*** empty log message ***
[bpt/guile.git] / ice-9 / boot-9.scm
... / ...
CommitLineData
1;;; installed-scm-file
2
3;;;; Copyright (C) 1995,1996,1997,1998,1999,2000,2001,2002, 2003 Free Software Foundation, Inc.
4;;;;
5;;;; This program is free software; you can redistribute it and/or modify
6;;;; it under the terms of the GNU General Public License as published by
7;;;; the Free Software Foundation; either version 2, or (at your option)
8;;;; any later version.
9;;;;
10;;;; This program is distributed in the hope that it will be useful,
11;;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
12;;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13;;;; GNU General Public License for more details.
14;;;;
15;;;; You should have received a copy of the GNU General Public License
16;;;; along with this software; see the file COPYING. If not, write to
17;;;; the Free Software Foundation, Inc., 59 Temple Place, Suite 330,
18;;;; Boston, MA 02111-1307 USA
19;;;;
20;;;; As a special exception, the Free Software Foundation gives permission
21;;;; for additional uses of the text contained in its release of GUILE.
22;;;;
23;;;; The exception is that, if you link the GUILE library with other files
24;;;; to produce an executable, this does not by itself cause the
25;;;; resulting executable to be covered by the GNU General Public License.
26;;;; Your use of that executable is in no way restricted on account of
27;;;; linking the GUILE library code into it.
28;;;;
29;;;; This exception does not however invalidate any other reasons why
30;;;; the executable file might be covered by the GNU General Public License.
31;;;;
32;;;; This exception applies only to the code released by the
33;;;; Free Software Foundation under the name GUILE. If you copy
34;;;; code from other Free Software Foundation releases into a copy of
35;;;; GUILE, as the General Public License permits, the exception does
36;;;; not apply to the code that you add in this way. To avoid misleading
37;;;; anyone as to the status of such modified files, you must delete
38;;;; this exception notice from them.
39;;;;
40;;;; If you write modifications of your own for GUILE, it is your choice
41;;;; whether to permit this exception to apply to your modifications.
42;;;; If you do not wish that, delete this exception notice.
43;;;;
44\f
45
46;;; Commentary:
47
48;;; This file is the first thing loaded into Guile. It adds many mundane
49;;; definitions and a few that are interesting.
50;;;
51;;; The module system (hence the hierarchical namespace) are defined in this
52;;; file.
53;;;
54
55;;; Code:
56
57\f
58;;; {Deprecation}
59;;;
60
61;; We don't have macros here, but we do want to define
62;; `begin-deprecated' early.
63
64(define begin-deprecated
65 (procedure->memoizing-macro
66 (lambda (exp env)
67 (if (include-deprecated-features)
68 `(begin ,@(cdr exp))
69 `#f))))
70
71\f
72;;; {Features}
73;;
74
75(define (provide sym)
76 (if (not (memq sym *features*))
77 (set! *features* (cons sym *features*))))
78
79;;; Return #t iff FEATURE is available to this Guile interpreter.
80;;; In SLIB, provided? also checks to see if the module is available.
81;;; We should do that too, but don't.
82(define (provided? feature)
83 (and (memq feature *features*) #t))
84
85(begin-deprecated
86 (define (feature? sym)
87 (issue-deprecation-warning
88 "`feature?' is deprecated. Use `provided?' instead.")
89 (provided? sym)))
90
91;;; let format alias simple-format until the more complete version is loaded
92(define format simple-format)
93
94\f
95;;; {R4RS compliance}
96
97(primitive-load-path "ice-9/r4rs.scm")
98
99\f
100;;; {Simple Debugging Tools}
101;;
102
103
104;; peek takes any number of arguments, writes them to the
105;; current ouput port, and returns the last argument.
106;; It is handy to wrap around an expression to look at
107;; a value each time is evaluated, e.g.:
108;;
109;; (+ 10 (troublesome-fn))
110;; => (+ 10 (pk 'troublesome-fn-returned (troublesome-fn)))
111;;
112
113(define (peek . stuff)
114 (newline)
115 (display ";;; ")
116 (write stuff)
117 (newline)
118 (car (last-pair stuff)))
119
120(define pk peek)
121
122(define (warn . stuff)
123 (with-output-to-port (current-error-port)
124 (lambda ()
125 (newline)
126 (display ";;; WARNING ")
127 (display stuff)
128 (newline)
129 (car (last-pair stuff)))))
130
131\f
132;;; {Trivial Functions}
133;;;
134
135(define (identity x) x)
136(define (1+ n) (+ n 1))
137(define (1- n) (+ n -1))
138(define (and=> value procedure) (and value (procedure value)))
139
140;;; apply-to-args is functionally redundant with apply and, worse,
141;;; is less general than apply since it only takes two arguments.
142;;;
143;;; On the other hand, apply-to-args is a syntacticly convenient way to
144;;; perform binding in many circumstances when the "let" family of
145;;; of forms don't cut it. E.g.:
146;;;
147;;; (apply-to-args (return-3d-mouse-coords)
148;;; (lambda (x y z)
149;;; ...))
150;;;
151
152(define (apply-to-args args fn) (apply fn args))
153
154\f
155
156;;; {Integer Math}
157;;;
158
159(define (ipow-by-squaring x k acc proc)
160 (cond ((zero? k) acc)
161 ((= 1 k) (proc acc x))
162 (else (ipow-by-squaring (proc x x)
163 (quotient k 2)
164 (if (even? k) acc (proc acc x))
165 proc))))
166
167\f
168;;; {Symbol Properties}
169;;;
170
171(define (symbol-property sym prop)
172 (let ((pair (assoc prop (symbol-pref sym))))
173 (and pair (cdr pair))))
174
175(define (set-symbol-property! sym prop val)
176 (let ((pair (assoc prop (symbol-pref sym))))
177 (if pair
178 (set-cdr! pair val)
179 (symbol-pset! sym (acons prop val (symbol-pref sym))))))
180
181(define (symbol-property-remove! sym prop)
182 (let ((pair (assoc prop (symbol-pref sym))))
183 (if pair
184 (symbol-pset! sym (delq! pair (symbol-pref sym))))))
185
186;;; {General Properties}
187;;;
188
189;; This is a more modern interface to properties. It will replace all
190;; other property-like things eventually.
191
192(define (make-object-property)
193 (let ((prop (primitive-make-property #f)))
194 (make-procedure-with-setter
195 (lambda (obj) (primitive-property-ref prop obj))
196 (lambda (obj val) (primitive-property-set! prop obj val)))))
197
198\f
199
200;;; {Arrays}
201;;;
202
203(if (provided? 'array)
204 (primitive-load-path "ice-9/arrays.scm"))
205
206\f
207;;; {Keywords}
208;;;
209
210(define (symbol->keyword symbol)
211 (make-keyword-from-dash-symbol (symbol-append '- symbol)))
212
213(define (keyword->symbol kw)
214 (let ((sym (symbol->string (keyword-dash-symbol kw))))
215 (string->symbol (substring sym 1 (string-length sym)))))
216
217(define (kw-arg-ref args kw)
218 (let ((rem (member kw args)))
219 (and rem (pair? (cdr rem)) (cadr rem))))
220
221\f
222
223;;; {Structs}
224
225(define (struct-layout s)
226 (struct-ref (struct-vtable s) vtable-index-layout))
227
228\f
229
230;;; Environments
231
232(define the-environment
233 (procedure->syntax
234 (lambda (x e)
235 e)))
236
237(define the-root-environment (the-environment))
238
239(define (environment-module env)
240 (let ((closure (and (pair? env) (car (last-pair env)))))
241 (and closure (procedure-property closure 'module))))
242
243\f
244;;; {Records}
245;;;
246
247;; Printing records: by default, records are printed as
248;;
249;; #<type-name field1: val1 field2: val2 ...>
250;;
251;; You can change that by giving a custom printing function to
252;; MAKE-RECORD-TYPE (after the list of field symbols). This function
253;; will be called like
254;;
255;; (<printer> object port)
256;;
257;; It should print OBJECT to PORT.
258
259(define (inherit-print-state old-port new-port)
260 (if (get-print-state old-port)
261 (port-with-print-state new-port (get-print-state old-port))
262 new-port))
263
264;; 0: type-name, 1: fields
265(define record-type-vtable
266 (make-vtable-vtable "prpr" 0
267 (lambda (s p)
268 (cond ((eq? s record-type-vtable)
269 (display "#<record-type-vtable>" p))
270 (else
271 (display "#<record-type " p)
272 (display (record-type-name s) p)
273 (display ">" p))))))
274
275(define (record-type? obj)
276 (and (struct? obj) (eq? record-type-vtable (struct-vtable obj))))
277
278(define (make-record-type type-name fields . opt)
279 (let ((printer-fn (and (pair? opt) (car opt))))
280 (let ((struct (make-struct record-type-vtable 0
281 (make-struct-layout
282 (apply string-append
283 (map (lambda (f) "pw") fields)))
284 (or printer-fn
285 (lambda (s p)
286 (display "#<" p)
287 (display type-name p)
288 (let loop ((fields fields)
289 (off 0))
290 (cond
291 ((not (null? fields))
292 (display " " p)
293 (display (car fields) p)
294 (display ": " p)
295 (display (struct-ref s off) p)
296 (loop (cdr fields) (+ 1 off)))))
297 (display ">" p)))
298 type-name
299 (copy-tree fields))))
300 ;; Temporary solution: Associate a name to the record type descriptor
301 ;; so that the object system can create a wrapper class for it.
302 (set-struct-vtable-name! struct (if (symbol? type-name)
303 type-name
304 (string->symbol type-name)))
305 struct)))
306
307(define (record-type-name obj)
308 (if (record-type? obj)
309 (struct-ref obj vtable-offset-user)
310 (error 'not-a-record-type obj)))
311
312(define (record-type-fields obj)
313 (if (record-type? obj)
314 (struct-ref obj (+ 1 vtable-offset-user))
315 (error 'not-a-record-type obj)))
316
317(define (record-constructor rtd . opt)
318 (let ((field-names (if (pair? opt) (car opt) (record-type-fields rtd))))
319 (local-eval `(lambda ,field-names
320 (make-struct ',rtd 0 ,@(map (lambda (f)
321 (if (memq f field-names)
322 f
323 #f))
324 (record-type-fields rtd))))
325 the-root-environment)))
326
327(define (record-predicate rtd)
328 (lambda (obj) (and (struct? obj) (eq? rtd (struct-vtable obj)))))
329
330(define (record-accessor rtd field-name)
331 (let* ((pos (list-index (record-type-fields rtd) field-name)))
332 (if (not pos)
333 (error 'no-such-field field-name))
334 (local-eval `(lambda (obj)
335 (and (eq? ',rtd (record-type-descriptor obj))
336 (struct-ref obj ,pos)))
337 the-root-environment)))
338
339(define (record-modifier rtd field-name)
340 (let* ((pos (list-index (record-type-fields rtd) field-name)))
341 (if (not pos)
342 (error 'no-such-field field-name))
343 (local-eval `(lambda (obj val)
344 (and (eq? ',rtd (record-type-descriptor obj))
345 (struct-set! obj ,pos val)))
346 the-root-environment)))
347
348
349(define (record? obj)
350 (and (struct? obj) (record-type? (struct-vtable obj))))
351
352(define (record-type-descriptor obj)
353 (if (struct? obj)
354 (struct-vtable obj)
355 (error 'not-a-record obj)))
356
357(provide 'record)
358
359\f
360;;; {Booleans}
361;;;
362
363(define (->bool x) (not (not x)))
364
365\f
366;;; {Symbols}
367;;;
368
369(define (symbol-append . args)
370 (string->symbol (apply string-append (map symbol->string args))))
371
372(define (list->symbol . args)
373 (string->symbol (apply list->string args)))
374
375(define (symbol . args)
376 (string->symbol (apply string args)))
377
378\f
379;;; {Lists}
380;;;
381
382(define (list-index l k)
383 (let loop ((n 0)
384 (l l))
385 (and (not (null? l))
386 (if (eq? (car l) k)
387 n
388 (loop (+ n 1) (cdr l))))))
389
390(define (make-list n . init)
391 (if (pair? init) (set! init (car init)))
392 (let loop ((answer '())
393 (n n))
394 (if (<= n 0)
395 answer
396 (loop (cons init answer) (- n 1)))))
397
398\f
399;;; {and-map and or-map}
400;;;
401;;; (and-map fn lst) is like (and (fn (car lst)) (fn (cadr lst)) (fn...) ...)
402;;; (or-map fn lst) is like (or (fn (car lst)) (fn (cadr lst)) (fn...) ...)
403;;;
404
405;; and-map f l
406;;
407;; Apply f to successive elements of l until exhaustion or f returns #f.
408;; If returning early, return #f. Otherwise, return the last value returned
409;; by f. If f has never been called because l is empty, return #t.
410;;
411(define (and-map f lst)
412 (let loop ((result #t)
413 (l lst))
414 (and result
415 (or (and (null? l)
416 result)
417 (loop (f (car l)) (cdr l))))))
418
419;; or-map f l
420;;
421;; Apply f to successive elements of l until exhaustion or while f returns #f.
422;; If returning early, return the return value of f.
423;;
424(define (or-map f lst)
425 (let loop ((result #f)
426 (l lst))
427 (or result
428 (and (not (null? l))
429 (loop (f (car l)) (cdr l))))))
430
431\f
432
433(if (provided? 'posix)
434 (primitive-load-path "ice-9/posix.scm"))
435
436(if (provided? 'socket)
437 (primitive-load-path "ice-9/networking.scm"))
438
439(define file-exists?
440 (if (provided? 'posix)
441 (lambda (str)
442 (access? str F_OK))
443 (lambda (str)
444 (let ((port (catch 'system-error (lambda () (open-file str OPEN_READ))
445 (lambda args #f))))
446 (if port (begin (close-port port) #t)
447 #f)))))
448
449(define file-is-directory?
450 (if (provided? 'posix)
451 (lambda (str)
452 (eq? (stat:type (stat str)) 'directory))
453 (lambda (str)
454 (let ((port (catch 'system-error
455 (lambda () (open-file (string-append str "/.")
456 OPEN_READ))
457 (lambda args #f))))
458 (if port (begin (close-port port) #t)
459 #f)))))
460
461(define (has-suffix? str suffix)
462 (let ((sufl (string-length suffix))
463 (sl (string-length str)))
464 (and (> sl sufl)
465 (string=? (substring str (- sl sufl) sl) suffix))))
466
467(define (system-error-errno args)
468 (if (eq? (car args) 'system-error)
469 (car (list-ref args 4))
470 #f))
471
472\f
473;;; {Error Handling}
474;;;
475
476(define (error . args)
477 (save-stack)
478 (if (null? args)
479 (scm-error 'misc-error #f "?" #f #f)
480 (let loop ((msg "~A")
481 (rest (cdr args)))
482 (if (not (null? rest))
483 (loop (string-append msg " ~S")
484 (cdr rest))
485 (scm-error 'misc-error #f msg args #f)))))
486
487;; bad-throw is the hook that is called upon a throw to a an unhandled
488;; key (unless the throw has four arguments, in which case
489;; it's usually interpreted as an error throw.)
490;; If the key has a default handler (a throw-handler-default property),
491;; it is applied to the throw.
492;;
493(define (bad-throw key . args)
494 (let ((default (symbol-property key 'throw-handler-default)))
495 (or (and default (apply default key args))
496 (apply error "unhandled-exception:" key args))))
497
498\f
499
500(define (tm:sec obj) (vector-ref obj 0))
501(define (tm:min obj) (vector-ref obj 1))
502(define (tm:hour obj) (vector-ref obj 2))
503(define (tm:mday obj) (vector-ref obj 3))
504(define (tm:mon obj) (vector-ref obj 4))
505(define (tm:year obj) (vector-ref obj 5))
506(define (tm:wday obj) (vector-ref obj 6))
507(define (tm:yday obj) (vector-ref obj 7))
508(define (tm:isdst obj) (vector-ref obj 8))
509(define (tm:gmtoff obj) (vector-ref obj 9))
510(define (tm:zone obj) (vector-ref obj 10))
511
512(define (set-tm:sec obj val) (vector-set! obj 0 val))
513(define (set-tm:min obj val) (vector-set! obj 1 val))
514(define (set-tm:hour obj val) (vector-set! obj 2 val))
515(define (set-tm:mday obj val) (vector-set! obj 3 val))
516(define (set-tm:mon obj val) (vector-set! obj 4 val))
517(define (set-tm:year obj val) (vector-set! obj 5 val))
518(define (set-tm:wday obj val) (vector-set! obj 6 val))
519(define (set-tm:yday obj val) (vector-set! obj 7 val))
520(define (set-tm:isdst obj val) (vector-set! obj 8 val))
521(define (set-tm:gmtoff obj val) (vector-set! obj 9 val))
522(define (set-tm:zone obj val) (vector-set! obj 10 val))
523
524(define (tms:clock obj) (vector-ref obj 0))
525(define (tms:utime obj) (vector-ref obj 1))
526(define (tms:stime obj) (vector-ref obj 2))
527(define (tms:cutime obj) (vector-ref obj 3))
528(define (tms:cstime obj) (vector-ref obj 4))
529
530(define file-position ftell)
531(define (file-set-position port offset . whence)
532 (let ((whence (if (eq? whence '()) SEEK_SET (car whence))))
533 (seek port offset whence)))
534
535(define (move->fdes fd/port fd)
536 (cond ((integer? fd/port)
537 (dup->fdes fd/port fd)
538 (close fd/port)
539 fd)
540 (else
541 (primitive-move->fdes fd/port fd)
542 (set-port-revealed! fd/port 1)
543 fd/port)))
544
545(define (release-port-handle port)
546 (let ((revealed (port-revealed port)))
547 (if (> revealed 0)
548 (set-port-revealed! port (- revealed 1)))))
549
550(define (dup->port port/fd mode . maybe-fd)
551 (let ((port (fdopen (apply dup->fdes port/fd maybe-fd)
552 mode)))
553 (if (pair? maybe-fd)
554 (set-port-revealed! port 1))
555 port))
556
557(define (dup->inport port/fd . maybe-fd)
558 (apply dup->port port/fd "r" maybe-fd))
559
560(define (dup->outport port/fd . maybe-fd)
561 (apply dup->port port/fd "w" maybe-fd))
562
563(define (dup port/fd . maybe-fd)
564 (if (integer? port/fd)
565 (apply dup->fdes port/fd maybe-fd)
566 (apply dup->port port/fd (port-mode port/fd) maybe-fd)))
567
568(define (duplicate-port port modes)
569 (dup->port port modes))
570
571(define (fdes->inport fdes)
572 (let loop ((rest-ports (fdes->ports fdes)))
573 (cond ((null? rest-ports)
574 (let ((result (fdopen fdes "r")))
575 (set-port-revealed! result 1)
576 result))
577 ((input-port? (car rest-ports))
578 (set-port-revealed! (car rest-ports)
579 (+ (port-revealed (car rest-ports)) 1))
580 (car rest-ports))
581 (else
582 (loop (cdr rest-ports))))))
583
584(define (fdes->outport fdes)
585 (let loop ((rest-ports (fdes->ports fdes)))
586 (cond ((null? rest-ports)
587 (let ((result (fdopen fdes "w")))
588 (set-port-revealed! result 1)
589 result))
590 ((output-port? (car rest-ports))
591 (set-port-revealed! (car rest-ports)
592 (+ (port-revealed (car rest-ports)) 1))
593 (car rest-ports))
594 (else
595 (loop (cdr rest-ports))))))
596
597(define (port->fdes port)
598 (set-port-revealed! port (+ (port-revealed port) 1))
599 (fileno port))
600
601(define (setenv name value)
602 (if value
603 (putenv (string-append name "=" value))
604 (putenv name)))
605
606(define (unsetenv name)
607 "Remove the entry for NAME from the environment."
608 (putenv name))
609
610\f
611;;; {Load Paths}
612;;;
613
614;;; Here for backward compatability
615;;
616(define scheme-file-suffix (lambda () ".scm"))
617
618(define (in-vicinity vicinity file)
619 (let ((tail (let ((len (string-length vicinity)))
620 (if (zero? len)
621 #f
622 (string-ref vicinity (- len 1))))))
623 (string-append vicinity
624 (if (or (not tail)
625 (eq? tail #\/))
626 ""
627 "/")
628 file)))
629
630\f
631;;; {Help for scm_shell}
632;;; The argument-processing code used by Guile-based shells generates
633;;; Scheme code based on the argument list. This page contains help
634;;; functions for the code it generates.
635
636(define (command-line) (program-arguments))
637
638;; This is mostly for the internal use of the code generated by
639;; scm_compile_shell_switches.
640
641(define (turn-on-debugging)
642 (debug-enable 'debug)
643 (debug-enable 'backtrace)
644 (read-enable 'positions))
645
646(define (load-user-init)
647 (let* ((home (or (getenv "HOME")
648 (false-if-exception (passwd:dir (getpwuid (getuid))))
649 "/")) ;; fallback for cygwin etc.
650 (init-file (in-vicinity home ".guile")))
651 (if (file-exists? init-file)
652 (primitive-load init-file))))
653
654\f
655;;; {Loading by paths}
656
657;;; Load a Scheme source file named NAME, searching for it in the
658;;; directories listed in %load-path, and applying each of the file
659;;; name extensions listed in %load-extensions.
660(define (load-from-path name)
661 (start-stack 'load-stack
662 (primitive-load-path name)))
663
664
665\f
666;;; {Transcendental Functions}
667;;;
668;;; Derived from "Transcen.scm", Complex trancendental functions for SCM.
669;;; Written by Jerry D. Hedden, (C) FSF.
670;;; See the file `COPYING' for terms applying to this program.
671;;;
672
673(define (exp z)
674 (if (real? z) ($exp z)
675 (make-polar ($exp (real-part z)) (imag-part z))))
676
677(define (log z)
678 (if (and (real? z) (>= z 0))
679 ($log z)
680 (make-rectangular ($log (magnitude z)) (angle z))))
681
682(define (sqrt z)
683 (if (real? z)
684 (if (negative? z) (make-rectangular 0 ($sqrt (- z)))
685 ($sqrt z))
686 (make-polar ($sqrt (magnitude z)) (/ (angle z) 2))))
687
688(define expt
689 (let ((integer-expt integer-expt))
690 (lambda (z1 z2)
691 (cond ((integer? z2)
692 (if (negative? z2)
693 (/ 1 (integer-expt z1 (- z2)))
694 (integer-expt z1 z2)))
695 ((and (real? z2) (real? z1) (>= z1 0))
696 ($expt z1 z2))
697 (else
698 (exp (* z2 (log z1))))))))
699
700(define (sinh z)
701 (if (real? z) ($sinh z)
702 (let ((x (real-part z)) (y (imag-part z)))
703 (make-rectangular (* ($sinh x) ($cos y))
704 (* ($cosh x) ($sin y))))))
705(define (cosh z)
706 (if (real? z) ($cosh z)
707 (let ((x (real-part z)) (y (imag-part z)))
708 (make-rectangular (* ($cosh x) ($cos y))
709 (* ($sinh x) ($sin y))))))
710(define (tanh z)
711 (if (real? z) ($tanh z)
712 (let* ((x (* 2 (real-part z)))
713 (y (* 2 (imag-part z)))
714 (w (+ ($cosh x) ($cos y))))
715 (make-rectangular (/ ($sinh x) w) (/ ($sin y) w)))))
716
717(define (asinh z)
718 (if (real? z) ($asinh z)
719 (log (+ z (sqrt (+ (* z z) 1))))))
720
721(define (acosh z)
722 (if (and (real? z) (>= z 1))
723 ($acosh z)
724 (log (+ z (sqrt (- (* z z) 1))))))
725
726(define (atanh z)
727 (if (and (real? z) (> z -1) (< z 1))
728 ($atanh z)
729 (/ (log (/ (+ 1 z) (- 1 z))) 2)))
730
731(define (sin z)
732 (if (real? z) ($sin z)
733 (let ((x (real-part z)) (y (imag-part z)))
734 (make-rectangular (* ($sin x) ($cosh y))
735 (* ($cos x) ($sinh y))))))
736(define (cos z)
737 (if (real? z) ($cos z)
738 (let ((x (real-part z)) (y (imag-part z)))
739 (make-rectangular (* ($cos x) ($cosh y))
740 (- (* ($sin x) ($sinh y)))))))
741(define (tan z)
742 (if (real? z) ($tan z)
743 (let* ((x (* 2 (real-part z)))
744 (y (* 2 (imag-part z)))
745 (w (+ ($cos x) ($cosh y))))
746 (make-rectangular (/ ($sin x) w) (/ ($sinh y) w)))))
747
748(define (asin z)
749 (if (and (real? z) (>= z -1) (<= z 1))
750 ($asin z)
751 (* -i (asinh (* +i z)))))
752
753(define (acos z)
754 (if (and (real? z) (>= z -1) (<= z 1))
755 ($acos z)
756 (+ (/ (angle -1) 2) (* +i (asinh (* +i z))))))
757
758(define (atan z . y)
759 (if (null? y)
760 (if (real? z) ($atan z)
761 (/ (log (/ (- +i z) (+ +i z))) +2i))
762 ($atan2 z (car y))))
763
764(define (log10 arg)
765 (/ (log arg) (log 10)))
766
767\f
768
769;;; {Reader Extensions}
770;;;
771
772;;; Reader code for various "#c" forms.
773;;;
774
775(read-hash-extend #\' (lambda (c port)
776 (read port)))
777
778(define read-eval? (make-fluid))
779(fluid-set! read-eval? #f)
780(read-hash-extend #\.
781 (lambda (c port)
782 (if (fluid-ref read-eval?)
783 (eval (read port) (interaction-environment))
784 (error
785 "#. read expansion found and read-eval? is #f."))))
786
787\f
788;;; {Command Line Options}
789;;;
790
791(define (get-option argv kw-opts kw-args return)
792 (cond
793 ((null? argv)
794 (return #f #f argv))
795
796 ((or (not (eq? #\- (string-ref (car argv) 0)))
797 (eq? (string-length (car argv)) 1))
798 (return 'normal-arg (car argv) (cdr argv)))
799
800 ((eq? #\- (string-ref (car argv) 1))
801 (let* ((kw-arg-pos (or (string-index (car argv) #\=)
802 (string-length (car argv))))
803 (kw (symbol->keyword (substring (car argv) 2 kw-arg-pos)))
804 (kw-opt? (member kw kw-opts))
805 (kw-arg? (member kw kw-args))
806 (arg (or (and (not (eq? kw-arg-pos (string-length (car argv))))
807 (substring (car argv)
808 (+ kw-arg-pos 1)
809 (string-length (car argv))))
810 (and kw-arg?
811 (begin (set! argv (cdr argv)) (car argv))))))
812 (if (or kw-opt? kw-arg?)
813 (return kw arg (cdr argv))
814 (return 'usage-error kw (cdr argv)))))
815
816 (else
817 (let* ((char (substring (car argv) 1 2))
818 (kw (symbol->keyword char)))
819 (cond
820
821 ((member kw kw-opts)
822 (let* ((rest-car (substring (car argv) 2 (string-length (car argv))))
823 (new-argv (if (= 0 (string-length rest-car))
824 (cdr argv)
825 (cons (string-append "-" rest-car) (cdr argv)))))
826 (return kw #f new-argv)))
827
828 ((member kw kw-args)
829 (let* ((rest-car (substring (car argv) 2 (string-length (car argv))))
830 (arg (if (= 0 (string-length rest-car))
831 (cadr argv)
832 rest-car))
833 (new-argv (if (= 0 (string-length rest-car))
834 (cddr argv)
835 (cdr argv))))
836 (return kw arg new-argv)))
837
838 (else (return 'usage-error kw argv)))))))
839
840(define (for-next-option proc argv kw-opts kw-args)
841 (let loop ((argv argv))
842 (get-option argv kw-opts kw-args
843 (lambda (opt opt-arg argv)
844 (and opt (proc opt opt-arg argv loop))))))
845
846(define (display-usage-report kw-desc)
847 (for-each
848 (lambda (kw)
849 (or (eq? (car kw) #t)
850 (eq? (car kw) 'else)
851 (let* ((opt-desc kw)
852 (help (cadr opt-desc))
853 (opts (car opt-desc))
854 (opts-proper (if (string? (car opts)) (cdr opts) opts))
855 (arg-name (if (string? (car opts))
856 (string-append "<" (car opts) ">")
857 ""))
858 (left-part (string-append
859 (with-output-to-string
860 (lambda ()
861 (map (lambda (x) (display (keyword-symbol x)) (display " "))
862 opts-proper)))
863 arg-name))
864 (middle-part (if (and (< (string-length left-part) 30)
865 (< (string-length help) 40))
866 (make-string (- 30 (string-length left-part)) #\ )
867 "\n\t")))
868 (display left-part)
869 (display middle-part)
870 (display help)
871 (newline))))
872 kw-desc))
873
874
875
876(define (transform-usage-lambda cases)
877 (let* ((raw-usage (delq! 'else (map car cases)))
878 (usage-sans-specials (map (lambda (x)
879 (or (and (not (list? x)) x)
880 (and (symbol? (car x)) #t)
881 (and (boolean? (car x)) #t)
882 x))
883 raw-usage))
884 (usage-desc (delq! #t usage-sans-specials))
885 (kw-desc (map car usage-desc))
886 (kw-opts (apply append (map (lambda (x) (and (not (string? (car x))) x)) kw-desc)))
887 (kw-args (apply append (map (lambda (x) (and (string? (car x)) (cdr x))) kw-desc)))
888 (transmogrified-cases (map (lambda (case)
889 (cons (let ((opts (car case)))
890 (if (or (boolean? opts) (eq? 'else opts))
891 opts
892 (cond
893 ((symbol? (car opts)) opts)
894 ((boolean? (car opts)) opts)
895 ((string? (caar opts)) (cdar opts))
896 (else (car opts)))))
897 (cdr case)))
898 cases)))
899 `(let ((%display-usage (lambda () (display-usage-report ',usage-desc))))
900 (lambda (%argv)
901 (let %next-arg ((%argv %argv))
902 (get-option %argv
903 ',kw-opts
904 ',kw-args
905 (lambda (%opt %arg %new-argv)
906 (case %opt
907 ,@ transmogrified-cases))))))))
908
909
910\f
911
912;;; {Low Level Modules}
913;;;
914;;; These are the low level data structures for modules.
915;;;
916;;; !!! warning: The interface to lazy binder procedures is going
917;;; to be changed in an incompatible way to permit all the basic
918;;; module ops to be virtualized.
919;;;
920;;; (make-module size use-list lazy-binding-proc) => module
921;;; module-{obarray,uses,binder}[|-set!]
922;;; (module? obj) => [#t|#f]
923;;; (module-locally-bound? module symbol) => [#t|#f]
924;;; (module-bound? module symbol) => [#t|#f]
925;;; (module-symbol-locally-interned? module symbol) => [#t|#f]
926;;; (module-symbol-interned? module symbol) => [#t|#f]
927;;; (module-local-variable module symbol) => [#<variable ...> | #f]
928;;; (module-variable module symbol) => [#<variable ...> | #f]
929;;; (module-symbol-binding module symbol opt-value)
930;;; => [ <obj> | opt-value | an error occurs ]
931;;; (module-make-local-var! module symbol) => #<variable...>
932;;; (module-add! module symbol var) => unspecified
933;;; (module-remove! module symbol) => unspecified
934;;; (module-for-each proc module) => unspecified
935;;; (make-scm-module) => module ; a lazy copy of the symhash module
936;;; (set-current-module module) => unspecified
937;;; (current-module) => #<module...>
938;;;
939;;;
940
941\f
942;;; {Printing Modules}
943;; This is how modules are printed. You can re-define it.
944;; (Redefining is actually more complicated than simply redefining
945;; %print-module because that would only change the binding and not
946;; the value stored in the vtable that determines how record are
947;; printed. Sigh.)
948
949(define (%print-module mod port) ; unused args: depth length style table)
950 (display "#<" port)
951 (display (or (module-kind mod) "module") port)
952 (let ((name (module-name mod)))
953 (if name
954 (begin
955 (display " " port)
956 (display name port))))
957 (display " " port)
958 (display (number->string (object-address mod) 16) port)
959 (display ">" port))
960
961;; module-type
962;;
963;; A module is characterized by an obarray in which local symbols
964;; are interned, a list of modules, "uses", from which non-local
965;; bindings can be inherited, and an optional lazy-binder which
966;; is a (CLOSURE module symbol) which, as a last resort, can provide
967;; bindings that would otherwise not be found locally in the module.
968;;
969;; NOTE: If you change here, you also need to change libguile/modules.h.
970;;
971(define module-type
972 (make-record-type 'module
973 '(obarray uses binder eval-closure transformer name kind
974 observers weak-observers observer-id)
975 %print-module))
976
977;; make-module &opt size uses binder
978;;
979;; Create a new module, perhaps with a particular size of obarray,
980;; initial uses list, or binding procedure.
981;;
982(define make-module
983 (lambda args
984
985 (define (parse-arg index default)
986 (if (> (length args) index)
987 (list-ref args index)
988 default))
989
990 (if (> (length args) 3)
991 (error "Too many args to make-module." args))
992
993 (let ((size (parse-arg 0 31))
994 (uses (parse-arg 1 '()))
995 (binder (parse-arg 2 #f)))
996
997 (if (not (integer? size))
998 (error "Illegal size to make-module." size))
999 (if (not (and (list? uses)
1000 (and-map module? uses)))
1001 (error "Incorrect use list." uses))
1002 (if (and binder (not (procedure? binder)))
1003 (error
1004 "Lazy-binder expected to be a procedure or #f." binder))
1005
1006 (let ((module (module-constructor (and (not (zero? size))
1007 (make-hash-table size))
1008 uses binder #f #f #f #f
1009 '()
1010 (make-weak-value-hash-table 31)
1011 0)))
1012
1013 ;; We can't pass this as an argument to module-constructor,
1014 ;; because we need it to close over a pointer to the module
1015 ;; itself.
1016 (set-module-eval-closure! module (standard-eval-closure module))
1017
1018 module))))
1019
1020(define module-constructor (record-constructor module-type))
1021(define module-obarray (record-accessor module-type 'obarray))
1022(define set-module-obarray! (record-modifier module-type 'obarray))
1023(define module-uses (record-accessor module-type 'uses))
1024(define set-module-uses! (record-modifier module-type 'uses))
1025(define module-binder (record-accessor module-type 'binder))
1026(define set-module-binder! (record-modifier module-type 'binder))
1027
1028;; NOTE: This binding is used in libguile/modules.c.
1029(define module-eval-closure (record-accessor module-type 'eval-closure))
1030
1031(define module-transformer (record-accessor module-type 'transformer))
1032(define set-module-transformer! (record-modifier module-type 'transformer))
1033(define module-name (record-accessor module-type 'name))
1034(define set-module-name! (record-modifier module-type 'name))
1035(define module-kind (record-accessor module-type 'kind))
1036(define set-module-kind! (record-modifier module-type 'kind))
1037(define module-observers (record-accessor module-type 'observers))
1038(define set-module-observers! (record-modifier module-type 'observers))
1039(define module-weak-observers (record-accessor module-type 'weak-observers))
1040(define module-observer-id (record-accessor module-type 'observer-id))
1041(define set-module-observer-id! (record-modifier module-type 'observer-id))
1042(define module? (record-predicate module-type))
1043
1044(define set-module-eval-closure!
1045 (let ((setter (record-modifier module-type 'eval-closure)))
1046 (lambda (module closure)
1047 (setter module closure)
1048 ;; Make it possible to lookup the module from the environment.
1049 ;; This implementation is correct since an eval closure can belong
1050 ;; to maximally one module.
1051 (set-procedure-property! closure 'module module))))
1052
1053\f
1054;;; {Observer protocol}
1055;;;
1056
1057(define (module-observe module proc)
1058 (set-module-observers! module (cons proc (module-observers module)))
1059 (cons module proc))
1060
1061(define (module-observe-weak module proc)
1062 (let ((id (module-observer-id module)))
1063 (hash-set! (module-weak-observers module) id proc)
1064 (set-module-observer-id! module (+ 1 id))
1065 (cons module id)))
1066
1067(define (module-unobserve token)
1068 (let ((module (car token))
1069 (id (cdr token)))
1070 (if (integer? id)
1071 (hash-remove! (module-weak-observers module) id)
1072 (set-module-observers! module (delq1! id (module-observers module)))))
1073 *unspecified*)
1074
1075(define (module-modified m)
1076 (for-each (lambda (proc) (proc m)) (module-observers m))
1077 (hash-fold (lambda (id proc res) (proc m)) #f (module-weak-observers m)))
1078
1079\f
1080;;; {Module Searching in General}
1081;;;
1082;;; We sometimes want to look for properties of a symbol
1083;;; just within the obarray of one module. If the property
1084;;; holds, then it is said to hold ``locally'' as in, ``The symbol
1085;;; DISPLAY is locally rebound in the module `safe-guile'.''
1086;;;
1087;;;
1088;;; Other times, we want to test for a symbol property in the obarray
1089;;; of M and, if it is not found there, try each of the modules in the
1090;;; uses list of M. This is the normal way of testing for some
1091;;; property, so we state these properties without qualification as
1092;;; in: ``The symbol 'fnord is interned in module M because it is
1093;;; interned locally in module M2 which is a member of the uses list
1094;;; of M.''
1095;;;
1096
1097;; module-search fn m
1098;;
1099;; return the first non-#f result of FN applied to M and then to
1100;; the modules in the uses of m, and so on recursively. If all applications
1101;; return #f, then so does this function.
1102;;
1103(define (module-search fn m v)
1104 (define (loop pos)
1105 (and (pair? pos)
1106 (or (module-search fn (car pos) v)
1107 (loop (cdr pos)))))
1108 (or (fn m v)
1109 (loop (module-uses m))))
1110
1111
1112;;; {Is a symbol bound in a module?}
1113;;;
1114;;; Symbol S in Module M is bound if S is interned in M and if the binding
1115;;; of S in M has been set to some well-defined value.
1116;;;
1117
1118;; module-locally-bound? module symbol
1119;;
1120;; Is a symbol bound (interned and defined) locally in a given module?
1121;;
1122(define (module-locally-bound? m v)
1123 (let ((var (module-local-variable m v)))
1124 (and var
1125 (variable-bound? var))))
1126
1127;; module-bound? module symbol
1128;;
1129;; Is a symbol bound (interned and defined) anywhere in a given module
1130;; or its uses?
1131;;
1132(define (module-bound? m v)
1133 (module-search module-locally-bound? m v))
1134
1135;;; {Is a symbol interned in a module?}
1136;;;
1137;;; Symbol S in Module M is interned if S occurs in
1138;;; of S in M has been set to some well-defined value.
1139;;;
1140;;; It is possible to intern a symbol in a module without providing
1141;;; an initial binding for the corresponding variable. This is done
1142;;; with:
1143;;; (module-add! module symbol (make-undefined-variable))
1144;;;
1145;;; In that case, the symbol is interned in the module, but not
1146;;; bound there. The unbound symbol shadows any binding for that
1147;;; symbol that might otherwise be inherited from a member of the uses list.
1148;;;
1149
1150(define (module-obarray-get-handle ob key)
1151 ((if (symbol? key) hashq-get-handle hash-get-handle) ob key))
1152
1153(define (module-obarray-ref ob key)
1154 ((if (symbol? key) hashq-ref hash-ref) ob key))
1155
1156(define (module-obarray-set! ob key val)
1157 ((if (symbol? key) hashq-set! hash-set!) ob key val))
1158
1159(define (module-obarray-remove! ob key)
1160 ((if (symbol? key) hashq-remove! hash-remove!) ob key))
1161
1162;; module-symbol-locally-interned? module symbol
1163;;
1164;; is a symbol interned (not neccessarily defined) locally in a given module
1165;; or its uses? Interned symbols shadow inherited bindings even if
1166;; they are not themselves bound to a defined value.
1167;;
1168(define (module-symbol-locally-interned? m v)
1169 (not (not (module-obarray-get-handle (module-obarray m) v))))
1170
1171;; module-symbol-interned? module symbol
1172;;
1173;; is a symbol interned (not neccessarily defined) anywhere in a given module
1174;; or its uses? Interned symbols shadow inherited bindings even if
1175;; they are not themselves bound to a defined value.
1176;;
1177(define (module-symbol-interned? m v)
1178 (module-search module-symbol-locally-interned? m v))
1179
1180
1181;;; {Mapping modules x symbols --> variables}
1182;;;
1183
1184;; module-local-variable module symbol
1185;; return the local variable associated with a MODULE and SYMBOL.
1186;;
1187;;; This function is very important. It is the only function that can
1188;;; return a variable from a module other than the mutators that store
1189;;; new variables in modules. Therefore, this function is the location
1190;;; of the "lazy binder" hack.
1191;;;
1192;;; If symbol is defined in MODULE, and if the definition binds symbol
1193;;; to a variable, return that variable object.
1194;;;
1195;;; If the symbols is not found at first, but the module has a lazy binder,
1196;;; then try the binder.
1197;;;
1198;;; If the symbol is not found at all, return #f.
1199;;;
1200(define (module-local-variable m v)
1201; (caddr
1202; (list m v
1203 (let ((b (module-obarray-ref (module-obarray m) v)))
1204 (or (and (variable? b) b)
1205 (and (module-binder m)
1206 ((module-binder m) m v #f)))))
1207;))
1208
1209;; module-variable module symbol
1210;;
1211;; like module-local-variable, except search the uses in the
1212;; case V is not found in M.
1213;;
1214;; NOTE: This function is superseded with C code (see modules.c)
1215;;; when using the standard eval closure.
1216;;
1217(define (module-variable m v)
1218 (module-search module-local-variable m v))
1219
1220
1221;;; {Mapping modules x symbols --> bindings}
1222;;;
1223;;; These are similar to the mapping to variables, except that the
1224;;; variable is dereferenced.
1225;;;
1226
1227;; module-symbol-binding module symbol opt-value
1228;;
1229;; return the binding of a variable specified by name within
1230;; a given module, signalling an error if the variable is unbound.
1231;; If the OPT-VALUE is passed, then instead of signalling an error,
1232;; return OPT-VALUE.
1233;;
1234(define (module-symbol-local-binding m v . opt-val)
1235 (let ((var (module-local-variable m v)))
1236 (if (and var (variable-bound? var))
1237 (variable-ref var)
1238 (if (not (null? opt-val))
1239 (car opt-val)
1240 (error "Locally unbound variable." v)))))
1241
1242;; module-symbol-binding module symbol opt-value
1243;;
1244;; return the binding of a variable specified by name within
1245;; a given module, signalling an error if the variable is unbound.
1246;; If the OPT-VALUE is passed, then instead of signalling an error,
1247;; return OPT-VALUE.
1248;;
1249(define (module-symbol-binding m v . opt-val)
1250 (let ((var (module-variable m v)))
1251 (if (and var (variable-bound? var))
1252 (variable-ref var)
1253 (if (not (null? opt-val))
1254 (car opt-val)
1255 (error "Unbound variable." v)))))
1256
1257
1258\f
1259;;; {Adding Variables to Modules}
1260;;;
1261;;;
1262
1263
1264;; module-make-local-var! module symbol
1265;;
1266;; ensure a variable for V in the local namespace of M.
1267;; If no variable was already there, then create a new and uninitialzied
1268;; variable.
1269;;
1270(define (module-make-local-var! m v)
1271 (or (let ((b (module-obarray-ref (module-obarray m) v)))
1272 (and (variable? b)
1273 (begin
1274 (module-modified m)
1275 b)))
1276 (and (module-binder m)
1277 ((module-binder m) m v #t))
1278 (begin
1279 (let ((answer (make-undefined-variable)))
1280 (module-obarray-set! (module-obarray m) v answer)
1281 (module-modified m)
1282 answer))))
1283
1284;; module-ensure-local-variable! module symbol
1285;;
1286;; Ensure that there is a local variable in MODULE for SYMBOL. If
1287;; there is no binding for SYMBOL, create a new uninitialized
1288;; variable. Return the local variable.
1289;;
1290(define (module-ensure-local-variable! module symbol)
1291 (or (module-local-variable module symbol)
1292 (let ((var (make-undefined-variable)))
1293 (module-add! module symbol var)
1294 var)))
1295
1296;; module-add! module symbol var
1297;;
1298;; ensure a particular variable for V in the local namespace of M.
1299;;
1300(define (module-add! m v var)
1301 (if (not (variable? var))
1302 (error "Bad variable to module-add!" var))
1303 (module-obarray-set! (module-obarray m) v var)
1304 (module-modified m))
1305
1306;; module-remove!
1307;;
1308;; make sure that a symbol is undefined in the local namespace of M.
1309;;
1310(define (module-remove! m v)
1311 (module-obarray-remove! (module-obarray m) v)
1312 (module-modified m))
1313
1314(define (module-clear! m)
1315 (hash-clear! (module-obarray m))
1316 (module-modified m))
1317
1318;; MODULE-FOR-EACH -- exported
1319;;
1320;; Call PROC on each symbol in MODULE, with arguments of (SYMBOL VARIABLE).
1321;;
1322(define (module-for-each proc module)
1323 (hash-for-each proc (module-obarray module)))
1324
1325(define (module-map proc module)
1326 (hash-map proc (module-obarray module)))
1327
1328\f
1329
1330;;; {Low Level Bootstrapping}
1331;;;
1332
1333;; make-root-module
1334
1335;; A root module uses the pre-modules-obarray as its obarray. This
1336;; special obarray accumulates all bindings that have been established
1337;; before the module system is fully booted.
1338;;
1339;; (The obarray continues to be used by code that has been closed over
1340;; before the module system has been booted.)
1341
1342(define (make-root-module)
1343 (let ((m (make-module 0)))
1344 (set-module-obarray! m (%get-pre-modules-obarray))
1345 m))
1346
1347;; make-scm-module
1348
1349;; The root interface is a module that uses the same obarray as the
1350;; root module. It does not allow new definitions, tho.
1351
1352(define (make-scm-module)
1353 (let ((m (make-module 0)))
1354 (set-module-obarray! m (%get-pre-modules-obarray))
1355 (set-module-eval-closure! m (standard-interface-eval-closure m))
1356 m))
1357
1358
1359\f
1360;;; {Module-based Loading}
1361;;;
1362
1363(define (save-module-excursion thunk)
1364 (let ((inner-module (current-module))
1365 (outer-module #f))
1366 (dynamic-wind (lambda ()
1367 (set! outer-module (current-module))
1368 (set-current-module inner-module)
1369 (set! inner-module #f))
1370 thunk
1371 (lambda ()
1372 (set! inner-module (current-module))
1373 (set-current-module outer-module)
1374 (set! outer-module #f)))))
1375
1376(define basic-load load)
1377
1378(define (load-module filename)
1379 (save-module-excursion
1380 (lambda ()
1381 (let ((oldname (and (current-load-port)
1382 (port-filename (current-load-port)))))
1383 (basic-load (if (and oldname
1384 (> (string-length filename) 0)
1385 (not (char=? (string-ref filename 0) #\/))
1386 (not (string=? (dirname oldname) ".")))
1387 (string-append (dirname oldname) "/" filename)
1388 filename))))))
1389
1390
1391\f
1392;;; {MODULE-REF -- exported}
1393;;
1394;; Returns the value of a variable called NAME in MODULE or any of its
1395;; used modules. If there is no such variable, then if the optional third
1396;; argument DEFAULT is present, it is returned; otherwise an error is signaled.
1397;;
1398(define (module-ref module name . rest)
1399 (let ((variable (module-variable module name)))
1400 (if (and variable (variable-bound? variable))
1401 (variable-ref variable)
1402 (if (null? rest)
1403 (error "No variable named" name 'in module)
1404 (car rest) ; default value
1405 ))))
1406
1407;; MODULE-SET! -- exported
1408;;
1409;; Sets the variable called NAME in MODULE (or in a module that MODULE uses)
1410;; to VALUE; if there is no such variable, an error is signaled.
1411;;
1412(define (module-set! module name value)
1413 (let ((variable (module-variable module name)))
1414 (if variable
1415 (variable-set! variable value)
1416 (error "No variable named" name 'in module))))
1417
1418;; MODULE-DEFINE! -- exported
1419;;
1420;; Sets the variable called NAME in MODULE to VALUE; if there is no such
1421;; variable, it is added first.
1422;;
1423(define (module-define! module name value)
1424 (let ((variable (module-local-variable module name)))
1425 (if variable
1426 (begin
1427 (variable-set! variable value)
1428 (module-modified module))
1429 (let ((variable (make-variable value)))
1430 (module-add! module name variable)))))
1431
1432;; MODULE-DEFINED? -- exported
1433;;
1434;; Return #t iff NAME is defined in MODULE (or in a module that MODULE
1435;; uses)
1436;;
1437(define (module-defined? module name)
1438 (let ((variable (module-variable module name)))
1439 (and variable (variable-bound? variable))))
1440
1441;; MODULE-USE! module interface
1442;;
1443;; Add INTERFACE to the list of interfaces used by MODULE.
1444;;
1445(define (module-use! module interface)
1446 (set-module-uses! module
1447 (cons interface
1448 (filter (lambda (m)
1449 (not (equal? (module-name m)
1450 (module-name interface))))
1451 (module-uses module))))
1452 (module-modified module))
1453
1454;; MODULE-USE-INTERFACES! module interfaces
1455;;
1456;; Same as MODULE-USE! but add multiple interfaces and check for duplicates
1457;;
1458(define (module-use-interfaces! module interfaces)
1459 (let* ((duplicates-info (module-duplicates-info module))
1460 (duplicates-handlers? (or (car duplicates-info)
1461 (default-duplicate-binding-procedures)))
1462 (uses (module-uses module)))
1463 ;; remove duplicates-interface
1464 (set! uses (delq! (cdr duplicates-info) uses))
1465 ;; remove interfaces to be added
1466 (for-each (lambda (interface)
1467 (set! uses
1468 (filter (lambda (m)
1469 (not (equal? (module-name m)
1470 (module-name interface))))
1471 uses)))
1472 interfaces)
1473 ;; add interfaces to use list
1474 (set-module-uses! module uses)
1475 (for-each (lambda (interface)
1476 (and duplicates-handlers?
1477 ;; perform duplicate checking
1478 (process-duplicates module interface))
1479 (set! uses (cons interface uses))
1480 (set-module-uses! module uses))
1481 interfaces)
1482 ;; add duplicates interface
1483 (if (cdr duplicates-info)
1484 (set-module-uses! module (cons (cdr duplicates-info) uses)))
1485 (module-modified module)))
1486
1487\f
1488;;; {Recursive Namespaces}
1489;;;
1490;;;
1491;;; A hierarchical namespace emerges if we consider some module to be
1492;;; root, and variables bound to modules as nested namespaces.
1493;;;
1494;;; The routines in this file manage variable names in hierarchical namespace.
1495;;; Each variable name is a list of elements, looked up in successively nested
1496;;; modules.
1497;;;
1498;;; (nested-ref some-root-module '(foo bar baz))
1499;;; => <value of a variable named baz in the module bound to bar in
1500;;; the module bound to foo in some-root-module>
1501;;;
1502;;;
1503;;; There are:
1504;;;
1505;;; ;; a-root is a module
1506;;; ;; name is a list of symbols
1507;;;
1508;;; nested-ref a-root name
1509;;; nested-set! a-root name val
1510;;; nested-define! a-root name val
1511;;; nested-remove! a-root name
1512;;;
1513;;;
1514;;; (current-module) is a natural choice for a-root so for convenience there are
1515;;; also:
1516;;;
1517;;; local-ref name == nested-ref (current-module) name
1518;;; local-set! name val == nested-set! (current-module) name val
1519;;; local-define! name val == nested-define! (current-module) name val
1520;;; local-remove! name == nested-remove! (current-module) name
1521;;;
1522
1523
1524(define (nested-ref root names)
1525 (let loop ((cur root)
1526 (elts names))
1527 (cond
1528 ((null? elts) cur)
1529 ((not (module? cur)) #f)
1530 (else (loop (module-ref cur (car elts) #f) (cdr elts))))))
1531
1532(define (nested-set! root names val)
1533 (let loop ((cur root)
1534 (elts names))
1535 (if (null? (cdr elts))
1536 (module-set! cur (car elts) val)
1537 (loop (module-ref cur (car elts)) (cdr elts)))))
1538
1539(define (nested-define! root names val)
1540 (let loop ((cur root)
1541 (elts names))
1542 (if (null? (cdr elts))
1543 (module-define! cur (car elts) val)
1544 (loop (module-ref cur (car elts)) (cdr elts)))))
1545
1546(define (nested-remove! root names)
1547 (let loop ((cur root)
1548 (elts names))
1549 (if (null? (cdr elts))
1550 (module-remove! cur (car elts))
1551 (loop (module-ref cur (car elts)) (cdr elts)))))
1552
1553(define (local-ref names) (nested-ref (current-module) names))
1554(define (local-set! names val) (nested-set! (current-module) names val))
1555(define (local-define names val) (nested-define! (current-module) names val))
1556(define (local-remove names) (nested-remove! (current-module) names))
1557
1558
1559\f
1560;;; {The (app) module}
1561;;;
1562;;; The root of conventionally named objects not directly in the top level.
1563;;;
1564;;; (app modules)
1565;;; (app modules guile)
1566;;;
1567;;; The directory of all modules and the standard root module.
1568;;;
1569
1570(define (module-public-interface m)
1571 (module-ref m '%module-public-interface #f))
1572(define (set-module-public-interface! m i)
1573 (module-define! m '%module-public-interface i))
1574(define (module-duplicates-info m)
1575 (or (module-ref m '%module-duplicates-info #f) (cons #f #f)))
1576(define (set-module-duplicates-info! m i)
1577 (module-define! m '%module-duplicates-info i))
1578(define (set-system-module! m s)
1579 (set-procedure-property! (module-eval-closure m) 'system-module s))
1580(define the-root-module (make-root-module))
1581(define the-scm-module (make-scm-module))
1582(set-module-public-interface! the-root-module the-scm-module)
1583(set-module-duplicates-info! the-root-module (cons #f #f))
1584(set-module-name! the-root-module '(guile))
1585(set-module-name! the-scm-module '(guile))
1586(set-module-kind! the-scm-module 'interface)
1587(for-each set-system-module! (list the-root-module the-scm-module) '(#t #t))
1588
1589;; NOTE: This binding is used in libguile/modules.c.
1590;;
1591(define (make-modules-in module name)
1592 (if (null? name)
1593 module
1594 (cond
1595 ((module-ref module (car name) #f)
1596 => (lambda (m) (make-modules-in m (cdr name))))
1597 (else (let ((m (make-module 31)))
1598 (set-module-kind! m 'directory)
1599 (set-module-name! m (append (or (module-name module)
1600 '())
1601 (list (car name))))
1602 (module-define! module (car name) m)
1603 (make-modules-in m (cdr name)))))))
1604
1605(define (beautify-user-module! module)
1606 (let ((interface (module-public-interface module)))
1607 (if (or (not interface)
1608 (eq? interface module))
1609 (let ((interface (make-module 31)))
1610 (set-module-name! interface (module-name module))
1611 (set-module-kind! interface 'interface)
1612 (set-module-public-interface! module interface)
1613 (set-module-duplicates-info! module (cons #f #f)))))
1614 (if (and (not (memq the-scm-module (module-uses module)))
1615 (not (eq? module the-root-module)))
1616 (set-module-uses! module
1617 (append (module-uses module) (list the-scm-module)))))
1618
1619;; NOTE: This binding is used in libguile/modules.c.
1620;;
1621(define (resolve-module name . maybe-autoload)
1622 (let ((full-name (append '(app modules) name)))
1623 (let ((already (local-ref full-name)))
1624 (if already
1625 ;; The module already exists...
1626 (if (and (or (null? maybe-autoload) (car maybe-autoload))
1627 (not (module-public-interface already)))
1628 ;; ...but we are told to load and it doesn't contain source, so
1629 (begin
1630 (try-load-module name)
1631 already)
1632 ;; simply return it.
1633 already)
1634 (begin
1635 ;; Try to autoload it if we are told so
1636 (if (or (null? maybe-autoload) (car maybe-autoload))
1637 (try-load-module name))
1638 ;; Get/create it.
1639 (make-modules-in (current-module) full-name))))))
1640
1641;; Cheat. These bindings are needed by modules.c, but we don't want
1642;; to move their real definition here because that would be unnatural.
1643;;
1644(define try-module-autoload #f)
1645(define process-define-module #f)
1646(define process-use-modules #f)
1647(define module-export! #f)
1648
1649;; This boots the module system. All bindings needed by modules.c
1650;; must have been defined by now.
1651;;
1652(set-current-module the-root-module)
1653
1654(define app (make-module 31))
1655(local-define '(app modules) (make-module 31))
1656(local-define '(app modules guile) the-root-module)
1657
1658;; (define-special-value '(app modules new-ws) (lambda () (make-scm-module)))
1659
1660(define (try-load-module name)
1661 (try-module-autoload name))
1662
1663(define (purify-module! module)
1664 "Removes bindings in MODULE which are inherited from the (guile) module."
1665 (let ((use-list (module-uses module)))
1666 (if (and (pair? use-list)
1667 (eq? (car (last-pair use-list)) the-scm-module))
1668 (set-module-uses! module (reverse (cdr (reverse use-list)))))))
1669
1670;; Return a module that is an interface to the module designated by
1671;; NAME.
1672;;
1673;; `resolve-interface' takes four keyword arguments:
1674;;
1675;; #:select SELECTION
1676;;
1677;; SELECTION is a list of binding-specs to be imported; A binding-spec
1678;; is either a symbol or a pair of symbols (ORIG . SEEN), where ORIG
1679;; is the name in the used module and SEEN is the name in the using
1680;; module. Note that SEEN is also passed through RENAMER, below. The
1681;; default is to select all bindings. If you specify no selection but
1682;; a renamer, only the bindings that already exist in the used module
1683;; are made available in the interface. Bindings that are added later
1684;; are not picked up.
1685;;
1686;; #:hide BINDINGS
1687;;
1688;; BINDINGS is a list of bindings which should not be imported.
1689;;
1690;; #:prefix PREFIX
1691;;
1692;; PREFIX is a symbol that will be appended to each exported name.
1693;; The default is to not perform any renaming.
1694;;
1695;; #:renamer RENAMER
1696;;
1697;; RENAMER is a procedure that takes a symbol and returns its new
1698;; name. The default is not perform any renaming.
1699;;
1700;; Signal "no code for module" error if module name is not resolvable
1701;; or its public interface is not available. Signal "no binding"
1702;; error if selected binding does not exist in the used module.
1703;;
1704(define (resolve-interface name . args)
1705
1706 (define (get-keyword-arg args kw def)
1707 (cond ((memq kw args)
1708 => (lambda (kw-arg)
1709 (if (null? (cdr kw-arg))
1710 (error "keyword without value: " kw))
1711 (cadr kw-arg)))
1712 (else
1713 def)))
1714
1715 (let* ((select (get-keyword-arg args #:select #f))
1716 (hide (get-keyword-arg args #:hide '()))
1717 (renamer (or (get-keyword-arg args #:renamer #f)
1718 (let ((prefix (get-keyword-arg args #:prefix #f)))
1719 (and prefix (symbol-prefix-proc prefix)))
1720 identity))
1721 (module (resolve-module name))
1722 (public-i (and module (module-public-interface module))))
1723 (and (or (not module) (not public-i))
1724 (error "no code for module" name))
1725 (if (and (not select) (null? hide) (eq? renamer identity))
1726 public-i
1727 (let ((selection (or select (module-map (lambda (sym var) sym)
1728 public-i)))
1729 (custom-i (make-module 31)))
1730 (set-module-kind! custom-i 'custom-interface)
1731 (set-module-name! custom-i name)
1732 ;; XXX - should use a lazy binder so that changes to the
1733 ;; used module are picked up automatically.
1734 (for-each (lambda (bspec)
1735 (let* ((direct? (symbol? bspec))
1736 (orig (if direct? bspec (car bspec)))
1737 (seen (if direct? bspec (cdr bspec)))
1738 (var (or (module-local-variable public-i orig)
1739 (module-local-variable module orig)
1740 (error
1741 ;; fixme: format manually for now
1742 (simple-format
1743 #f "no binding `~A' in module ~A"
1744 orig name)))))
1745 (if (memq orig hide)
1746 (set! hide (delq! orig hide))
1747 (module-add! custom-i
1748 (renamer seen)
1749 var))))
1750 selection)
1751 ;; Check that we are not hiding bindings which don't exist
1752 (for-each (lambda (binding)
1753 (if (not (module-local-variable public-i binding))
1754 (error
1755 (simple-format
1756 #f "no binding `~A' to hide in module ~A"
1757 binding name))))
1758 hide)
1759 custom-i))))
1760
1761(define (symbol-prefix-proc prefix)
1762 (lambda (symbol)
1763 (symbol-append prefix symbol)))
1764
1765;; This function is called from "modules.c". If you change it, be
1766;; sure to update "modules.c" as well.
1767
1768(define (process-define-module args)
1769 (let* ((module-id (car args))
1770 (module (resolve-module module-id #f))
1771 (kws (cdr args))
1772 (unrecognized (lambda (arg)
1773 (error "unrecognized define-module argument" arg))))
1774 (beautify-user-module! module)
1775 (let loop ((kws kws)
1776 (reversed-interfaces '())
1777 (exports '())
1778 (re-exports '())
1779 (replacements '()))
1780 (if (null? kws)
1781 (begin
1782 (module-use-interfaces! module (reverse reversed-interfaces))
1783 (module-export! module exports)
1784 (module-replace! module replacements)
1785 (module-re-export! module re-exports))
1786 (case (car kws)
1787 ((#:use-module #:use-syntax)
1788 (or (pair? (cdr kws))
1789 (unrecognized kws))
1790 (let* ((interface-args (cadr kws))
1791 (interface (apply resolve-interface interface-args)))
1792 (and (eq? (car kws) #:use-syntax)
1793 (or (symbol? (caar interface-args))
1794 (error "invalid module name for use-syntax"
1795 (car interface-args)))
1796 (set-module-transformer!
1797 module
1798 (module-ref interface
1799 (car (last-pair (car interface-args)))
1800 #f)))
1801 (loop (cddr kws)
1802 (cons interface reversed-interfaces)
1803 exports
1804 re-exports
1805 replacements)))
1806 ((#:autoload)
1807 (or (and (pair? (cdr kws)) (pair? (cddr kws)))
1808 (unrecognized kws))
1809 (loop (cdddr kws)
1810 (cons (make-autoload-interface module
1811 (cadr kws)
1812 (caddr kws))
1813 reversed-interfaces)
1814 exports
1815 re-exports
1816 replacements))
1817 ((#:no-backtrace)
1818 (set-system-module! module #t)
1819 (loop (cdr kws) reversed-interfaces exports re-exports replacements))
1820 ((#:pure)
1821 (purify-module! module)
1822 (loop (cdr kws) reversed-interfaces exports re-exports replacements))
1823 ((#:duplicates)
1824 (if (not (pair? (cdr kws)))
1825 (unrecognized kws))
1826 (set-car! (module-duplicates-info module)
1827 (lookup-duplicates-handlers (cadr kws)))
1828 (loop (cddr kws) reversed-interfaces exports re-exports replacements))
1829 ((#:export #:export-syntax)
1830 (or (pair? (cdr kws))
1831 (unrecognized kws))
1832 (loop (cddr kws)
1833 reversed-interfaces
1834 (append (cadr kws) exports)
1835 re-exports
1836 replacements))
1837 ((#:re-export #:re-export-syntax)
1838 (or (pair? (cdr kws))
1839 (unrecognized kws))
1840 (loop (cddr kws)
1841 reversed-interfaces
1842 exports
1843 (append (cadr kws) re-exports)
1844 replacements))
1845 ((#:replace #:replace-syntax)
1846 (or (pair? (cdr kws))
1847 (unrecognized kws))
1848 (loop (cddr kws)
1849 reversed-interfaces
1850 exports
1851 re-exports
1852 (append (cadr kws) replacements)))
1853 (else
1854 (unrecognized kws)))))
1855 (run-hook module-defined-hook module)
1856 module))
1857
1858;; `module-defined-hook' is a hook that is run whenever a new module
1859;; is defined. Its members are called with one argument, the new
1860;; module.
1861(define module-defined-hook (make-hook 1))
1862
1863;;; {Autoload}
1864
1865(define (make-autoload-interface module name bindings)
1866 (let ((b (lambda (a sym definep)
1867 (and (memq sym bindings)
1868 (let ((i (module-public-interface (resolve-module name))))
1869 (if (not i)
1870 (error "missing interface for module" name))
1871 ;; Replace autoload-interface with interface
1872 (set-car! (memq a (module-uses module)) i)
1873 (module-local-variable i sym))))))
1874 (module-constructor #() '() b #f #f name 'autoload
1875 '() (make-weak-value-hash-table 31) 0)))
1876
1877;;; {Compiled module}
1878
1879(define load-compiled #f)
1880
1881\f
1882;;; {Autoloading modules}
1883
1884(define autoloads-in-progress '())
1885
1886;; This function is called from "modules.c". If you change it, be
1887;; sure to update "modules.c" as well.
1888
1889(define (try-module-autoload module-name)
1890 (let* ((reverse-name (reverse module-name))
1891 (name (symbol->string (car reverse-name)))
1892 (dir-hint-module-name (reverse (cdr reverse-name)))
1893 (dir-hint (apply string-append
1894 (map (lambda (elt)
1895 (string-append (symbol->string elt) "/"))
1896 dir-hint-module-name))))
1897 (resolve-module dir-hint-module-name #f)
1898 (and (not (autoload-done-or-in-progress? dir-hint name))
1899 (let ((didit #f))
1900 (define (load-file proc file)
1901 (save-module-excursion (lambda () (proc file)))
1902 (set! didit #t))
1903 (dynamic-wind
1904 (lambda () (autoload-in-progress! dir-hint name))
1905 (lambda ()
1906 (let ((file (in-vicinity dir-hint name)))
1907 (cond ((and load-compiled
1908 (%search-load-path (string-append file ".go")))
1909 => (lambda (full)
1910 (load-file load-compiled full)))
1911 ((%search-load-path file)
1912 => (lambda (full)
1913 (load-file primitive-load full))))))
1914 (lambda () (set-autoloaded! dir-hint name didit)))
1915 didit))))
1916
1917\f
1918;;; Dynamic linking of modules
1919
1920(define autoloads-done '((guile . guile)))
1921
1922(define (autoload-done-or-in-progress? p m)
1923 (let ((n (cons p m)))
1924 (->bool (or (member n autoloads-done)
1925 (member n autoloads-in-progress)))))
1926
1927(define (autoload-done! p m)
1928 (let ((n (cons p m)))
1929 (set! autoloads-in-progress
1930 (delete! n autoloads-in-progress))
1931 (or (member n autoloads-done)
1932 (set! autoloads-done (cons n autoloads-done)))))
1933
1934(define (autoload-in-progress! p m)
1935 (let ((n (cons p m)))
1936 (set! autoloads-done
1937 (delete! n autoloads-done))
1938 (set! autoloads-in-progress (cons n autoloads-in-progress))))
1939
1940(define (set-autoloaded! p m done?)
1941 (if done?
1942 (autoload-done! p m)
1943 (let ((n (cons p m)))
1944 (set! autoloads-done (delete! n autoloads-done))
1945 (set! autoloads-in-progress (delete! n autoloads-in-progress)))))
1946
1947
1948
1949\f
1950;; {EVAL-CASE}
1951;;
1952;; (eval-case ((situation*) forms)* (else forms)?)
1953;;
1954;; Evaluate certain code based on the situation that eval-case is used
1955;; in. The only defined situation right now is `load-toplevel' which
1956;; triggers for code evaluated at the top-level, for example from the
1957;; REPL or when loading a file.
1958
1959(define eval-case
1960 (procedure->memoizing-macro
1961 (lambda (exp env)
1962 (define (toplevel-env? env)
1963 (or (not (pair? env)) (not (pair? (car env)))))
1964 (define (syntax)
1965 (error "syntax error in eval-case"))
1966 (let loop ((clauses (cdr exp)))
1967 (cond
1968 ((null? clauses)
1969 #f)
1970 ((not (list? (car clauses)))
1971 (syntax))
1972 ((eq? 'else (caar clauses))
1973 (or (null? (cdr clauses))
1974 (syntax))
1975 (cons 'begin (cdar clauses)))
1976 ((not (list? (caar clauses)))
1977 (syntax))
1978 ((and (toplevel-env? env)
1979 (memq 'load-toplevel (caar clauses)))
1980 (cons 'begin (cdar clauses)))
1981 (else
1982 (loop (cdr clauses))))))))
1983
1984\f
1985;;; {Macros}
1986;;;
1987
1988(define (primitive-macro? m)
1989 (and (macro? m)
1990 (not (macro-transformer m))))
1991
1992;;; {Defmacros}
1993;;;
1994(define macro-table (make-weak-key-hash-table 61))
1995(define xformer-table (make-weak-key-hash-table 61))
1996
1997(define (defmacro? m) (hashq-ref macro-table m))
1998(define (assert-defmacro?! m) (hashq-set! macro-table m #t))
1999(define (defmacro-transformer m) (hashq-ref xformer-table m))
2000(define (set-defmacro-transformer! m t) (hashq-set! xformer-table m t))
2001
2002(define defmacro:transformer
2003 (lambda (f)
2004 (let* ((xform (lambda (exp env)
2005 (copy-tree (apply f (cdr exp)))))
2006 (a (procedure->memoizing-macro xform)))
2007 (assert-defmacro?! a)
2008 (set-defmacro-transformer! a f)
2009 a)))
2010
2011
2012(define defmacro
2013 (let ((defmacro-transformer
2014 (lambda (name parms . body)
2015 (let ((transformer `(lambda ,parms ,@body)))
2016 `(eval-case
2017 ((load-toplevel)
2018 (define ,name (defmacro:transformer ,transformer)))
2019 (else
2020 (error "defmacro can only be used at the top level")))))))
2021 (defmacro:transformer defmacro-transformer)))
2022
2023(define defmacro:syntax-transformer
2024 (lambda (f)
2025 (procedure->syntax
2026 (lambda (exp env)
2027 (copy-tree (apply f (cdr exp)))))))
2028
2029
2030;; XXX - should the definition of the car really be looked up in the
2031;; current module?
2032
2033(define (macroexpand-1 e)
2034 (cond
2035 ((pair? e) (let* ((a (car e))
2036 (val (and (symbol? a) (local-ref (list a)))))
2037 (if (defmacro? val)
2038 (apply (defmacro-transformer val) (cdr e))
2039 e)))
2040 (#t e)))
2041
2042(define (macroexpand e)
2043 (cond
2044 ((pair? e) (let* ((a (car e))
2045 (val (and (symbol? a) (local-ref (list a)))))
2046 (if (defmacro? val)
2047 (macroexpand (apply (defmacro-transformer val) (cdr e)))
2048 e)))
2049 (#t e)))
2050
2051(provide 'defmacro)
2052
2053\f
2054
2055;;; {Run-time options}
2056
2057(define define-option-interface
2058 (let* ((option-name car)
2059 (option-value cadr)
2060 (option-documentation caddr)
2061
2062 (print-option (lambda (option)
2063 (display (option-name option))
2064 (if (< (string-length
2065 (symbol->string (option-name option)))
2066 8)
2067 (display #\tab))
2068 (display #\tab)
2069 (display (option-value option))
2070 (display #\tab)
2071 (display (option-documentation option))
2072 (newline)))
2073
2074 ;; Below follow the macros defining the run-time option interfaces.
2075
2076 (make-options (lambda (interface)
2077 `(lambda args
2078 (cond ((null? args) (,interface))
2079 ((list? (car args))
2080 (,interface (car args)) (,interface))
2081 (else (for-each ,print-option
2082 (,interface #t)))))))
2083
2084 (make-enable (lambda (interface)
2085 `(lambda flags
2086 (,interface (append flags (,interface)))
2087 (,interface))))
2088
2089 (make-disable (lambda (interface)
2090 `(lambda flags
2091 (let ((options (,interface)))
2092 (for-each (lambda (flag)
2093 (set! options (delq! flag options)))
2094 flags)
2095 (,interface options)
2096 (,interface))))))
2097 (procedure->memoizing-macro
2098 (lambda (exp env)
2099 (let* ((option-group (cadr exp))
2100 (interface (car option-group))
2101 (options/enable/disable (cadr option-group)))
2102 `(begin
2103 (define ,(car options/enable/disable)
2104 ,(make-options interface))
2105 (define ,(cadr options/enable/disable)
2106 ,(make-enable interface))
2107 (define ,(caddr options/enable/disable)
2108 ,(make-disable interface))
2109 (defmacro ,(caaddr option-group) (opt val)
2110 `(,,(car options/enable/disable)
2111 (append (,,(car options/enable/disable))
2112 (list ',opt ,val))))))))))
2113
2114(define-option-interface
2115 (eval-options-interface
2116 (eval-options eval-enable eval-disable)
2117 (eval-set!)))
2118
2119(define-option-interface
2120 (debug-options-interface
2121 (debug-options debug-enable debug-disable)
2122 (debug-set!)))
2123
2124(define-option-interface
2125 (evaluator-traps-interface
2126 (traps trap-enable trap-disable)
2127 (trap-set!)))
2128
2129(define-option-interface
2130 (read-options-interface
2131 (read-options read-enable read-disable)
2132 (read-set!)))
2133
2134(define-option-interface
2135 (print-options-interface
2136 (print-options print-enable print-disable)
2137 (print-set!)))
2138
2139\f
2140
2141;;; {Running Repls}
2142;;;
2143
2144(define (repl read evaler print)
2145 (let loop ((source (read (current-input-port))))
2146 (print (evaler source))
2147 (loop (read (current-input-port)))))
2148
2149;; A provisional repl that acts like the SCM repl:
2150;;
2151(define scm-repl-silent #f)
2152(define (assert-repl-silence v) (set! scm-repl-silent v))
2153
2154(define *unspecified* (if #f #f))
2155(define (unspecified? v) (eq? v *unspecified*))
2156
2157(define scm-repl-print-unspecified #f)
2158(define (assert-repl-print-unspecified v) (set! scm-repl-print-unspecified v))
2159
2160(define scm-repl-verbose #f)
2161(define (assert-repl-verbosity v) (set! scm-repl-verbose v))
2162
2163(define scm-repl-prompt "guile> ")
2164
2165(define (set-repl-prompt! v) (set! scm-repl-prompt v))
2166
2167(define (default-lazy-handler key . args)
2168 (save-stack lazy-handler-dispatch)
2169 (apply throw key args))
2170
2171(define (lazy-handler-dispatch key . args)
2172 (apply default-lazy-handler key args))
2173
2174(define abort-hook (make-hook))
2175
2176;; these definitions are used if running a script.
2177;; otherwise redefined in error-catching-loop.
2178(define (set-batch-mode?! arg) #t)
2179(define (batch-mode?) #t)
2180
2181(define (error-catching-loop thunk)
2182 (let ((status #f)
2183 (interactive #t))
2184 (define (loop first)
2185 (let ((next
2186 (catch #t
2187
2188 (lambda ()
2189 (lazy-catch #t
2190 (lambda ()
2191 (call-with-unblocked-asyncs
2192 (lambda ()
2193 (with-traps
2194 (lambda ()
2195 (first)
2196
2197 ;; This line is needed because mark
2198 ;; doesn't do closures quite right.
2199 ;; Unreferenced locals should be
2200 ;; collected.
2201 ;;
2202 (set! first #f)
2203 (let loop ((v (thunk)))
2204 (loop (thunk)))
2205 #f)))))
2206
2207 lazy-handler-dispatch))
2208
2209 (lambda (key . args)
2210 (case key
2211 ((quit)
2212 (set! status args)
2213 #f)
2214
2215 ((switch-repl)
2216 (apply throw 'switch-repl args))
2217
2218 ((abort)
2219 ;; This is one of the closures that require
2220 ;; (set! first #f) above
2221 ;;
2222 (lambda ()
2223 (run-hook abort-hook)
2224 (force-output (current-output-port))
2225 (display "ABORT: " (current-error-port))
2226 (write args (current-error-port))
2227 (newline (current-error-port))
2228 (if interactive
2229 (begin
2230 (if (and
2231 (not has-shown-debugger-hint?)
2232 (not (memq 'backtrace
2233 (debug-options-interface)))
2234 (stack? (fluid-ref the-last-stack)))
2235 (begin
2236 (newline (current-error-port))
2237 (display
2238 "Type \"(backtrace)\" to get more information or \"(debug)\" to enter the debugger.\n"
2239 (current-error-port))
2240 (set! has-shown-debugger-hint? #t)))
2241 (force-output (current-error-port)))
2242 (begin
2243 (primitive-exit 1)))
2244 (set! stack-saved? #f)))
2245
2246 (else
2247 ;; This is the other cons-leak closure...
2248 (lambda ()
2249 (cond ((= (length args) 4)
2250 (apply handle-system-error key args))
2251 (else
2252 (apply bad-throw key args))))))))))
2253 (if next (loop next) status)))
2254 (set! set-batch-mode?! (lambda (arg)
2255 (cond (arg
2256 (set! interactive #f)
2257 (restore-signals))
2258 (#t
2259 (error "sorry, not implemented")))))
2260 (set! batch-mode? (lambda () (not interactive)))
2261 (call-with-blocked-asyncs
2262 (lambda () (loop (lambda () #t))))))
2263
2264;;(define the-last-stack (make-fluid)) Defined by scm_init_backtrace ()
2265(define before-signal-stack (make-fluid))
2266(define stack-saved? #f)
2267
2268(define (save-stack . narrowing)
2269 (or stack-saved?
2270 (cond ((not (memq 'debug (debug-options-interface)))
2271 (fluid-set! the-last-stack #f)
2272 (set! stack-saved? #t))
2273 (else
2274 (fluid-set!
2275 the-last-stack
2276 (case (stack-id #t)
2277 ((repl-stack)
2278 (apply make-stack #t save-stack primitive-eval #t 0 narrowing))
2279 ((load-stack)
2280 (apply make-stack #t save-stack 0 #t 0 narrowing))
2281 ((tk-stack)
2282 (apply make-stack #t save-stack tk-stack-mark #t 0 narrowing))
2283 ((#t)
2284 (apply make-stack #t save-stack 0 1 narrowing))
2285 (else
2286 (let ((id (stack-id #t)))
2287 (and (procedure? id)
2288 (apply make-stack #t save-stack id #t 0 narrowing))))))
2289 (set! stack-saved? #t)))))
2290
2291(define before-error-hook (make-hook))
2292(define after-error-hook (make-hook))
2293(define before-backtrace-hook (make-hook))
2294(define after-backtrace-hook (make-hook))
2295
2296(define has-shown-debugger-hint? #f)
2297
2298(define (handle-system-error key . args)
2299 (let ((cep (current-error-port)))
2300 (cond ((not (stack? (fluid-ref the-last-stack))))
2301 ((memq 'backtrace (debug-options-interface))
2302 (run-hook before-backtrace-hook)
2303 (newline cep)
2304 (display "Backtrace:\n")
2305 (display-backtrace (fluid-ref the-last-stack) cep)
2306 (newline cep)
2307 (run-hook after-backtrace-hook)))
2308 (run-hook before-error-hook)
2309 (apply display-error (fluid-ref the-last-stack) cep args)
2310 (run-hook after-error-hook)
2311 (force-output cep)
2312 (throw 'abort key)))
2313
2314(define (quit . args)
2315 (apply throw 'quit args))
2316
2317(define exit quit)
2318
2319;;(define has-shown-backtrace-hint? #f) Defined by scm_init_backtrace ()
2320
2321;; Replaced by C code:
2322;;(define (backtrace)
2323;; (if (fluid-ref the-last-stack)
2324;; (begin
2325;; (newline)
2326;; (display-backtrace (fluid-ref the-last-stack) (current-output-port))
2327;; (newline)
2328;; (if (and (not has-shown-backtrace-hint?)
2329;; (not (memq 'backtrace (debug-options-interface))))
2330;; (begin
2331;; (display
2332;;"Type \"(debug-enable 'backtrace)\" if you would like a backtrace
2333;;automatically if an error occurs in the future.\n")
2334;; (set! has-shown-backtrace-hint? #t))))
2335;; (display "No backtrace available.\n")))
2336
2337(define (error-catching-repl r e p)
2338 (error-catching-loop
2339 (lambda ()
2340 (call-with-values (lambda () (e (r)))
2341 (lambda the-values (for-each p the-values))))))
2342
2343(define (gc-run-time)
2344 (cdr (assq 'gc-time-taken (gc-stats))))
2345
2346(define before-read-hook (make-hook))
2347(define after-read-hook (make-hook))
2348(define before-eval-hook (make-hook 1))
2349(define after-eval-hook (make-hook 1))
2350(define before-print-hook (make-hook 1))
2351(define after-print-hook (make-hook 1))
2352
2353;;; The default repl-reader function. We may override this if we've
2354;;; the readline library.
2355(define repl-reader
2356 (lambda (prompt)
2357 (display prompt)
2358 (force-output)
2359 (run-hook before-read-hook)
2360 (read (current-input-port))))
2361
2362(define (scm-style-repl)
2363
2364 (letrec (
2365 (start-gc-rt #f)
2366 (start-rt #f)
2367 (repl-report-start-timing (lambda ()
2368 (set! start-gc-rt (gc-run-time))
2369 (set! start-rt (get-internal-run-time))))
2370 (repl-report (lambda ()
2371 (display ";;; ")
2372 (display (inexact->exact
2373 (* 1000 (/ (- (get-internal-run-time) start-rt)
2374 internal-time-units-per-second))))
2375 (display " msec (")
2376 (display (inexact->exact
2377 (* 1000 (/ (- (gc-run-time) start-gc-rt)
2378 internal-time-units-per-second))))
2379 (display " msec in gc)\n")))
2380
2381 (consume-trailing-whitespace
2382 (lambda ()
2383 (let ((ch (peek-char)))
2384 (cond
2385 ((eof-object? ch))
2386 ((or (char=? ch #\space) (char=? ch #\tab))
2387 (read-char)
2388 (consume-trailing-whitespace))
2389 ((char=? ch #\newline)
2390 (read-char))))))
2391 (-read (lambda ()
2392 (let ((val
2393 (let ((prompt (cond ((string? scm-repl-prompt)
2394 scm-repl-prompt)
2395 ((thunk? scm-repl-prompt)
2396 (scm-repl-prompt))
2397 (scm-repl-prompt "> ")
2398 (else ""))))
2399 (repl-reader prompt))))
2400
2401 ;; As described in R4RS, the READ procedure updates the
2402 ;; port to point to the first character past the end of
2403 ;; the external representation of the object. This
2404 ;; means that it doesn't consume the newline typically
2405 ;; found after an expression. This means that, when
2406 ;; debugging Guile with GDB, GDB gets the newline, which
2407 ;; it often interprets as a "continue" command, making
2408 ;; breakpoints kind of useless. So, consume any
2409 ;; trailing newline here, as well as any whitespace
2410 ;; before it.
2411 ;; But not if EOF, for control-D.
2412 (if (not (eof-object? val))
2413 (consume-trailing-whitespace))
2414 (run-hook after-read-hook)
2415 (if (eof-object? val)
2416 (begin
2417 (repl-report-start-timing)
2418 (if scm-repl-verbose
2419 (begin
2420 (newline)
2421 (display ";;; EOF -- quitting")
2422 (newline)))
2423 (quit 0)))
2424 val)))
2425
2426 (-eval (lambda (sourc)
2427 (repl-report-start-timing)
2428 (run-hook before-eval-hook sourc)
2429 (let ((val (start-stack 'repl-stack
2430 ;; If you change this procedure
2431 ;; (primitive-eval), please also
2432 ;; modify the repl-stack case in
2433 ;; save-stack so that stack cutting
2434 ;; continues to work.
2435 (primitive-eval sourc))))
2436 (run-hook after-eval-hook sourc)
2437 val)))
2438
2439
2440 (-print (let ((maybe-print (lambda (result)
2441 (if (or scm-repl-print-unspecified
2442 (not (unspecified? result)))
2443 (begin
2444 (write result)
2445 (newline))))))
2446 (lambda (result)
2447 (if (not scm-repl-silent)
2448 (begin
2449 (run-hook before-print-hook result)
2450 (maybe-print result)
2451 (run-hook after-print-hook result)
2452 (if scm-repl-verbose
2453 (repl-report))
2454 (force-output))))))
2455
2456 (-quit (lambda (args)
2457 (if scm-repl-verbose
2458 (begin
2459 (display ";;; QUIT executed, repl exitting")
2460 (newline)
2461 (repl-report)))
2462 args))
2463
2464 (-abort (lambda ()
2465 (if scm-repl-verbose
2466 (begin
2467 (display ";;; ABORT executed.")
2468 (newline)
2469 (repl-report)))
2470 (repl -read -eval -print))))
2471
2472 (let ((status (error-catching-repl -read
2473 -eval
2474 -print)))
2475 (-quit status))))
2476
2477
2478\f
2479;;; {IOTA functions: generating lists of numbers}
2480
2481(define (iota n)
2482 (let loop ((count (1- n)) (result '()))
2483 (if (< count 0) result
2484 (loop (1- count) (cons count result)))))
2485
2486\f
2487;;; {While}
2488;;;
2489;;; with `continue' and `break'.
2490;;;
2491
2492(defmacro while (cond . body)
2493 `(letrec ((continue (lambda () (or (not ,cond) (begin (begin ,@ body) (continue)))))
2494 (break (lambda val (apply throw 'break val))))
2495 (catch 'break
2496 (lambda () (continue))
2497 (lambda v (cadr v)))))
2498
2499;;; {collect}
2500;;;
2501;;; Similar to `begin' but returns a list of the results of all constituent
2502;;; forms instead of the result of the last form.
2503;;; (The definition relies on the current left-to-right
2504;;; order of evaluation of operands in applications.)
2505
2506(defmacro collect forms
2507 (cons 'list forms))
2508
2509;;; {with-fluids}
2510
2511;; with-fluids is a convenience wrapper for the builtin procedure
2512;; `with-fluids*'. The syntax is just like `let':
2513;;
2514;; (with-fluids ((fluid val)
2515;; ...)
2516;; body)
2517
2518(defmacro with-fluids (bindings . body)
2519 `(with-fluids* (list ,@(map car bindings)) (list ,@(map cadr bindings))
2520 (lambda () ,@body)))
2521
2522\f
2523
2524;;; {Macros}
2525;;;
2526
2527;; actually....hobbit might be able to hack these with a little
2528;; coaxing
2529;;
2530
2531(defmacro define-macro (first . rest)
2532 (let ((name (if (symbol? first) first (car first)))
2533 (transformer
2534 (if (symbol? first)
2535 (car rest)
2536 `(lambda ,(cdr first) ,@rest))))
2537 `(eval-case
2538 ((load-toplevel)
2539 (define ,name (defmacro:transformer ,transformer)))
2540 (else
2541 (error "define-macro can only be used at the top level")))))
2542
2543
2544(defmacro define-syntax-macro (first . rest)
2545 (let ((name (if (symbol? first) first (car first)))
2546 (transformer
2547 (if (symbol? first)
2548 (car rest)
2549 `(lambda ,(cdr first) ,@rest))))
2550 `(eval-case
2551 ((load-toplevel)
2552 (define ,name (defmacro:syntax-transformer ,transformer)))
2553 (else
2554 (error "define-syntax-macro can only be used at the top level")))))
2555
2556\f
2557;;; {Module System Macros}
2558;;;
2559
2560;; Return a list of expressions that evaluate to the appropriate
2561;; arguments for resolve-interface according to SPEC.
2562
2563(define (compile-interface-spec spec)
2564 (define (make-keyarg sym key quote?)
2565 (cond ((or (memq sym spec)
2566 (memq key spec))
2567 => (lambda (rest)
2568 (if quote?
2569 (list key (list 'quote (cadr rest)))
2570 (list key (cadr rest)))))
2571 (else
2572 '())))
2573 (define (map-apply func list)
2574 (map (lambda (args) (apply func args)) list))
2575 (define keys
2576 ;; sym key quote?
2577 '((:select #:select #t)
2578 (:hide #:hide #t)
2579 (:prefix #:prefix #t)
2580 (:renamer #:renamer #f)))
2581 (if (not (pair? (car spec)))
2582 `(',spec)
2583 `(',(car spec)
2584 ,@(apply append (map-apply make-keyarg keys)))))
2585
2586(define (keyword-like-symbol->keyword sym)
2587 (symbol->keyword (string->symbol (substring (symbol->string sym) 1))))
2588
2589(define (compile-define-module-args args)
2590 ;; Just quote everything except #:use-module and #:use-syntax. We
2591 ;; need to know about all arguments regardless since we want to turn
2592 ;; symbols that look like keywords into real keywords, and the
2593 ;; keyword args in a define-module form are not regular
2594 ;; (i.e. no-backtrace doesn't take a value).
2595 (let loop ((compiled-args `((quote ,(car args))))
2596 (args (cdr args)))
2597 (cond ((null? args)
2598 (reverse! compiled-args))
2599 ;; symbol in keyword position
2600 ((symbol? (car args))
2601 (loop compiled-args
2602 (cons (keyword-like-symbol->keyword (car args)) (cdr args))))
2603 ((memq (car args) '(#:no-backtrace #:pure))
2604 (loop (cons (car args) compiled-args)
2605 (cdr args)))
2606 ((null? (cdr args))
2607 (error "keyword without value:" (car args)))
2608 ((memq (car args) '(#:use-module #:use-syntax))
2609 (loop (cons* `(list ,@(compile-interface-spec (cadr args)))
2610 (car args)
2611 compiled-args)
2612 (cddr args)))
2613 ((eq? (car args) #:autoload)
2614 (loop (cons* `(quote ,(caddr args))
2615 `(quote ,(cadr args))
2616 (car args)
2617 compiled-args)
2618 (cdddr args)))
2619 (else
2620 (loop (cons* `(quote ,(cadr args))
2621 (car args)
2622 compiled-args)
2623 (cddr args))))))
2624
2625(defmacro define-module args
2626 `(eval-case
2627 ((load-toplevel)
2628 (let ((m (process-define-module
2629 (list ,@(compile-define-module-args args)))))
2630 (set-current-module m)
2631 m))
2632 (else
2633 (error "define-module can only be used at the top level"))))
2634
2635;; The guts of the use-modules macro. Add the interfaces of the named
2636;; modules to the use-list of the current module, in order.
2637
2638;; This function is called by "modules.c". If you change it, be sure
2639;; to change scm_c_use_module as well.
2640
2641(define (process-use-modules module-interface-args)
2642 (module-use-interfaces! (current-module)
2643 (map (lambda (mif-args)
2644 (or (apply resolve-interface mif-args)
2645 (error "no such module" mif-args)))
2646 module-interface-args)))
2647
2648(defmacro use-modules modules
2649 `(eval-case
2650 ((load-toplevel)
2651 (process-use-modules
2652 (list ,@(map (lambda (m)
2653 `(list ,@(compile-interface-spec m)))
2654 modules)))
2655 *unspecified*)
2656 (else
2657 (error "use-modules can only be used at the top level"))))
2658
2659(defmacro use-syntax (spec)
2660 `(eval-case
2661 ((load-toplevel)
2662 ,@(if (pair? spec)
2663 `((process-use-modules (list
2664 (list ,@(compile-interface-spec spec))))
2665 (set-module-transformer! (current-module)
2666 ,(car (last-pair spec))))
2667 `((set-module-transformer! (current-module) ,spec)))
2668 *unspecified*)
2669 (else
2670 (error "use-syntax can only be used at the top level"))))
2671
2672;; Dirk:FIXME:: This incorrect (according to R5RS) syntax needs to be changed
2673;; as soon as guile supports hygienic macros.
2674(define define-private define)
2675
2676(defmacro define-public args
2677 (define (syntax)
2678 (error "bad syntax" (list 'define-public args)))
2679 (define (defined-name n)
2680 (cond
2681 ((symbol? n) n)
2682 ((pair? n) (defined-name (car n)))
2683 (else (syntax))))
2684 (cond
2685 ((null? args)
2686 (syntax))
2687 (#t
2688 (let ((name (defined-name (car args))))
2689 `(begin
2690 (define-private ,@args)
2691 (eval-case ((load-toplevel) (export ,name))))))))
2692
2693(defmacro defmacro-public args
2694 (define (syntax)
2695 (error "bad syntax" (list 'defmacro-public args)))
2696 (define (defined-name n)
2697 (cond
2698 ((symbol? n) n)
2699 (else (syntax))))
2700 (cond
2701 ((null? args)
2702 (syntax))
2703 (#t
2704 (let ((name (defined-name (car args))))
2705 `(begin
2706 (eval-case ((load-toplevel) (export ,name)))
2707 (defmacro ,@args))))))
2708
2709;; Export a local variable
2710
2711;; This function is called from "modules.c". If you change it, be
2712;; sure to update "modules.c" as well.
2713
2714(define (module-export! m names)
2715 (let ((public-i (module-public-interface m)))
2716 (for-each (lambda (name)
2717 (let ((var (module-ensure-local-variable! m name)))
2718 (module-add! public-i name var)))
2719 names)))
2720
2721(define (module-replace! m names)
2722 (let ((public-i (module-public-interface m)))
2723 (for-each (lambda (name)
2724 (let ((var (module-ensure-local-variable! m name)))
2725 (set-object-property! var 'replace #t)
2726 (module-add! public-i name var)))
2727 names)))
2728
2729;; Re-export a imported variable
2730;;
2731(define (module-re-export! m names)
2732 (let ((public-i (module-public-interface m)))
2733 (for-each (lambda (name)
2734 (let ((var (module-variable m name)))
2735 (cond ((not var)
2736 (error "Undefined variable:" name))
2737 ((eq? var (module-local-variable m name))
2738 (error "re-exporting local variable:" name))
2739 (else
2740 (module-add! public-i name var)))))
2741 names)))
2742
2743(defmacro export names
2744 `(eval-case
2745 ((load-toplevel)
2746 (module-export! (current-module) ',names))
2747 (else
2748 (error "export can only be used at the top level"))))
2749
2750(defmacro re-export names
2751 `(eval-case
2752 ((load-toplevel)
2753 (module-re-export! (current-module) ',names))
2754 (else
2755 (error "re-export can only be used at the top level"))))
2756
2757(defmacro export-syntax names
2758 `(export ,@names))
2759
2760(defmacro re-export-syntax names
2761 `(re-export ,@names))
2762
2763(define load load-module)
2764
2765\f
2766;;; {Parameters}
2767;;;
2768
2769(define make-mutable-parameter
2770 (let ((make (lambda (fluid converter)
2771 (lambda args
2772 (if (null? args)
2773 (fluid-ref fluid)
2774 (fluid-set! fluid (converter (car args))))))))
2775 (lambda (init . converter)
2776 (let ((fluid (make-fluid))
2777 (converter (if (null? converter)
2778 identity
2779 (car converter))))
2780 (fluid-set! fluid (converter init))
2781 (make fluid converter)))))
2782
2783\f
2784;;; {Handling of duplicate imported bindings}
2785;;;
2786
2787;; Duplicate handlers take the following arguments:
2788;;
2789;; module importing module
2790;; name conflicting name
2791;; int1 old interface where name occurs
2792;; val1 value of binding in old interface
2793;; int2 new interface where name occurs
2794;; val2 value of binding in new interface
2795;; var previous resolution or #f
2796;; val value of previous resolution
2797;;
2798;; A duplicate handler can take three alternative actions:
2799;;
2800;; 1. return #f => leave responsibility to next handler
2801;; 2. exit with an error
2802;; 3. return a variable resolving the conflict
2803;;
2804
2805(define duplicate-handlers
2806 (let ((m (make-module 7)))
2807
2808 (define (check module name int1 val1 int2 val2 var val)
2809 (scm-error 'misc-error
2810 #f
2811 "~A: `~A' imported from both ~A and ~A"
2812 (list (module-name module)
2813 name
2814 (module-name int1)
2815 (module-name int2))
2816 #f))
2817
2818 (define (warn module name int1 val1 int2 val2 var val)
2819 (format #t
2820 "~A: `~A' imported from both ~A and ~A\n"
2821 (module-name module)
2822 name
2823 (module-name int1)
2824 (module-name int2))
2825 #f)
2826
2827 (define (replace module name int1 val1 int2 val2 var val)
2828 (let ((old (or (and var (object-property var 'replace) var)
2829 (module-variable int1 name)))
2830 (new (module-variable int2 name)))
2831 (if (object-property old 'replace)
2832 (and (or (eq? old new)
2833 (not (object-property new 'replace)))
2834 old)
2835 (and (object-property new 'replace)
2836 new))))
2837
2838 (define (warn-override-core module name int1 val1 int2 val2 var val)
2839 (and (eq? int1 the-scm-module)
2840 (begin
2841 (format #t
2842 "WARNING: ~A: imported module ~A overrides core binding `~A'\n"
2843 (module-name module)
2844 (module-name int2)
2845 name)
2846 (module-local-variable int2 name))))
2847
2848 (define (first module name int1 val1 int2 val2 var val)
2849 (or var (module-local-variable int1 name)))
2850
2851 (define (last module name int1 val1 int2 val2 var val)
2852 (module-local-variable int2 name))
2853
2854 (set-module-name! m 'duplicate-handlers)
2855 (set-module-kind! m 'interface)
2856 (module-define! m 'check check)
2857 (module-define! m 'warn warn)
2858 (module-define! m 'replace replace)
2859 (module-define! m 'warn-override-core warn-override-core)
2860 (module-define! m 'first first)
2861 (module-define! m 'last last)
2862 m))
2863
2864(define (lookup-duplicates-handlers handler-names)
2865 (and handler-names
2866 (map (lambda (handler-name)
2867 (or (module-symbol-local-binding
2868 duplicate-handlers handler-name #f)
2869 (error "invalid duplicate handler name:"
2870 handler-name)))
2871 (if (list? handler-names)
2872 handler-names
2873 (list handler-names)))))
2874
2875(define default-duplicate-binding-procedures
2876 (make-mutable-parameter #f))
2877
2878(define default-duplicate-binding-handler
2879 (make-mutable-parameter '(replace warn-override-core check)
2880 (lambda (handler-names)
2881 (default-duplicate-binding-procedures
2882 (lookup-duplicates-handlers handler-names))
2883 handler-names)))
2884
2885(define (make-duplicates-interface)
2886 (let ((m (make-module)))
2887 (set-module-kind! m 'custom-interface)
2888 (set-module-name! m 'duplicates)
2889 m))
2890
2891(define (process-duplicates module interface)
2892 (let* ((duplicates-info (module-duplicates-info module))
2893 (duplicates-handlers (or (car duplicates-info)
2894 (default-duplicate-binding-procedures)))
2895 (duplicates-interface (cdr duplicates-info)))
2896 (module-for-each
2897 (lambda (name var)
2898 (cond ((module-import-interface module name)
2899 =>
2900 (lambda (prev-interface)
2901 (let ((var1 (module-local-variable prev-interface name))
2902 (var2 (module-local-variable interface name)))
2903 (if (not (eq? var1 var2))
2904 (begin
2905 (if (not duplicates-interface)
2906 (begin
2907 (set! duplicates-interface
2908 (make-duplicates-interface))
2909 (set-cdr! duplicates-info duplicates-interface)))
2910 (let* ((var (module-local-variable duplicates-interface
2911 name))
2912 (val (and var
2913 (variable-bound? var)
2914 (variable-ref var))))
2915 (let loop ((duplicates-handlers duplicates-handlers))
2916 (cond ((null? duplicates-handlers))
2917 (((car duplicates-handlers)
2918 module
2919 name
2920 prev-interface
2921 (and (variable-bound? var1)
2922 (variable-ref var1))
2923 interface
2924 (and (variable-bound? var2)
2925 (variable-ref var2))
2926 var
2927 val)
2928 =>
2929 (lambda (var)
2930 (module-add! duplicates-interface name var)))
2931 (else
2932 (loop (cdr duplicates-handlers)))))))))))))
2933 interface)))
2934
2935\f
2936
2937;;; {`cond-expand' for SRFI-0 support.}
2938;;;
2939;;; This syntactic form expands into different commands or
2940;;; definitions, depending on the features provided by the Scheme
2941;;; implementation.
2942;;;
2943;;; Syntax:
2944;;;
2945;;; <cond-expand>
2946;;; --> (cond-expand <cond-expand-clause>+)
2947;;; | (cond-expand <cond-expand-clause>* (else <command-or-definition>))
2948;;; <cond-expand-clause>
2949;;; --> (<feature-requirement> <command-or-definition>*)
2950;;; <feature-requirement>
2951;;; --> <feature-identifier>
2952;;; | (and <feature-requirement>*)
2953;;; | (or <feature-requirement>*)
2954;;; | (not <feature-requirement>)
2955;;; <feature-identifier>
2956;;; --> <a symbol which is the name or alias of a SRFI>
2957;;;
2958;;; Additionally, this implementation provides the
2959;;; <feature-identifier>s `guile' and `r5rs', so that programs can
2960;;; determine the implementation type and the supported standard.
2961;;;
2962;;; Currently, the following feature identifiers are supported:
2963;;;
2964;;; guile r5rs srfi-0
2965;;;
2966;;; Remember to update the features list when adding more SRFIs.
2967
2968(define %cond-expand-features
2969 ;; Adjust the above comment when changing this.
2970 '(guile r5rs srfi-0))
2971
2972;; This table maps module public interfaces to the list of features.
2973;;
2974(define %cond-expand-table (make-hash-table 31))
2975
2976;; Add one or more features to the `cond-expand' feature list of the
2977;; module `module'.
2978;;
2979(define (cond-expand-provide module features)
2980 (let ((mod (module-public-interface module)))
2981 (and mod
2982 (hashq-set! %cond-expand-table mod
2983 (append (hashq-ref %cond-expand-table mod '())
2984 features)))))
2985
2986(define cond-expand
2987 (procedure->memoizing-macro
2988 (lambda (exp env)
2989 (let ((clauses (cdr exp))
2990 (syntax-error (lambda (cl)
2991 (error "invalid clause in `cond-expand'" cl))))
2992 (letrec
2993 ((test-clause
2994 (lambda (clause)
2995 (cond
2996 ((symbol? clause)
2997 (or (memq clause %cond-expand-features)
2998 (let lp ((uses (module-uses (env-module env))))
2999 (if (pair? uses)
3000 (or (memq clause
3001 (hashq-ref %cond-expand-table
3002 (car uses) '()))
3003 (lp (cdr uses)))
3004 #f))))
3005 ((pair? clause)
3006 (cond
3007 ((eq? 'and (car clause))
3008 (let lp ((l (cdr clause)))
3009 (cond ((null? l)
3010 #t)
3011 ((pair? l)
3012 (and (test-clause (car l)) (lp (cdr l))))
3013 (else
3014 (syntax-error clause)))))
3015 ((eq? 'or (car clause))
3016 (let lp ((l (cdr clause)))
3017 (cond ((null? l)
3018 #f)
3019 ((pair? l)
3020 (or (test-clause (car l)) (lp (cdr l))))
3021 (else
3022 (syntax-error clause)))))
3023 ((eq? 'not (car clause))
3024 (cond ((not (pair? (cdr clause)))
3025 (syntax-error clause))
3026 ((pair? (cddr clause))
3027 ((syntax-error clause))))
3028 (not (test-clause (cadr clause))))
3029 (else
3030 (syntax-error clause))))
3031 (else
3032 (syntax-error clause))))))
3033 (let lp ((c clauses))
3034 (cond
3035 ((null? c)
3036 (error "Unfulfilled `cond-expand'"))
3037 ((not (pair? c))
3038 (syntax-error c))
3039 ((not (pair? (car c)))
3040 (syntax-error (car c)))
3041 ((test-clause (caar c))
3042 `(begin ,@(cdar c)))
3043 ((eq? (caar c) 'else)
3044 (if (pair? (cdr c))
3045 (syntax-error c))
3046 `(begin ,@(cdar c)))
3047 (else
3048 (lp (cdr c))))))))))
3049
3050;; This procedure gets called from the startup code with a list of
3051;; numbers, which are the numbers of the SRFIs to be loaded on startup.
3052;;
3053(define (use-srfis srfis)
3054 (let lp ((s srfis))
3055 (if (pair? s)
3056 (let* ((srfi (string->symbol
3057 (string-append "srfi-" (number->string (car s)))))
3058 (mod-i (resolve-interface (list 'srfi srfi))))
3059 (module-use! (current-module) mod-i)
3060 (lp (cdr s))))))
3061
3062\f
3063
3064;;; {Load emacs interface support if emacs option is given.}
3065
3066(define (named-module-use! user usee)
3067 (module-use! (resolve-module user) (resolve-interface usee)))
3068
3069(define (load-emacs-interface)
3070 (and (provided? 'debug-extensions)
3071 (debug-enable 'backtrace))
3072 (named-module-use! '(guile-user) '(ice-9 emacs)))
3073
3074\f
3075
3076(define using-readline?
3077 (let ((using-readline? (make-fluid)))
3078 (make-procedure-with-setter
3079 (lambda () (fluid-ref using-readline?))
3080 (lambda (v) (fluid-set! using-readline? v)))))
3081
3082(define (top-repl)
3083 (let ((guile-user-module (resolve-module '(guile-user))))
3084
3085 ;; Load emacs interface support if emacs option is given.
3086 (if (and (module-defined? guile-user-module 'use-emacs-interface)
3087 (module-ref guile-user-module 'use-emacs-interface))
3088 (load-emacs-interface))
3089
3090 ;; Use some convenient modules (in reverse order)
3091
3092 (if (provided? 'regex)
3093 (module-use! guile-user-module (resolve-interface '(ice-9 regex))))
3094 (if (provided? 'threads)
3095 (module-use! guile-user-module (resolve-interface '(ice-9 threads))))
3096 ;; load debugger on demand
3097 (module-use! guile-user-module
3098 (make-autoload-interface guile-user-module
3099 '(ice-9 debugger) '(debug)))
3100 (module-use! guile-user-module (resolve-interface '(ice-9 session)))
3101 (module-use! guile-user-module (resolve-interface '(ice-9 debug)))
3102 ;; so that builtin bindings will be checked first
3103 (module-use! guile-user-module (resolve-interface '(guile)))
3104
3105 (set-current-module guile-user-module)
3106
3107 (let ((old-handlers #f)
3108 (signals (if (provided? 'posix)
3109 `((,SIGINT . "User interrupt")
3110 (,SIGFPE . "Arithmetic error")
3111 (,SIGBUS . "Bad memory access (bus error)")
3112 (,SIGSEGV
3113 . "Bad memory access (Segmentation violation)"))
3114 '())))
3115
3116 (dynamic-wind
3117
3118 ;; call at entry
3119 (lambda ()
3120 (let ((make-handler (lambda (msg)
3121 (lambda (sig)
3122 ;; Make a backup copy of the stack
3123 (fluid-set! before-signal-stack
3124 (fluid-ref the-last-stack))
3125 (save-stack 2)
3126 (scm-error 'signal
3127 #f
3128 msg
3129 #f
3130 (list sig))))))
3131 (set! old-handlers
3132 (map (lambda (sig-msg)
3133 (sigaction (car sig-msg)
3134 (make-handler (cdr sig-msg))))
3135 signals))))
3136
3137 ;; the protected thunk.
3138 (lambda ()
3139 (let ((status (scm-style-repl)))
3140 (run-hook exit-hook)
3141 status))
3142
3143 ;; call at exit.
3144 (lambda ()
3145 (map (lambda (sig-msg old-handler)
3146 (if (not (car old-handler))
3147 ;; restore original C handler.
3148 (sigaction (car sig-msg) #f)
3149 ;; restore Scheme handler, SIG_IGN or SIG_DFL.
3150 (sigaction (car sig-msg)
3151 (car old-handler)
3152 (cdr old-handler))))
3153 signals old-handlers))))))
3154
3155(defmacro false-if-exception (expr)
3156 `(catch #t (lambda () ,expr)
3157 (lambda args #f)))
3158
3159;;; This hook is run at the very end of an interactive session.
3160;;;
3161(define exit-hook (make-hook))
3162
3163\f
3164(append! %load-path (list "."))
3165
3166;; Place the user in the guile-user module.
3167;;
3168
3169(define-module (guile-user))
3170
3171;;; boot-9.scm ends here