_set_x (bv, scm_idx, val); \
3439 } \
3440 NEXT (1); \
3441 } while (0)
3442
3443#define BV_FLOAT_SET(stem, fn_stem, type, size) \
3444 do { \
3445 scm_t_uint8 dst, idx, src; \
3446 scm_t_signed_bits i; \
3447 SCM bv, scm_idx, val; \
3448 type *float_ptr; \
3449 \
3450 SCM_UNPACK_RTL_8_8_8 (op, dst, idx, src); \
3451 bv = LOCAL_REF (dst); \
3452 scm_idx = LOCAL_REF (idx); \
3453 val = LOCAL_REF (src); \
3454 VM_VALIDATE_BYTEVECTOR (bv, "bv-" #stem "-set"); \
3455 i = SCM_I_INUM (scm_idx); \
3456 float_ptr = (type *) (SCM_BYTEVECTOR_CONTENTS (bv) + i); \
3457 \
3458 if (SCM_LIKELY (SCM_I_INUMP (scm_idx) \
3459 && (i >= 0) \
3460 && (i + size <= SCM_BYTEVECTOR_LENGTH (bv)) \
3461 && (ALIGNED_P (float_ptr, type)))) \
3462 *float_ptr = scm_to_double (val); \
3463 else \
3464 { \
3465 SYNC_IP (); \
3466 scm_bytevector_ ## fn_stem ## _native_set_x (bv, scm_idx, val); \
3467 } \
3468 NEXT (1); \
3469 } while (0)
3470
3471 VM_DEFINE_OP (117, bv_u8_set, "bv-u8-set!", OP1 (U8_U8_U8_U8))
3472 BV_FIXABLE_INT_SET (u8, u8, uint8, 0, SCM_T_UINT8_MAX, 1);
3473
3474 VM_DEFINE_OP (118, bv_s8_set, "bv-s8-set!", OP1 (U8_U8_U8_U8))
3475 BV_FIXABLE_INT_SET (s8, s8, int8, SCM_T_INT8_MIN, SCM_T_INT8_MAX, 1);
3476
3477 VM_DEFINE_OP (119, bv_u16_set, "bv-u16-set!", OP1 (U8_U8_U8_U8))
3478 BV_FIXABLE_INT_SET (u16, u16_native, uint16, 0, SCM_T_UINT16_MAX, 2);
3479
3480 VM_DEFINE_OP (120, bv_s16_set, "bv-s16-set!", OP1 (U8_U8_U8_U8))
3481 BV_FIXABLE_INT_SET (s16, s16_native, int16, SCM_T_INT16_MIN, SCM_T_INT16_MAX, 2);
3482
3483 VM_DEFINE_OP (121, bv_u32_set, "bv-u32-set!", OP1 (U8_U8_U8_U8))
3484#if SIZEOF_VOID_P > 4
3485 BV_FIXABLE_INT_SET (u32, u32_native, uint32, 0, SCM_T_UINT32_MAX, 4);
3486#else
3487 BV_INT_SET (u32, uint32, 4);
3488#endif
3489
3490 VM_DEFINE_OP (122, bv_s32_set, "bv-s32-set!", OP1 (U8_U8_U8_U8))
3491#if SIZEOF_VOID_P > 4
3492 BV_FIXABLE_INT_SET (s32, s32_native, int32, SCM_T_INT32_MIN, SCM_T_INT32_MAX, 4);
3493#else
3494 BV_INT_SET (s32, int32, 4);
3495#endif
3496
3497 VM_DEFINE_OP (123, bv_u64_set, "bv-u64-set!", OP1 (U8_U8_U8_U8))
3498 BV_INT_SET (u64, uint64, 8);
3499
3500 VM_DEFINE_OP (124, bv_s64_set, "bv-s64-set!", OP1 (U8_U8_U8_U8))
3501 BV_INT_SET (s64, int64, 8);
3502
3503 VM_DEFINE_OP (125, bv_f32_set, "bv-f32-set!", OP1 (U8_U8_U8_U8))
3504 BV_FLOAT_SET (f32, ieee_single, float, 4);
3505
3506 VM_DEFINE_OP (126, bv_f64_set, "bv-f64-set!", OP1 (U8_U8_U8_U8))
3507 BV_FLOAT_SET (f64, ieee_double, double, 8);
3508
3509 END_DISPATCH_SWITCH;
3510
3511 vm_error_bad_instruction:
3512 vm_error_bad_instruction (op);
3513
3514 abort (); /* never reached */
3515}
3516
3517
3518#undef ABORT_CONTINUATION_HOOK
3519#undef ALIGNED_P
3520#undef APPLY_HOOK
3521#undef ARGS1
3522#undef ARGS2
3523#undef BEGIN_DISPATCH_SWITCH
3524#undef BINARY_INTEGER_OP
3525#undef BR_ARITHMETIC
3526#undef BR_BINARY
3527#undef BR_NARGS
3528#undef BR_UNARY
3529#undef BV_FIXABLE_INT_REF
3530#undef BV_FIXABLE_INT_SET
3531#undef BV_FLOAT_REF
3532#undef BV_FLOAT_SET
3533#undef BV_INT_REF
3534#undef BV_INT_SET
3535#undef CACHE_REGISTER
3536#undef CHECK_OVERFLOW
3537#undef END_DISPATCH_SWITCH
3538#undef FREE_VARIABLE_REF
3539#undef INIT
3540#undef INUM_MAX
3541#undef INUM_MIN
3542#undef LOCAL_REF
3543#undef LOCAL_SET
3544#undef NEXT
3545#undef NEXT_HOOK
3546#undef NEXT_JUMP
3547#undef POP_CONTINUATION_HOOK
3548#undef PUSH_CONTINUATION_HOOK
3549#undef RESTORE_CONTINUATION_HOOK
3550#undef RETURN
3551#undef RETURN_ONE_VALUE
3552#undef RETURN_VALUE_LIST
3553#undef RUN_HOOK
3554#undef RUN_HOOK0
3555#undef SYNC_ALL
3556#undef SYNC_BEFORE_GC
3557#undef SYNC_IP
3558#undef SYNC_REGISTER
3559#undef VARIABLE_BOUNDP
3560#undef VARIABLE_REF
3561#undef VARIABLE_SET
3562#undef VM_CHECK_FREE_VARIABLE
3563#undef VM_CHECK_OBJECT
3564#undef VM_CHECK_UNDERFLOW
3565#undef VM_DEFINE_OP
3566#undef VM_INSTRUCTION_TO_LABEL
3567#undef VM_USE_HOOKS
3568#undef VM_VALIDATE_BYTEVECTOR
3569#undef VM_VALIDATE_PAIR
3570#undef VM_VALIDATE_STRUCT
3571
3572/*
3573(defun renumber-ops ()
3574 "start from top of buffer and renumber 'VM_DEFINE_FOO (\n' sequences"
3575 (interactive "")
3576 (save-excursion
3577 (let ((counter -1)) (goto-char (point-min))
3578 (while (re-search-forward "^ *VM_DEFINE_[^ ]+ (\\([^,]+\\)," (point-max) t)
3579 (replace-match
3580 (number-to-string (setq counter (1+ counter)))
3581 t t nil 1)))))
3582(renumber-ops)
3583*/
3584/*
3585 Local Variables:
3586 c-file-style: "gnu"
3587 End:
3588*/