Added `m4/gnulib-cache.m4'.
[bpt/guile.git] / ice-9 / boot-9.scm
... / ...
CommitLineData
1;;; installed-scm-file
2
3;;;; Copyright (C) 1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007
4;;;; Free Software Foundation, Inc.
5;;;;
6;;;; This library is free software; you can redistribute it and/or
7;;;; modify it under the terms of the GNU Lesser General Public
8;;;; License as published by the Free Software Foundation; either
9;;;; version 2.1 of the License, or (at your option) any later version.
10;;;;
11;;;; This library is distributed in the hope that it will be useful,
12;;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
13;;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14;;;; Lesser General Public License for more details.
15;;;;
16;;;; You should have received a copy of the GNU Lesser General Public
17;;;; License along with this library; if not, write to the Free Software
18;;;; Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19;;;;
20
21\f
22
23;;; Commentary:
24
25;;; This file is the first thing loaded into Guile. It adds many mundane
26;;; definitions and a few that are interesting.
27;;;
28;;; The module system (hence the hierarchical namespace) are defined in this
29;;; file.
30;;;
31
32;;; Code:
33
34\f
35
36;;; {Features}
37;;;
38
39(define (provide sym)
40 (if (not (memq sym *features*))
41 (set! *features* (cons sym *features*))))
42
43;; Return #t iff FEATURE is available to this Guile interpreter. In SLIB,
44;; provided? also checks to see if the module is available. We should do that
45;; too, but don't.
46
47(define (provided? feature)
48 (and (memq feature *features*) #t))
49
50;; let format alias simple-format until the more complete version is loaded
51
52(define format simple-format)
53
54;; this is scheme wrapping the C code so the final pred call is a tail call,
55;; per SRFI-13 spec
56(define (string-any char_pred s . rest)
57 (let ((start (if (null? rest)
58 0 (car rest)))
59 (end (if (or (null? rest) (null? (cdr rest)))
60 (string-length s) (cadr rest))))
61 (if (and (procedure? char_pred)
62 (> end start)
63 (<= end (string-length s))) ;; let c-code handle range error
64 (or (string-any-c-code char_pred s start (1- end))
65 (char_pred (string-ref s (1- end))))
66 (string-any-c-code char_pred s start end))))
67
68;; this is scheme wrapping the C code so the final pred call is a tail call,
69;; per SRFI-13 spec
70(define (string-every char_pred s . rest)
71 (let ((start (if (null? rest)
72 0 (car rest)))
73 (end (if (or (null? rest) (null? (cdr rest)))
74 (string-length s) (cadr rest))))
75 (if (and (procedure? char_pred)
76 (> end start)
77 (<= end (string-length s))) ;; let c-code handle range error
78 (and (string-every-c-code char_pred s start (1- end))
79 (char_pred (string-ref s (1- end))))
80 (string-every-c-code char_pred s start end))))
81
82;; A variant of string-fill! that we keep for compatability
83;;
84(define (substring-fill! str start end fill)
85 (string-fill! str fill start end))
86
87\f
88
89;;; {EVAL-CASE}
90;;;
91
92;; (eval-case ((situation*) forms)* (else forms)?)
93;;
94;; Evaluate certain code based on the situation that eval-case is used
95;; in. The only defined situation right now is `load-toplevel' which
96;; triggers for code evaluated at the top-level, for example from the
97;; REPL or when loading a file.
98
99(define eval-case
100 (procedure->memoizing-macro
101 (lambda (exp env)
102 (define (toplevel-env? env)
103 (or (not (pair? env)) (not (pair? (car env)))))
104 (define (syntax)
105 (error "syntax error in eval-case"))
106 (let loop ((clauses (cdr exp)))
107 (cond
108 ((null? clauses)
109 #f)
110 ((not (list? (car clauses)))
111 (syntax))
112 ((eq? 'else (caar clauses))
113 (or (null? (cdr clauses))
114 (syntax))
115 (cons 'begin (cdar clauses)))
116 ((not (list? (caar clauses)))
117 (syntax))
118 ((and (toplevel-env? env)
119 (memq 'load-toplevel (caar clauses)))
120 (cons 'begin (cdar clauses)))
121 (else
122 (loop (cdr clauses))))))))
123
124\f
125
126;;; {Defmacros}
127;;;
128;;; Depends on: features, eval-case
129;;;
130
131(define macro-table (make-weak-key-hash-table 61))
132(define xformer-table (make-weak-key-hash-table 61))
133
134(define (defmacro? m) (hashq-ref macro-table m))
135(define (assert-defmacro?! m) (hashq-set! macro-table m #t))
136(define (defmacro-transformer m) (hashq-ref xformer-table m))
137(define (set-defmacro-transformer! m t) (hashq-set! xformer-table m t))
138
139(define defmacro:transformer
140 (lambda (f)
141 (let* ((xform (lambda (exp env)
142 (copy-tree (apply f (cdr exp)))))
143 (a (procedure->memoizing-macro xform)))
144 (assert-defmacro?! a)
145 (set-defmacro-transformer! a f)
146 a)))
147
148
149(define defmacro
150 (let ((defmacro-transformer
151 (lambda (name parms . body)
152 (let ((transformer `(lambda ,parms ,@body)))
153 `(eval-case
154 ((load-toplevel)
155 (define ,name (defmacro:transformer ,transformer)))
156 (else
157 (error "defmacro can only be used at the top level")))))))
158 (defmacro:transformer defmacro-transformer)))
159
160(define defmacro:syntax-transformer
161 (lambda (f)
162 (procedure->syntax
163 (lambda (exp env)
164 (copy-tree (apply f (cdr exp)))))))
165
166
167;; XXX - should the definition of the car really be looked up in the
168;; current module?
169
170(define (macroexpand-1 e)
171 (cond
172 ((pair? e) (let* ((a (car e))
173 (val (and (symbol? a) (local-ref (list a)))))
174 (if (defmacro? val)
175 (apply (defmacro-transformer val) (cdr e))
176 e)))
177 (#t e)))
178
179(define (macroexpand e)
180 (cond
181 ((pair? e) (let* ((a (car e))
182 (val (and (symbol? a) (local-ref (list a)))))
183 (if (defmacro? val)
184 (macroexpand (apply (defmacro-transformer val) (cdr e)))
185 e)))
186 (#t e)))
187
188(provide 'defmacro)
189
190\f
191
192;;; {Deprecation}
193;;;
194;;; Depends on: defmacro
195;;;
196
197(defmacro begin-deprecated forms
198 (if (include-deprecated-features)
199 (cons begin forms)
200 #f))
201
202\f
203
204;;; {R4RS compliance}
205;;;
206
207(primitive-load-path "ice-9/r4rs.scm")
208
209\f
210
211;;; {Simple Debugging Tools}
212;;;
213
214;; peek takes any number of arguments, writes them to the
215;; current ouput port, and returns the last argument.
216;; It is handy to wrap around an expression to look at
217;; a value each time is evaluated, e.g.:
218;;
219;; (+ 10 (troublesome-fn))
220;; => (+ 10 (pk 'troublesome-fn-returned (troublesome-fn)))
221;;
222
223(define (peek . stuff)
224 (newline)
225 (display ";;; ")
226 (write stuff)
227 (newline)
228 (car (last-pair stuff)))
229
230(define pk peek)
231
232(define (warn . stuff)
233 (with-output-to-port (current-error-port)
234 (lambda ()
235 (newline)
236 (display ";;; WARNING ")
237 (display stuff)
238 (newline)
239 (car (last-pair stuff)))))
240
241\f
242
243;;; {Trivial Functions}
244;;;
245
246(define (identity x) x)
247(define (and=> value procedure) (and value (procedure value)))
248(define call/cc call-with-current-continuation)
249
250;;; apply-to-args is functionally redundant with apply and, worse,
251;;; is less general than apply since it only takes two arguments.
252;;;
253;;; On the other hand, apply-to-args is a syntacticly convenient way to
254;;; perform binding in many circumstances when the "let" family of
255;;; of forms don't cut it. E.g.:
256;;;
257;;; (apply-to-args (return-3d-mouse-coords)
258;;; (lambda (x y z)
259;;; ...))
260;;;
261
262(define (apply-to-args args fn) (apply fn args))
263
264(defmacro false-if-exception (expr)
265 `(catch #t (lambda () ,expr)
266 (lambda args #f)))
267
268\f
269
270;;; {General Properties}
271;;;
272
273;; This is a more modern interface to properties. It will replace all
274;; other property-like things eventually.
275
276(define (make-object-property)
277 (let ((prop (primitive-make-property #f)))
278 (make-procedure-with-setter
279 (lambda (obj) (primitive-property-ref prop obj))
280 (lambda (obj val) (primitive-property-set! prop obj val)))))
281
282\f
283
284;;; {Symbol Properties}
285;;;
286
287(define (symbol-property sym prop)
288 (let ((pair (assoc prop (symbol-pref sym))))
289 (and pair (cdr pair))))
290
291(define (set-symbol-property! sym prop val)
292 (let ((pair (assoc prop (symbol-pref sym))))
293 (if pair
294 (set-cdr! pair val)
295 (symbol-pset! sym (acons prop val (symbol-pref sym))))))
296
297(define (symbol-property-remove! sym prop)
298 (let ((pair (assoc prop (symbol-pref sym))))
299 (if pair
300 (symbol-pset! sym (delq! pair (symbol-pref sym))))))
301
302\f
303
304;;; {Arrays}
305;;;
306
307(define (array-shape a)
308 (map (lambda (ind) (if (number? ind) (list 0 (+ -1 ind)) ind))
309 (array-dimensions a)))
310
311\f
312
313;;; {Keywords}
314;;;
315
316(define (kw-arg-ref args kw)
317 (let ((rem (member kw args)))
318 (and rem (pair? (cdr rem)) (cadr rem))))
319
320\f
321
322;;; {Structs}
323;;;
324
325(define (struct-layout s)
326 (struct-ref (struct-vtable s) vtable-index-layout))
327
328\f
329
330;;; {Environments}
331;;;
332
333(define the-environment
334 (procedure->syntax
335 (lambda (x e)
336 e)))
337
338(define the-root-environment (the-environment))
339
340(define (environment-module env)
341 (let ((closure (and (pair? env) (car (last-pair env)))))
342 (and closure (procedure-property closure 'module))))
343
344\f
345
346;;; {Records}
347;;;
348
349;; Printing records: by default, records are printed as
350;;
351;; #<type-name field1: val1 field2: val2 ...>
352;;
353;; You can change that by giving a custom printing function to
354;; MAKE-RECORD-TYPE (after the list of field symbols). This function
355;; will be called like
356;;
357;; (<printer> object port)
358;;
359;; It should print OBJECT to PORT.
360
361(define (inherit-print-state old-port new-port)
362 (if (get-print-state old-port)
363 (port-with-print-state new-port (get-print-state old-port))
364 new-port))
365
366;; 0: type-name, 1: fields
367(define record-type-vtable
368 (make-vtable-vtable "prpr" 0
369 (lambda (s p)
370 (cond ((eq? s record-type-vtable)
371 (display "#<record-type-vtable>" p))
372 (else
373 (display "#<record-type " p)
374 (display (record-type-name s) p)
375 (display ">" p))))))
376
377(define (record-type? obj)
378 (and (struct? obj) (eq? record-type-vtable (struct-vtable obj))))
379
380(define (make-record-type type-name fields . opt)
381 (let ((printer-fn (and (pair? opt) (car opt))))
382 (let ((struct (make-struct record-type-vtable 0
383 (make-struct-layout
384 (apply string-append
385 (map (lambda (f) "pw") fields)))
386 (or printer-fn
387 (lambda (s p)
388 (display "#<" p)
389 (display type-name p)
390 (let loop ((fields fields)
391 (off 0))
392 (cond
393 ((not (null? fields))
394 (display " " p)
395 (display (car fields) p)
396 (display ": " p)
397 (display (struct-ref s off) p)
398 (loop (cdr fields) (+ 1 off)))))
399 (display ">" p)))
400 type-name
401 (copy-tree fields))))
402 ;; Temporary solution: Associate a name to the record type descriptor
403 ;; so that the object system can create a wrapper class for it.
404 (set-struct-vtable-name! struct (if (symbol? type-name)
405 type-name
406 (string->symbol type-name)))
407 struct)))
408
409(define (record-type-name obj)
410 (if (record-type? obj)
411 (struct-ref obj vtable-offset-user)
412 (error 'not-a-record-type obj)))
413
414(define (record-type-fields obj)
415 (if (record-type? obj)
416 (struct-ref obj (+ 1 vtable-offset-user))
417 (error 'not-a-record-type obj)))
418
419(define (record-constructor rtd . opt)
420 (let ((field-names (if (pair? opt) (car opt) (record-type-fields rtd))))
421 (local-eval `(lambda ,field-names
422 (make-struct ',rtd 0 ,@(map (lambda (f)
423 (if (memq f field-names)
424 f
425 #f))
426 (record-type-fields rtd))))
427 the-root-environment)))
428
429(define (record-predicate rtd)
430 (lambda (obj) (and (struct? obj) (eq? rtd (struct-vtable obj)))))
431
432(define (%record-type-check rtd obj) ;; private helper
433 (or (eq? rtd (record-type-descriptor obj))
434 (scm-error 'wrong-type-arg "%record-type-check"
435 "Wrong type record (want `~S'): ~S"
436 (list (record-type-name rtd) obj)
437 #f)))
438
439(define (record-accessor rtd field-name)
440 (let* ((pos (list-index (record-type-fields rtd) field-name)))
441 (if (not pos)
442 (error 'no-such-field field-name))
443 (local-eval `(lambda (obj)
444 (%record-type-check ',rtd obj)
445 (struct-ref obj ,pos))
446 the-root-environment)))
447
448(define (record-modifier rtd field-name)
449 (let* ((pos (list-index (record-type-fields rtd) field-name)))
450 (if (not pos)
451 (error 'no-such-field field-name))
452 (local-eval `(lambda (obj val)
453 (%record-type-check ',rtd obj)
454 (struct-set! obj ,pos val))
455 the-root-environment)))
456
457
458(define (record? obj)
459 (and (struct? obj) (record-type? (struct-vtable obj))))
460
461(define (record-type-descriptor obj)
462 (if (struct? obj)
463 (struct-vtable obj)
464 (error 'not-a-record obj)))
465
466(provide 'record)
467
468\f
469
470;;; {Booleans}
471;;;
472
473(define (->bool x) (not (not x)))
474
475\f
476
477;;; {Symbols}
478;;;
479
480(define (symbol-append . args)
481 (string->symbol (apply string-append (map symbol->string args))))
482
483(define (list->symbol . args)
484 (string->symbol (apply list->string args)))
485
486(define (symbol . args)
487 (string->symbol (apply string args)))
488
489\f
490
491;;; {Lists}
492;;;
493
494(define (list-index l k)
495 (let loop ((n 0)
496 (l l))
497 (and (not (null? l))
498 (if (eq? (car l) k)
499 n
500 (loop (+ n 1) (cdr l))))))
501
502\f
503
504;;; {and-map and or-map}
505;;;
506;;; (and-map fn lst) is like (and (fn (car lst)) (fn (cadr lst)) (fn...) ...)
507;;; (or-map fn lst) is like (or (fn (car lst)) (fn (cadr lst)) (fn...) ...)
508;;;
509
510;; and-map f l
511;;
512;; Apply f to successive elements of l until exhaustion or f returns #f.
513;; If returning early, return #f. Otherwise, return the last value returned
514;; by f. If f has never been called because l is empty, return #t.
515;;
516(define (and-map f lst)
517 (let loop ((result #t)
518 (l lst))
519 (and result
520 (or (and (null? l)
521 result)
522 (loop (f (car l)) (cdr l))))))
523
524;; or-map f l
525;;
526;; Apply f to successive elements of l until exhaustion or while f returns #f.
527;; If returning early, return the return value of f.
528;;
529(define (or-map f lst)
530 (let loop ((result #f)
531 (l lst))
532 (or result
533 (and (not (null? l))
534 (loop (f (car l)) (cdr l))))))
535
536\f
537
538(if (provided? 'posix)
539 (primitive-load-path "ice-9/posix.scm"))
540
541(if (provided? 'socket)
542 (primitive-load-path "ice-9/networking.scm"))
543
544;; For reference, Emacs file-exists-p uses stat in this same way.
545;; ENHANCE-ME: Catching an exception from stat is a bit wasteful, do this in
546;; C where all that's needed is to inspect the return from stat().
547(define file-exists?
548 (if (provided? 'posix)
549 (lambda (str)
550 (->bool (false-if-exception (stat str))))
551 (lambda (str)
552 (let ((port (catch 'system-error (lambda () (open-file str OPEN_READ))
553 (lambda args #f))))
554 (if port (begin (close-port port) #t)
555 #f)))))
556
557(define file-is-directory?
558 (if (provided? 'posix)
559 (lambda (str)
560 (eq? (stat:type (stat str)) 'directory))
561 (lambda (str)
562 (let ((port (catch 'system-error
563 (lambda () (open-file (string-append str "/.")
564 OPEN_READ))
565 (lambda args #f))))
566 (if port (begin (close-port port) #t)
567 #f)))))
568
569(define (has-suffix? str suffix)
570 (let ((sufl (string-length suffix))
571 (sl (string-length str)))
572 (and (> sl sufl)
573 (string=? (substring str (- sl sufl) sl) suffix))))
574
575(define (system-error-errno args)
576 (if (eq? (car args) 'system-error)
577 (car (list-ref args 4))
578 #f))
579
580\f
581
582;;; {Error Handling}
583;;;
584
585(define (error . args)
586 (save-stack)
587 (if (null? args)
588 (scm-error 'misc-error #f "?" #f #f)
589 (let loop ((msg "~A")
590 (rest (cdr args)))
591 (if (not (null? rest))
592 (loop (string-append msg " ~S")
593 (cdr rest))
594 (scm-error 'misc-error #f msg args #f)))))
595
596;; bad-throw is the hook that is called upon a throw to a an unhandled
597;; key (unless the throw has four arguments, in which case
598;; it's usually interpreted as an error throw.)
599;; If the key has a default handler (a throw-handler-default property),
600;; it is applied to the throw.
601;;
602(define (bad-throw key . args)
603 (let ((default (symbol-property key 'throw-handler-default)))
604 (or (and default (apply default key args))
605 (apply error "unhandled-exception:" key args))))
606
607\f
608
609(define (tm:sec obj) (vector-ref obj 0))
610(define (tm:min obj) (vector-ref obj 1))
611(define (tm:hour obj) (vector-ref obj 2))
612(define (tm:mday obj) (vector-ref obj 3))
613(define (tm:mon obj) (vector-ref obj 4))
614(define (tm:year obj) (vector-ref obj 5))
615(define (tm:wday obj) (vector-ref obj 6))
616(define (tm:yday obj) (vector-ref obj 7))
617(define (tm:isdst obj) (vector-ref obj 8))
618(define (tm:gmtoff obj) (vector-ref obj 9))
619(define (tm:zone obj) (vector-ref obj 10))
620
621(define (set-tm:sec obj val) (vector-set! obj 0 val))
622(define (set-tm:min obj val) (vector-set! obj 1 val))
623(define (set-tm:hour obj val) (vector-set! obj 2 val))
624(define (set-tm:mday obj val) (vector-set! obj 3 val))
625(define (set-tm:mon obj val) (vector-set! obj 4 val))
626(define (set-tm:year obj val) (vector-set! obj 5 val))
627(define (set-tm:wday obj val) (vector-set! obj 6 val))
628(define (set-tm:yday obj val) (vector-set! obj 7 val))
629(define (set-tm:isdst obj val) (vector-set! obj 8 val))
630(define (set-tm:gmtoff obj val) (vector-set! obj 9 val))
631(define (set-tm:zone obj val) (vector-set! obj 10 val))
632
633(define (tms:clock obj) (vector-ref obj 0))
634(define (tms:utime obj) (vector-ref obj 1))
635(define (tms:stime obj) (vector-ref obj 2))
636(define (tms:cutime obj) (vector-ref obj 3))
637(define (tms:cstime obj) (vector-ref obj 4))
638
639(define file-position ftell)
640(define (file-set-position port offset . whence)
641 (let ((whence (if (eq? whence '()) SEEK_SET (car whence))))
642 (seek port offset whence)))
643
644(define (move->fdes fd/port fd)
645 (cond ((integer? fd/port)
646 (dup->fdes fd/port fd)
647 (close fd/port)
648 fd)
649 (else
650 (primitive-move->fdes fd/port fd)
651 (set-port-revealed! fd/port 1)
652 fd/port)))
653
654(define (release-port-handle port)
655 (let ((revealed (port-revealed port)))
656 (if (> revealed 0)
657 (set-port-revealed! port (- revealed 1)))))
658
659(define (dup->port port/fd mode . maybe-fd)
660 (let ((port (fdopen (apply dup->fdes port/fd maybe-fd)
661 mode)))
662 (if (pair? maybe-fd)
663 (set-port-revealed! port 1))
664 port))
665
666(define (dup->inport port/fd . maybe-fd)
667 (apply dup->port port/fd "r" maybe-fd))
668
669(define (dup->outport port/fd . maybe-fd)
670 (apply dup->port port/fd "w" maybe-fd))
671
672(define (dup port/fd . maybe-fd)
673 (if (integer? port/fd)
674 (apply dup->fdes port/fd maybe-fd)
675 (apply dup->port port/fd (port-mode port/fd) maybe-fd)))
676
677(define (duplicate-port port modes)
678 (dup->port port modes))
679
680(define (fdes->inport fdes)
681 (let loop ((rest-ports (fdes->ports fdes)))
682 (cond ((null? rest-ports)
683 (let ((result (fdopen fdes "r")))
684 (set-port-revealed! result 1)
685 result))
686 ((input-port? (car rest-ports))
687 (set-port-revealed! (car rest-ports)
688 (+ (port-revealed (car rest-ports)) 1))
689 (car rest-ports))
690 (else
691 (loop (cdr rest-ports))))))
692
693(define (fdes->outport fdes)
694 (let loop ((rest-ports (fdes->ports fdes)))
695 (cond ((null? rest-ports)
696 (let ((result (fdopen fdes "w")))
697 (set-port-revealed! result 1)
698 result))
699 ((output-port? (car rest-ports))
700 (set-port-revealed! (car rest-ports)
701 (+ (port-revealed (car rest-ports)) 1))
702 (car rest-ports))
703 (else
704 (loop (cdr rest-ports))))))
705
706(define (port->fdes port)
707 (set-port-revealed! port (+ (port-revealed port) 1))
708 (fileno port))
709
710(define (setenv name value)
711 (if value
712 (putenv (string-append name "=" value))
713 (putenv name)))
714
715(define (unsetenv name)
716 "Remove the entry for NAME from the environment."
717 (putenv name))
718
719\f
720
721;;; {Load Paths}
722;;;
723
724;;; Here for backward compatability
725;;
726(define scheme-file-suffix (lambda () ".scm"))
727
728(define (in-vicinity vicinity file)
729 (let ((tail (let ((len (string-length vicinity)))
730 (if (zero? len)
731 #f
732 (string-ref vicinity (- len 1))))))
733 (string-append vicinity
734 (if (or (not tail)
735 (eq? tail #\/))
736 ""
737 "/")
738 file)))
739
740\f
741
742;;; {Help for scm_shell}
743;;;
744;;; The argument-processing code used by Guile-based shells generates
745;;; Scheme code based on the argument list. This page contains help
746;;; functions for the code it generates.
747;;;
748
749(define (command-line) (program-arguments))
750
751;; This is mostly for the internal use of the code generated by
752;; scm_compile_shell_switches.
753
754(define (turn-on-debugging)
755 (debug-enable 'debug)
756 (debug-enable 'backtrace)
757 (read-enable 'positions))
758
759(define (load-user-init)
760 (let* ((home (or (getenv "HOME")
761 (false-if-exception (passwd:dir (getpwuid (getuid))))
762 "/")) ;; fallback for cygwin etc.
763 (init-file (in-vicinity home ".guile")))
764 (if (file-exists? init-file)
765 (primitive-load init-file))))
766
767\f
768
769;;; {Loading by paths}
770;;;
771
772;;; Load a Scheme source file named NAME, searching for it in the
773;;; directories listed in %load-path, and applying each of the file
774;;; name extensions listed in %load-extensions.
775(define (load-from-path name)
776 (start-stack 'load-stack
777 (primitive-load-path name)))
778
779
780\f
781
782;;; {Transcendental Functions}
783;;;
784;;; Derived from "Transcen.scm", Complex trancendental functions for SCM.
785;;; Written by Jerry D. Hedden, (C) FSF.
786;;; See the file `COPYING' for terms applying to this program.
787;;;
788
789(define expt
790 (let ((integer-expt integer-expt))
791 (lambda (z1 z2)
792 (cond ((and (exact? z2) (integer? z2))
793 (integer-expt z1 z2))
794 ((and (real? z2) (real? z1) (>= z1 0))
795 ($expt z1 z2))
796 (else
797 (exp (* z2 (log z1))))))))
798
799(define (sinh z)
800 (if (real? z) ($sinh z)
801 (let ((x (real-part z)) (y (imag-part z)))
802 (make-rectangular (* ($sinh x) ($cos y))
803 (* ($cosh x) ($sin y))))))
804(define (cosh z)
805 (if (real? z) ($cosh z)
806 (let ((x (real-part z)) (y (imag-part z)))
807 (make-rectangular (* ($cosh x) ($cos y))
808 (* ($sinh x) ($sin y))))))
809(define (tanh z)
810 (if (real? z) ($tanh z)
811 (let* ((x (* 2 (real-part z)))
812 (y (* 2 (imag-part z)))
813 (w (+ ($cosh x) ($cos y))))
814 (make-rectangular (/ ($sinh x) w) (/ ($sin y) w)))))
815
816(define (asinh z)
817 (if (real? z) ($asinh z)
818 (log (+ z (sqrt (+ (* z z) 1))))))
819
820(define (acosh z)
821 (if (and (real? z) (>= z 1))
822 ($acosh z)
823 (log (+ z (sqrt (- (* z z) 1))))))
824
825(define (atanh z)
826 (if (and (real? z) (> z -1) (< z 1))
827 ($atanh z)
828 (/ (log (/ (+ 1 z) (- 1 z))) 2)))
829
830(define (sin z)
831 (if (real? z) ($sin z)
832 (let ((x (real-part z)) (y (imag-part z)))
833 (make-rectangular (* ($sin x) ($cosh y))
834 (* ($cos x) ($sinh y))))))
835(define (cos z)
836 (if (real? z) ($cos z)
837 (let ((x (real-part z)) (y (imag-part z)))
838 (make-rectangular (* ($cos x) ($cosh y))
839 (- (* ($sin x) ($sinh y)))))))
840(define (tan z)
841 (if (real? z) ($tan z)
842 (let* ((x (* 2 (real-part z)))
843 (y (* 2 (imag-part z)))
844 (w (+ ($cos x) ($cosh y))))
845 (make-rectangular (/ ($sin x) w) (/ ($sinh y) w)))))
846
847(define (asin z)
848 (if (and (real? z) (>= z -1) (<= z 1))
849 ($asin z)
850 (* -i (asinh (* +i z)))))
851
852(define (acos z)
853 (if (and (real? z) (>= z -1) (<= z 1))
854 ($acos z)
855 (+ (/ (angle -1) 2) (* +i (asinh (* +i z))))))
856
857(define (atan z . y)
858 (if (null? y)
859 (if (real? z) ($atan z)
860 (/ (log (/ (- +i z) (+ +i z))) +2i))
861 ($atan2 z (car y))))
862
863\f
864
865;;; {Reader Extensions}
866;;;
867;;; Reader code for various "#c" forms.
868;;;
869
870(read-hash-extend #\' (lambda (c port)
871 (read port)))
872
873(define read-eval? (make-fluid))
874(fluid-set! read-eval? #f)
875(read-hash-extend #\.
876 (lambda (c port)
877 (if (fluid-ref read-eval?)
878 (eval (read port) (interaction-environment))
879 (error
880 "#. read expansion found and read-eval? is #f."))))
881
882\f
883
884;;; {Command Line Options}
885;;;
886
887(define (get-option argv kw-opts kw-args return)
888 (cond
889 ((null? argv)
890 (return #f #f argv))
891
892 ((or (not (eq? #\- (string-ref (car argv) 0)))
893 (eq? (string-length (car argv)) 1))
894 (return 'normal-arg (car argv) (cdr argv)))
895
896 ((eq? #\- (string-ref (car argv) 1))
897 (let* ((kw-arg-pos (or (string-index (car argv) #\=)
898 (string-length (car argv))))
899 (kw (symbol->keyword (substring (car argv) 2 kw-arg-pos)))
900 (kw-opt? (member kw kw-opts))
901 (kw-arg? (member kw kw-args))
902 (arg (or (and (not (eq? kw-arg-pos (string-length (car argv))))
903 (substring (car argv)
904 (+ kw-arg-pos 1)
905 (string-length (car argv))))
906 (and kw-arg?
907 (begin (set! argv (cdr argv)) (car argv))))))
908 (if (or kw-opt? kw-arg?)
909 (return kw arg (cdr argv))
910 (return 'usage-error kw (cdr argv)))))
911
912 (else
913 (let* ((char (substring (car argv) 1 2))
914 (kw (symbol->keyword char)))
915 (cond
916
917 ((member kw kw-opts)
918 (let* ((rest-car (substring (car argv) 2 (string-length (car argv))))
919 (new-argv (if (= 0 (string-length rest-car))
920 (cdr argv)
921 (cons (string-append "-" rest-car) (cdr argv)))))
922 (return kw #f new-argv)))
923
924 ((member kw kw-args)
925 (let* ((rest-car (substring (car argv) 2 (string-length (car argv))))
926 (arg (if (= 0 (string-length rest-car))
927 (cadr argv)
928 rest-car))
929 (new-argv (if (= 0 (string-length rest-car))
930 (cddr argv)
931 (cdr argv))))
932 (return kw arg new-argv)))
933
934 (else (return 'usage-error kw argv)))))))
935
936(define (for-next-option proc argv kw-opts kw-args)
937 (let loop ((argv argv))
938 (get-option argv kw-opts kw-args
939 (lambda (opt opt-arg argv)
940 (and opt (proc opt opt-arg argv loop))))))
941
942(define (display-usage-report kw-desc)
943 (for-each
944 (lambda (kw)
945 (or (eq? (car kw) #t)
946 (eq? (car kw) 'else)
947 (let* ((opt-desc kw)
948 (help (cadr opt-desc))
949 (opts (car opt-desc))
950 (opts-proper (if (string? (car opts)) (cdr opts) opts))
951 (arg-name (if (string? (car opts))
952 (string-append "<" (car opts) ">")
953 ""))
954 (left-part (string-append
955 (with-output-to-string
956 (lambda ()
957 (map (lambda (x) (display (keyword->symbol x)) (display " "))
958 opts-proper)))
959 arg-name))
960 (middle-part (if (and (< (string-length left-part) 30)
961 (< (string-length help) 40))
962 (make-string (- 30 (string-length left-part)) #\ )
963 "\n\t")))
964 (display left-part)
965 (display middle-part)
966 (display help)
967 (newline))))
968 kw-desc))
969
970
971
972(define (transform-usage-lambda cases)
973 (let* ((raw-usage (delq! 'else (map car cases)))
974 (usage-sans-specials (map (lambda (x)
975 (or (and (not (list? x)) x)
976 (and (symbol? (car x)) #t)
977 (and (boolean? (car x)) #t)
978 x))
979 raw-usage))
980 (usage-desc (delq! #t usage-sans-specials))
981 (kw-desc (map car usage-desc))
982 (kw-opts (apply append (map (lambda (x) (and (not (string? (car x))) x)) kw-desc)))
983 (kw-args (apply append (map (lambda (x) (and (string? (car x)) (cdr x))) kw-desc)))
984 (transmogrified-cases (map (lambda (case)
985 (cons (let ((opts (car case)))
986 (if (or (boolean? opts) (eq? 'else opts))
987 opts
988 (cond
989 ((symbol? (car opts)) opts)
990 ((boolean? (car opts)) opts)
991 ((string? (caar opts)) (cdar opts))
992 (else (car opts)))))
993 (cdr case)))
994 cases)))
995 `(let ((%display-usage (lambda () (display-usage-report ',usage-desc))))
996 (lambda (%argv)
997 (let %next-arg ((%argv %argv))
998 (get-option %argv
999 ',kw-opts
1000 ',kw-args
1001 (lambda (%opt %arg %new-argv)
1002 (case %opt
1003 ,@ transmogrified-cases))))))))
1004
1005
1006\f
1007
1008;;; {Low Level Modules}
1009;;;
1010;;; These are the low level data structures for modules.
1011;;;
1012;;; Every module object is of the type 'module-type', which is a record
1013;;; consisting of the following members:
1014;;;
1015;;; - eval-closure: the function that defines for its module the strategy that
1016;;; shall be followed when looking up symbols in the module.
1017;;;
1018;;; An eval-closure is a function taking two arguments: the symbol to be
1019;;; looked up and a boolean value telling whether a binding for the symbol
1020;;; should be created if it does not exist yet. If the symbol lookup
1021;;; succeeded (either because an existing binding was found or because a new
1022;;; binding was created), a variable object representing the binding is
1023;;; returned. Otherwise, the value #f is returned. Note that the eval
1024;;; closure does not take the module to be searched as an argument: During
1025;;; construction of the eval-closure, the eval-closure has to store the
1026;;; module it belongs to in its environment. This means, that any
1027;;; eval-closure can belong to only one module.
1028;;;
1029;;; The eval-closure of a module can be defined arbitrarily. However, three
1030;;; special cases of eval-closures are to be distinguished: During startup
1031;;; the module system is not yet activated. In this phase, no modules are
1032;;; defined and all bindings are automatically stored by the system in the
1033;;; pre-modules-obarray. Since no eval-closures exist at this time, the
1034;;; functions which require an eval-closure as their argument need to be
1035;;; passed the value #f.
1036;;;
1037;;; The other two special cases of eval-closures are the
1038;;; standard-eval-closure and the standard-interface-eval-closure. Both
1039;;; behave equally for the case that no new binding is to be created. The
1040;;; difference between the two comes in, when the boolean argument to the
1041;;; eval-closure indicates that a new binding shall be created if it is not
1042;;; found.
1043;;;
1044;;; Given that no new binding shall be created, both standard eval-closures
1045;;; define the following standard strategy of searching bindings in the
1046;;; module: First, the module's obarray is searched for the symbol. Second,
1047;;; if no binding for the symbol was found in the module's obarray, the
1048;;; module's binder procedure is exececuted. If this procedure did not
1049;;; return a binding for the symbol, the modules referenced in the module's
1050;;; uses list are recursively searched for a binding of the symbol. If the
1051;;; binding can not be found in these modules also, the symbol lookup has
1052;;; failed.
1053;;;
1054;;; If a new binding shall be created, the standard-interface-eval-closure
1055;;; immediately returns indicating failure. That is, it does not even try
1056;;; to look up the symbol. In contrast, the standard-eval-closure would
1057;;; first search the obarray, and if no binding was found there, would
1058;;; create a new binding in the obarray, therefore not calling the binder
1059;;; procedure or searching the modules in the uses list.
1060;;;
1061;;; The explanation of the following members obarray, binder and uses
1062;;; assumes that the symbol lookup follows the strategy that is defined in
1063;;; the standard-eval-closure and the standard-interface-eval-closure.
1064;;;
1065;;; - obarray: a hash table that maps symbols to variable objects. In this
1066;;; hash table, the definitions are found that are local to the module (that
1067;;; is, not imported from other modules). When looking up bindings in the
1068;;; module, this hash table is searched first.
1069;;;
1070;;; - binder: either #f or a function taking a module and a symbol argument.
1071;;; If it is a function it is called after the obarray has been
1072;;; unsuccessfully searched for a binding. It then can provide bindings
1073;;; that would otherwise not be found locally in the module.
1074;;;
1075;;; - uses: a list of modules from which non-local bindings can be inherited.
1076;;; These modules are the third place queried for bindings after the obarray
1077;;; has been unsuccessfully searched and the binder function did not deliver
1078;;; a result either.
1079;;;
1080;;; - transformer: either #f or a function taking a scheme expression as
1081;;; delivered by read. If it is a function, it will be called to perform
1082;;; syntax transformations (e. g. makro expansion) on the given scheme
1083;;; expression. The output of the transformer function will then be passed
1084;;; to Guile's internal memoizer. This means that the output must be valid
1085;;; scheme code. The only exception is, that the output may make use of the
1086;;; syntax extensions provided to identify the modules that a binding
1087;;; belongs to.
1088;;;
1089;;; - name: the name of the module. This is used for all kinds of printing
1090;;; outputs. In certain places the module name also serves as a way of
1091;;; identification. When adding a module to the uses list of another
1092;;; module, it is made sure that the new uses list will not contain two
1093;;; modules of the same name.
1094;;;
1095;;; - kind: classification of the kind of module. The value is (currently?)
1096;;; only used for printing. It has no influence on how a module is treated.
1097;;; Currently the following values are used when setting the module kind:
1098;;; 'module, 'directory, 'interface, 'custom-interface. If no explicit kind
1099;;; is set, it defaults to 'module.
1100;;;
1101;;; - duplicates-handlers: a list of procedures that get called to make a
1102;;; choice between two duplicate bindings when name clashes occur. See the
1103;;; `duplicate-handlers' global variable below.
1104;;;
1105;;; - observers: a list of procedures that get called when the module is
1106;;; modified.
1107;;;
1108;;; - weak-observers: a weak-key hash table of procedures that get called
1109;;; when the module is modified. See `module-observe-weak' for details.
1110;;;
1111;;; In addition, the module may (must?) contain a binding for
1112;;; `%module-public-interface'. This variable should be bound to a module
1113;;; representing the exported interface of a module. See the
1114;;; `module-public-interface' and `module-export!' procedures.
1115;;;
1116;;; !!! warning: The interface to lazy binder procedures is going
1117;;; to be changed in an incompatible way to permit all the basic
1118;;; module ops to be virtualized.
1119;;;
1120;;; (make-module size use-list lazy-binding-proc) => module
1121;;; module-{obarray,uses,binder}[|-set!]
1122;;; (module? obj) => [#t|#f]
1123;;; (module-locally-bound? module symbol) => [#t|#f]
1124;;; (module-bound? module symbol) => [#t|#f]
1125;;; (module-symbol-locally-interned? module symbol) => [#t|#f]
1126;;; (module-symbol-interned? module symbol) => [#t|#f]
1127;;; (module-local-variable module symbol) => [#<variable ...> | #f]
1128;;; (module-variable module symbol) => [#<variable ...> | #f]
1129;;; (module-symbol-binding module symbol opt-value)
1130;;; => [ <obj> | opt-value | an error occurs ]
1131;;; (module-make-local-var! module symbol) => #<variable...>
1132;;; (module-add! module symbol var) => unspecified
1133;;; (module-remove! module symbol) => unspecified
1134;;; (module-for-each proc module) => unspecified
1135;;; (make-scm-module) => module ; a lazy copy of the symhash module
1136;;; (set-current-module module) => unspecified
1137;;; (current-module) => #<module...>
1138;;;
1139;;;
1140
1141\f
1142
1143;;; {Printing Modules}
1144;;;
1145
1146;; This is how modules are printed. You can re-define it.
1147;; (Redefining is actually more complicated than simply redefining
1148;; %print-module because that would only change the binding and not
1149;; the value stored in the vtable that determines how record are
1150;; printed. Sigh.)
1151
1152(define (%print-module mod port) ; unused args: depth length style table)
1153 (display "#<" port)
1154 (display (or (module-kind mod) "module") port)
1155 (let ((name (module-name mod)))
1156 (if name
1157 (begin
1158 (display " " port)
1159 (display name port))))
1160 (display " " port)
1161 (display (number->string (object-address mod) 16) port)
1162 (display ">" port))
1163
1164;; module-type
1165;;
1166;; A module is characterized by an obarray in which local symbols
1167;; are interned, a list of modules, "uses", from which non-local
1168;; bindings can be inherited, and an optional lazy-binder which
1169;; is a (CLOSURE module symbol) which, as a last resort, can provide
1170;; bindings that would otherwise not be found locally in the module.
1171;;
1172;; NOTE: If you change anything here, you also need to change
1173;; libguile/modules.h.
1174;;
1175(define module-type
1176 (make-record-type 'module
1177 '(obarray uses binder eval-closure transformer name kind
1178 duplicates-handlers import-obarray
1179 observers weak-observers)
1180 %print-module))
1181
1182;; make-module &opt size uses binder
1183;;
1184;; Create a new module, perhaps with a particular size of obarray,
1185;; initial uses list, or binding procedure.
1186;;
1187(define make-module
1188 (lambda args
1189
1190 (define (parse-arg index default)
1191 (if (> (length args) index)
1192 (list-ref args index)
1193 default))
1194
1195 (define %default-import-size
1196 ;; Typical number of imported bindings actually used by a module.
1197 600)
1198
1199 (if (> (length args) 3)
1200 (error "Too many args to make-module." args))
1201
1202 (let ((size (parse-arg 0 31))
1203 (uses (parse-arg 1 '()))
1204 (binder (parse-arg 2 #f)))
1205
1206 (if (not (integer? size))
1207 (error "Illegal size to make-module." size))
1208 (if (not (and (list? uses)
1209 (and-map module? uses)))
1210 (error "Incorrect use list." uses))
1211 (if (and binder (not (procedure? binder)))
1212 (error
1213 "Lazy-binder expected to be a procedure or #f." binder))
1214
1215 (let ((module (module-constructor (make-hash-table size)
1216 uses binder #f #f #f #f #f
1217 (make-hash-table %default-import-size)
1218 '()
1219 (make-weak-key-hash-table 31))))
1220
1221 ;; We can't pass this as an argument to module-constructor,
1222 ;; because we need it to close over a pointer to the module
1223 ;; itself.
1224 (set-module-eval-closure! module (standard-eval-closure module))
1225
1226 module))))
1227
1228(define module-constructor (record-constructor module-type))
1229(define module-obarray (record-accessor module-type 'obarray))
1230(define set-module-obarray! (record-modifier module-type 'obarray))
1231(define module-uses (record-accessor module-type 'uses))
1232(define set-module-uses! (record-modifier module-type 'uses))
1233(define module-binder (record-accessor module-type 'binder))
1234(define set-module-binder! (record-modifier module-type 'binder))
1235
1236;; NOTE: This binding is used in libguile/modules.c.
1237(define module-eval-closure (record-accessor module-type 'eval-closure))
1238
1239(define module-transformer (record-accessor module-type 'transformer))
1240(define set-module-transformer! (record-modifier module-type 'transformer))
1241(define module-name (record-accessor module-type 'name))
1242(define set-module-name! (record-modifier module-type 'name))
1243(define module-kind (record-accessor module-type 'kind))
1244(define set-module-kind! (record-modifier module-type 'kind))
1245(define module-duplicates-handlers
1246 (record-accessor module-type 'duplicates-handlers))
1247(define set-module-duplicates-handlers!
1248 (record-modifier module-type 'duplicates-handlers))
1249(define module-observers (record-accessor module-type 'observers))
1250(define set-module-observers! (record-modifier module-type 'observers))
1251(define module-weak-observers (record-accessor module-type 'weak-observers))
1252(define module? (record-predicate module-type))
1253
1254(define module-import-obarray (record-accessor module-type 'import-obarray))
1255
1256(define set-module-eval-closure!
1257 (let ((setter (record-modifier module-type 'eval-closure)))
1258 (lambda (module closure)
1259 (setter module closure)
1260 ;; Make it possible to lookup the module from the environment.
1261 ;; This implementation is correct since an eval closure can belong
1262 ;; to maximally one module.
1263 (set-procedure-property! closure 'module module))))
1264
1265\f
1266
1267;;; {Observer protocol}
1268;;;
1269
1270(define (module-observe module proc)
1271 (set-module-observers! module (cons proc (module-observers module)))
1272 (cons module proc))
1273
1274(define (module-observe-weak module observer-id . proc)
1275 ;; Register PROC as an observer of MODULE under name OBSERVER-ID (which can
1276 ;; be any Scheme object). PROC is invoked and passed MODULE any time
1277 ;; MODULE is modified. PROC gets unregistered when OBSERVER-ID gets GC'd
1278 ;; (thus, it is never unregistered if OBSERVER-ID is an immediate value,
1279 ;; for instance).
1280
1281 ;; The two-argument version is kept for backward compatibility: when called
1282 ;; with two arguments, the observer gets unregistered when closure PROC
1283 ;; gets GC'd (making it impossible to use an anonymous lambda for PROC).
1284
1285 (let ((proc (if (null? proc) observer-id (car proc))))
1286 (hashq-set! (module-weak-observers module) observer-id proc)))
1287
1288(define (module-unobserve token)
1289 (let ((module (car token))
1290 (id (cdr token)))
1291 (if (integer? id)
1292 (hash-remove! (module-weak-observers module) id)
1293 (set-module-observers! module (delq1! id (module-observers module)))))
1294 *unspecified*)
1295
1296(define module-defer-observers #f)
1297(define module-defer-observers-mutex (make-mutex))
1298(define module-defer-observers-table (make-hash-table))
1299
1300(define (module-modified m)
1301 (if module-defer-observers
1302 (hash-set! module-defer-observers-table m #t)
1303 (module-call-observers m)))
1304
1305;;; This function can be used to delay calls to observers so that they
1306;;; can be called once only in the face of massive updating of modules.
1307;;;
1308(define (call-with-deferred-observers thunk)
1309 (dynamic-wind
1310 (lambda ()
1311 (lock-mutex module-defer-observers-mutex)
1312 (set! module-defer-observers #t))
1313 thunk
1314 (lambda ()
1315 (set! module-defer-observers #f)
1316 (hash-for-each (lambda (m dummy)
1317 (module-call-observers m))
1318 module-defer-observers-table)
1319 (hash-clear! module-defer-observers-table)
1320 (unlock-mutex module-defer-observers-mutex))))
1321
1322(define (module-call-observers m)
1323 (for-each (lambda (proc) (proc m)) (module-observers m))
1324
1325 ;; We assume that weak observers don't (un)register themselves as they are
1326 ;; called since this would preclude proper iteration over the hash table
1327 ;; elements.
1328 (hash-for-each (lambda (id proc) (proc m)) (module-weak-observers m)))
1329
1330\f
1331
1332;;; {Module Searching in General}
1333;;;
1334;;; We sometimes want to look for properties of a symbol
1335;;; just within the obarray of one module. If the property
1336;;; holds, then it is said to hold ``locally'' as in, ``The symbol
1337;;; DISPLAY is locally rebound in the module `safe-guile'.''
1338;;;
1339;;;
1340;;; Other times, we want to test for a symbol property in the obarray
1341;;; of M and, if it is not found there, try each of the modules in the
1342;;; uses list of M. This is the normal way of testing for some
1343;;; property, so we state these properties without qualification as
1344;;; in: ``The symbol 'fnord is interned in module M because it is
1345;;; interned locally in module M2 which is a member of the uses list
1346;;; of M.''
1347;;;
1348
1349;; module-search fn m
1350;;
1351;; return the first non-#f result of FN applied to M and then to
1352;; the modules in the uses of m, and so on recursively. If all applications
1353;; return #f, then so does this function.
1354;;
1355(define (module-search fn m v)
1356 (define (loop pos)
1357 (and (pair? pos)
1358 (or (module-search fn (car pos) v)
1359 (loop (cdr pos)))))
1360 (or (fn m v)
1361 (loop (module-uses m))))
1362
1363
1364;;; {Is a symbol bound in a module?}
1365;;;
1366;;; Symbol S in Module M is bound if S is interned in M and if the binding
1367;;; of S in M has been set to some well-defined value.
1368;;;
1369
1370;; module-locally-bound? module symbol
1371;;
1372;; Is a symbol bound (interned and defined) locally in a given module?
1373;;
1374(define (module-locally-bound? m v)
1375 (let ((var (module-local-variable m v)))
1376 (and var
1377 (variable-bound? var))))
1378
1379;; module-bound? module symbol
1380;;
1381;; Is a symbol bound (interned and defined) anywhere in a given module
1382;; or its uses?
1383;;
1384(define (module-bound? m v)
1385 (module-search module-locally-bound? m v))
1386
1387;;; {Is a symbol interned in a module?}
1388;;;
1389;;; Symbol S in Module M is interned if S occurs in
1390;;; of S in M has been set to some well-defined value.
1391;;;
1392;;; It is possible to intern a symbol in a module without providing
1393;;; an initial binding for the corresponding variable. This is done
1394;;; with:
1395;;; (module-add! module symbol (make-undefined-variable))
1396;;;
1397;;; In that case, the symbol is interned in the module, but not
1398;;; bound there. The unbound symbol shadows any binding for that
1399;;; symbol that might otherwise be inherited from a member of the uses list.
1400;;;
1401
1402(define (module-obarray-get-handle ob key)
1403 ((if (symbol? key) hashq-get-handle hash-get-handle) ob key))
1404
1405(define (module-obarray-ref ob key)
1406 ((if (symbol? key) hashq-ref hash-ref) ob key))
1407
1408(define (module-obarray-set! ob key val)
1409 ((if (symbol? key) hashq-set! hash-set!) ob key val))
1410
1411(define (module-obarray-remove! ob key)
1412 ((if (symbol? key) hashq-remove! hash-remove!) ob key))
1413
1414;; module-symbol-locally-interned? module symbol
1415;;
1416;; is a symbol interned (not neccessarily defined) locally in a given module
1417;; or its uses? Interned symbols shadow inherited bindings even if
1418;; they are not themselves bound to a defined value.
1419;;
1420(define (module-symbol-locally-interned? m v)
1421 (not (not (module-obarray-get-handle (module-obarray m) v))))
1422
1423;; module-symbol-interned? module symbol
1424;;
1425;; is a symbol interned (not neccessarily defined) anywhere in a given module
1426;; or its uses? Interned symbols shadow inherited bindings even if
1427;; they are not themselves bound to a defined value.
1428;;
1429(define (module-symbol-interned? m v)
1430 (module-search module-symbol-locally-interned? m v))
1431
1432
1433;;; {Mapping modules x symbols --> variables}
1434;;;
1435
1436;; module-local-variable module symbol
1437;; return the local variable associated with a MODULE and SYMBOL.
1438;;
1439;;; This function is very important. It is the only function that can
1440;;; return a variable from a module other than the mutators that store
1441;;; new variables in modules. Therefore, this function is the location
1442;;; of the "lazy binder" hack.
1443;;;
1444;;; If symbol is defined in MODULE, and if the definition binds symbol
1445;;; to a variable, return that variable object.
1446;;;
1447;;; If the symbols is not found at first, but the module has a lazy binder,
1448;;; then try the binder.
1449;;;
1450;;; If the symbol is not found at all, return #f.
1451;;;
1452;;; (This is now written in C, see `modules.c'.)
1453;;;
1454
1455;;; {Mapping modules x symbols --> bindings}
1456;;;
1457;;; These are similar to the mapping to variables, except that the
1458;;; variable is dereferenced.
1459;;;
1460
1461;; module-symbol-binding module symbol opt-value
1462;;
1463;; return the binding of a variable specified by name within
1464;; a given module, signalling an error if the variable is unbound.
1465;; If the OPT-VALUE is passed, then instead of signalling an error,
1466;; return OPT-VALUE.
1467;;
1468(define (module-symbol-local-binding m v . opt-val)
1469 (let ((var (module-local-variable m v)))
1470 (if (and var (variable-bound? var))
1471 (variable-ref var)
1472 (if (not (null? opt-val))
1473 (car opt-val)
1474 (error "Locally unbound variable." v)))))
1475
1476;; module-symbol-binding module symbol opt-value
1477;;
1478;; return the binding of a variable specified by name within
1479;; a given module, signalling an error if the variable is unbound.
1480;; If the OPT-VALUE is passed, then instead of signalling an error,
1481;; return OPT-VALUE.
1482;;
1483(define (module-symbol-binding m v . opt-val)
1484 (let ((var (module-variable m v)))
1485 (if (and var (variable-bound? var))
1486 (variable-ref var)
1487 (if (not (null? opt-val))
1488 (car opt-val)
1489 (error "Unbound variable." v)))))
1490
1491
1492\f
1493
1494;;; {Adding Variables to Modules}
1495;;;
1496
1497;; module-make-local-var! module symbol
1498;;
1499;; ensure a variable for V in the local namespace of M.
1500;; If no variable was already there, then create a new and uninitialzied
1501;; variable.
1502;;
1503;; This function is used in modules.c.
1504;;
1505(define (module-make-local-var! m v)
1506 (or (let ((b (module-obarray-ref (module-obarray m) v)))
1507 (and (variable? b)
1508 (begin
1509 ;; Mark as modified since this function is called when
1510 ;; the standard eval closure defines a binding
1511 (module-modified m)
1512 b)))
1513
1514 ;; Create a new local variable.
1515 (let ((local-var (make-undefined-variable)))
1516 (module-add! m v local-var)
1517 local-var)))
1518
1519;; module-ensure-local-variable! module symbol
1520;;
1521;; Ensure that there is a local variable in MODULE for SYMBOL. If
1522;; there is no binding for SYMBOL, create a new uninitialized
1523;; variable. Return the local variable.
1524;;
1525(define (module-ensure-local-variable! module symbol)
1526 (or (module-local-variable module symbol)
1527 (let ((var (make-undefined-variable)))
1528 (module-add! module symbol var)
1529 var)))
1530
1531;; module-add! module symbol var
1532;;
1533;; ensure a particular variable for V in the local namespace of M.
1534;;
1535(define (module-add! m v var)
1536 (if (not (variable? var))
1537 (error "Bad variable to module-add!" var))
1538 (module-obarray-set! (module-obarray m) v var)
1539 (module-modified m))
1540
1541;; module-remove!
1542;;
1543;; make sure that a symbol is undefined in the local namespace of M.
1544;;
1545(define (module-remove! m v)
1546 (module-obarray-remove! (module-obarray m) v)
1547 (module-modified m))
1548
1549(define (module-clear! m)
1550 (hash-clear! (module-obarray m))
1551 (module-modified m))
1552
1553;; MODULE-FOR-EACH -- exported
1554;;
1555;; Call PROC on each symbol in MODULE, with arguments of (SYMBOL VARIABLE).
1556;;
1557(define (module-for-each proc module)
1558 (hash-for-each proc (module-obarray module)))
1559
1560(define (module-map proc module)
1561 (hash-map->list proc (module-obarray module)))
1562
1563\f
1564
1565;;; {Low Level Bootstrapping}
1566;;;
1567
1568;; make-root-module
1569
1570;; A root module uses the pre-modules-obarray as its obarray. This
1571;; special obarray accumulates all bindings that have been established
1572;; before the module system is fully booted.
1573;;
1574;; (The obarray continues to be used by code that has been closed over
1575;; before the module system has been booted.)
1576
1577(define (make-root-module)
1578 (let ((m (make-module 0)))
1579 (set-module-obarray! m (%get-pre-modules-obarray))
1580 m))
1581
1582;; make-scm-module
1583
1584;; The root interface is a module that uses the same obarray as the
1585;; root module. It does not allow new definitions, tho.
1586
1587(define (make-scm-module)
1588 (let ((m (make-module 0)))
1589 (set-module-obarray! m (%get-pre-modules-obarray))
1590 (set-module-eval-closure! m (standard-interface-eval-closure m))
1591 m))
1592
1593
1594\f
1595
1596;;; {Module-based Loading}
1597;;;
1598
1599(define (save-module-excursion thunk)
1600 (let ((inner-module (current-module))
1601 (outer-module #f))
1602 (dynamic-wind (lambda ()
1603 (set! outer-module (current-module))
1604 (set-current-module inner-module)
1605 (set! inner-module #f))
1606 thunk
1607 (lambda ()
1608 (set! inner-module (current-module))
1609 (set-current-module outer-module)
1610 (set! outer-module #f)))))
1611
1612(define basic-load load)
1613
1614(define (load-module filename . reader)
1615 (save-module-excursion
1616 (lambda ()
1617 (let ((oldname (and (current-load-port)
1618 (port-filename (current-load-port)))))
1619 (apply basic-load
1620 (if (and oldname
1621 (> (string-length filename) 0)
1622 (not (char=? (string-ref filename 0) #\/))
1623 (not (string=? (dirname oldname) ".")))
1624 (string-append (dirname oldname) "/" filename)
1625 filename)
1626 reader)))))
1627
1628
1629\f
1630
1631;;; {MODULE-REF -- exported}
1632;;;
1633
1634;; Returns the value of a variable called NAME in MODULE or any of its
1635;; used modules. If there is no such variable, then if the optional third
1636;; argument DEFAULT is present, it is returned; otherwise an error is signaled.
1637;;
1638(define (module-ref module name . rest)
1639 (let ((variable (module-variable module name)))
1640 (if (and variable (variable-bound? variable))
1641 (variable-ref variable)
1642 (if (null? rest)
1643 (error "No variable named" name 'in module)
1644 (car rest) ; default value
1645 ))))
1646
1647;; MODULE-SET! -- exported
1648;;
1649;; Sets the variable called NAME in MODULE (or in a module that MODULE uses)
1650;; to VALUE; if there is no such variable, an error is signaled.
1651;;
1652(define (module-set! module name value)
1653 (let ((variable (module-variable module name)))
1654 (if variable
1655 (variable-set! variable value)
1656 (error "No variable named" name 'in module))))
1657
1658;; MODULE-DEFINE! -- exported
1659;;
1660;; Sets the variable called NAME in MODULE to VALUE; if there is no such
1661;; variable, it is added first.
1662;;
1663(define (module-define! module name value)
1664 (let ((variable (module-local-variable module name)))
1665 (if variable
1666 (begin
1667 (variable-set! variable value)
1668 (module-modified module))
1669 (let ((variable (make-variable value)))
1670 (module-add! module name variable)))))
1671
1672;; MODULE-DEFINED? -- exported
1673;;
1674;; Return #t iff NAME is defined in MODULE (or in a module that MODULE
1675;; uses)
1676;;
1677(define (module-defined? module name)
1678 (let ((variable (module-variable module name)))
1679 (and variable (variable-bound? variable))))
1680
1681;; MODULE-USE! module interface
1682;;
1683;; Add INTERFACE to the list of interfaces used by MODULE.
1684;;
1685(define (module-use! module interface)
1686 (if (not (eq? module interface))
1687 (begin
1688 ;; Newly used modules must be appended rather than consed, so that
1689 ;; `module-variable' traverses the use list starting from the first
1690 ;; used module.
1691 (set-module-uses! module
1692 (append (filter (lambda (m)
1693 (not
1694 (equal? (module-name m)
1695 (module-name interface))))
1696 (module-uses module))
1697 (list interface)))
1698
1699 (module-modified module))))
1700
1701;; MODULE-USE-INTERFACES! module interfaces
1702;;
1703;; Same as MODULE-USE! but add multiple interfaces and check for duplicates
1704;;
1705(define (module-use-interfaces! module interfaces)
1706 (set-module-uses! module
1707 (append (module-uses module) interfaces))
1708 (module-modified module))
1709
1710\f
1711
1712;;; {Recursive Namespaces}
1713;;;
1714;;; A hierarchical namespace emerges if we consider some module to be
1715;;; root, and variables bound to modules as nested namespaces.
1716;;;
1717;;; The routines in this file manage variable names in hierarchical namespace.
1718;;; Each variable name is a list of elements, looked up in successively nested
1719;;; modules.
1720;;;
1721;;; (nested-ref some-root-module '(foo bar baz))
1722;;; => <value of a variable named baz in the module bound to bar in
1723;;; the module bound to foo in some-root-module>
1724;;;
1725;;;
1726;;; There are:
1727;;;
1728;;; ;; a-root is a module
1729;;; ;; name is a list of symbols
1730;;;
1731;;; nested-ref a-root name
1732;;; nested-set! a-root name val
1733;;; nested-define! a-root name val
1734;;; nested-remove! a-root name
1735;;;
1736;;;
1737;;; (current-module) is a natural choice for a-root so for convenience there are
1738;;; also:
1739;;;
1740;;; local-ref name == nested-ref (current-module) name
1741;;; local-set! name val == nested-set! (current-module) name val
1742;;; local-define! name val == nested-define! (current-module) name val
1743;;; local-remove! name == nested-remove! (current-module) name
1744;;;
1745
1746
1747(define (nested-ref root names)
1748 (let loop ((cur root)
1749 (elts names))
1750 (cond
1751 ((null? elts) cur)
1752 ((not (module? cur)) #f)
1753 (else (loop (module-ref cur (car elts) #f) (cdr elts))))))
1754
1755(define (nested-set! root names val)
1756 (let loop ((cur root)
1757 (elts names))
1758 (if (null? (cdr elts))
1759 (module-set! cur (car elts) val)
1760 (loop (module-ref cur (car elts)) (cdr elts)))))
1761
1762(define (nested-define! root names val)
1763 (let loop ((cur root)
1764 (elts names))
1765 (if (null? (cdr elts))
1766 (module-define! cur (car elts) val)
1767 (loop (module-ref cur (car elts)) (cdr elts)))))
1768
1769(define (nested-remove! root names)
1770 (let loop ((cur root)
1771 (elts names))
1772 (if (null? (cdr elts))
1773 (module-remove! cur (car elts))
1774 (loop (module-ref cur (car elts)) (cdr elts)))))
1775
1776(define (local-ref names) (nested-ref (current-module) names))
1777(define (local-set! names val) (nested-set! (current-module) names val))
1778(define (local-define names val) (nested-define! (current-module) names val))
1779(define (local-remove names) (nested-remove! (current-module) names))
1780
1781
1782\f
1783
1784;;; {The (%app) module}
1785;;;
1786;;; The root of conventionally named objects not directly in the top level.
1787;;;
1788;;; (%app modules)
1789;;; (%app modules guile)
1790;;;
1791;;; The directory of all modules and the standard root module.
1792;;;
1793
1794(define (module-public-interface m)
1795 (module-ref m '%module-public-interface #f))
1796(define (set-module-public-interface! m i)
1797 (module-define! m '%module-public-interface i))
1798(define (set-system-module! m s)
1799 (set-procedure-property! (module-eval-closure m) 'system-module s))
1800(define the-root-module (make-root-module))
1801(define the-scm-module (make-scm-module))
1802(set-module-public-interface! the-root-module the-scm-module)
1803(set-module-name! the-root-module '(guile))
1804(set-module-name! the-scm-module '(guile))
1805(set-module-kind! the-scm-module 'interface)
1806(for-each set-system-module! (list the-root-module the-scm-module) '(#t #t))
1807
1808;; NOTE: This binding is used in libguile/modules.c.
1809;;
1810(define (make-modules-in module name)
1811 (if (null? name)
1812 module
1813 (cond
1814 ((module-ref module (car name) #f)
1815 => (lambda (m) (make-modules-in m (cdr name))))
1816 (else (let ((m (make-module 31)))
1817 (set-module-kind! m 'directory)
1818 (set-module-name! m (append (or (module-name module)
1819 '())
1820 (list (car name))))
1821 (module-define! module (car name) m)
1822 (make-modules-in m (cdr name)))))))
1823
1824(define (beautify-user-module! module)
1825 (let ((interface (module-public-interface module)))
1826 (if (or (not interface)
1827 (eq? interface module))
1828 (let ((interface (make-module 31)))
1829 (set-module-name! interface (module-name module))
1830 (set-module-kind! interface 'interface)
1831 (set-module-public-interface! module interface))))
1832 (if (and (not (memq the-scm-module (module-uses module)))
1833 (not (eq? module the-root-module)))
1834 ;; Import the default set of bindings (from the SCM module) in MODULE.
1835 (module-use! module the-scm-module)))
1836
1837;; NOTE: This binding is used in libguile/modules.c.
1838;;
1839(define (resolve-module name . maybe-autoload)
1840 (let ((full-name (append '(%app modules) name)))
1841 (let ((already (nested-ref the-root-module full-name)))
1842 (if already
1843 ;; The module already exists...
1844 (if (and (or (null? maybe-autoload) (car maybe-autoload))
1845 (not (module-public-interface already)))
1846 ;; ...but we are told to load and it doesn't contain source, so
1847 (begin
1848 (try-load-module name)
1849 already)
1850 ;; simply return it.
1851 already)
1852 (begin
1853 ;; Try to autoload it if we are told so
1854 (if (or (null? maybe-autoload) (car maybe-autoload))
1855 (try-load-module name))
1856 ;; Get/create it.
1857 (make-modules-in (current-module) full-name))))))
1858
1859;; Cheat. These bindings are needed by modules.c, but we don't want
1860;; to move their real definition here because that would be unnatural.
1861;;
1862(define try-module-autoload #f)
1863(define process-define-module #f)
1864(define process-use-modules #f)
1865(define module-export! #f)
1866(define default-duplicate-binding-procedures #f)
1867
1868;; This boots the module system. All bindings needed by modules.c
1869;; must have been defined by now.
1870;;
1871(set-current-module the-root-module)
1872
1873(define %app (make-module 31))
1874(define app %app) ;; for backwards compatability
1875(local-define '(%app modules) (make-module 31))
1876(local-define '(%app modules guile) the-root-module)
1877
1878;; (define-special-value '(%app modules new-ws) (lambda () (make-scm-module)))
1879
1880(define (try-load-module name)
1881 (or (begin-deprecated (try-module-linked name))
1882 (try-module-autoload name)
1883 (begin-deprecated (try-module-dynamic-link name))))
1884
1885(define (purify-module! module)
1886 "Removes bindings in MODULE which are inherited from the (guile) module."
1887 (let ((use-list (module-uses module)))
1888 (if (and (pair? use-list)
1889 (eq? (car (last-pair use-list)) the-scm-module))
1890 (set-module-uses! module (reverse (cdr (reverse use-list)))))))
1891
1892;; Return a module that is an interface to the module designated by
1893;; NAME.
1894;;
1895;; `resolve-interface' takes four keyword arguments:
1896;;
1897;; #:select SELECTION
1898;;
1899;; SELECTION is a list of binding-specs to be imported; A binding-spec
1900;; is either a symbol or a pair of symbols (ORIG . SEEN), where ORIG
1901;; is the name in the used module and SEEN is the name in the using
1902;; module. Note that SEEN is also passed through RENAMER, below. The
1903;; default is to select all bindings. If you specify no selection but
1904;; a renamer, only the bindings that already exist in the used module
1905;; are made available in the interface. Bindings that are added later
1906;; are not picked up.
1907;;
1908;; #:hide BINDINGS
1909;;
1910;; BINDINGS is a list of bindings which should not be imported.
1911;;
1912;; #:prefix PREFIX
1913;;
1914;; PREFIX is a symbol that will be appended to each exported name.
1915;; The default is to not perform any renaming.
1916;;
1917;; #:renamer RENAMER
1918;;
1919;; RENAMER is a procedure that takes a symbol and returns its new
1920;; name. The default is not perform any renaming.
1921;;
1922;; Signal "no code for module" error if module name is not resolvable
1923;; or its public interface is not available. Signal "no binding"
1924;; error if selected binding does not exist in the used module.
1925;;
1926(define (resolve-interface name . args)
1927
1928 (define (get-keyword-arg args kw def)
1929 (cond ((memq kw args)
1930 => (lambda (kw-arg)
1931 (if (null? (cdr kw-arg))
1932 (error "keyword without value: " kw))
1933 (cadr kw-arg)))
1934 (else
1935 def)))
1936
1937 (let* ((select (get-keyword-arg args #:select #f))
1938 (hide (get-keyword-arg args #:hide '()))
1939 (renamer (or (get-keyword-arg args #:renamer #f)
1940 (let ((prefix (get-keyword-arg args #:prefix #f)))
1941 (and prefix (symbol-prefix-proc prefix)))
1942 identity))
1943 (module (resolve-module name))
1944 (public-i (and module (module-public-interface module))))
1945 (and (or (not module) (not public-i))
1946 (error "no code for module" name))
1947 (if (and (not select) (null? hide) (eq? renamer identity))
1948 public-i
1949 (let ((selection (or select (module-map (lambda (sym var) sym)
1950 public-i)))
1951 (custom-i (make-module 31)))
1952 (set-module-kind! custom-i 'custom-interface)
1953 (set-module-name! custom-i name)
1954 ;; XXX - should use a lazy binder so that changes to the
1955 ;; used module are picked up automatically.
1956 (for-each (lambda (bspec)
1957 (let* ((direct? (symbol? bspec))
1958 (orig (if direct? bspec (car bspec)))
1959 (seen (if direct? bspec (cdr bspec)))
1960 (var (or (module-local-variable public-i orig)
1961 (module-local-variable module orig)
1962 (error
1963 ;; fixme: format manually for now
1964 (simple-format
1965 #f "no binding `~A' in module ~A"
1966 orig name)))))
1967 (if (memq orig hide)
1968 (set! hide (delq! orig hide))
1969 (module-add! custom-i
1970 (renamer seen)
1971 var))))
1972 selection)
1973 ;; Check that we are not hiding bindings which don't exist
1974 (for-each (lambda (binding)
1975 (if (not (module-local-variable public-i binding))
1976 (error
1977 (simple-format
1978 #f "no binding `~A' to hide in module ~A"
1979 binding name))))
1980 hide)
1981 custom-i))))
1982
1983(define (symbol-prefix-proc prefix)
1984 (lambda (symbol)
1985 (symbol-append prefix symbol)))
1986
1987;; This function is called from "modules.c". If you change it, be
1988;; sure to update "modules.c" as well.
1989
1990(define (process-define-module args)
1991 (let* ((module-id (car args))
1992 (module (resolve-module module-id #f))
1993 (kws (cdr args))
1994 (unrecognized (lambda (arg)
1995 (error "unrecognized define-module argument" arg))))
1996 (beautify-user-module! module)
1997 (let loop ((kws kws)
1998 (reversed-interfaces '())
1999 (exports '())
2000 (re-exports '())
2001 (replacements '())
2002 (autoloads '()))
2003
2004 (if (null? kws)
2005 (call-with-deferred-observers
2006 (lambda ()
2007 (module-use-interfaces! module (reverse reversed-interfaces))
2008 (module-export! module exports)
2009 (module-replace! module replacements)
2010 (module-re-export! module re-exports)
2011 (if (not (null? autoloads))
2012 (apply module-autoload! module autoloads))))
2013 (case (car kws)
2014 ((#:use-module #:use-syntax)
2015 (or (pair? (cdr kws))
2016 (unrecognized kws))
2017 (let* ((interface-args (cadr kws))
2018 (interface (apply resolve-interface interface-args)))
2019 (and (eq? (car kws) #:use-syntax)
2020 (or (symbol? (caar interface-args))
2021 (error "invalid module name for use-syntax"
2022 (car interface-args)))
2023 (set-module-transformer!
2024 module
2025 (module-ref interface
2026 (car (last-pair (car interface-args)))
2027 #f)))
2028 (loop (cddr kws)
2029 (cons interface reversed-interfaces)
2030 exports
2031 re-exports
2032 replacements
2033 autoloads)))
2034 ((#:autoload)
2035 (or (and (pair? (cdr kws)) (pair? (cddr kws)))
2036 (unrecognized kws))
2037 (loop (cdddr kws)
2038 reversed-interfaces
2039 exports
2040 re-exports
2041 replacements
2042 (let ((name (cadr kws))
2043 (bindings (caddr kws)))
2044 (cons* name bindings autoloads))))
2045 ((#:no-backtrace)
2046 (set-system-module! module #t)
2047 (loop (cdr kws) reversed-interfaces exports re-exports
2048 replacements autoloads))
2049 ((#:pure)
2050 (purify-module! module)
2051 (loop (cdr kws) reversed-interfaces exports re-exports
2052 replacements autoloads))
2053 ((#:duplicates)
2054 (if (not (pair? (cdr kws)))
2055 (unrecognized kws))
2056 (set-module-duplicates-handlers!
2057 module
2058 (lookup-duplicates-handlers (cadr kws)))
2059 (loop (cddr kws) reversed-interfaces exports re-exports
2060 replacements autoloads))
2061 ((#:export #:export-syntax)
2062 (or (pair? (cdr kws))
2063 (unrecognized kws))
2064 (loop (cddr kws)
2065 reversed-interfaces
2066 (append (cadr kws) exports)
2067 re-exports
2068 replacements
2069 autoloads))
2070 ((#:re-export #:re-export-syntax)
2071 (or (pair? (cdr kws))
2072 (unrecognized kws))
2073 (loop (cddr kws)
2074 reversed-interfaces
2075 exports
2076 (append (cadr kws) re-exports)
2077 replacements
2078 autoloads))
2079 ((#:replace #:replace-syntax)
2080 (or (pair? (cdr kws))
2081 (unrecognized kws))
2082 (loop (cddr kws)
2083 reversed-interfaces
2084 exports
2085 re-exports
2086 (append (cadr kws) replacements)
2087 autoloads))
2088 (else
2089 (unrecognized kws)))))
2090 (run-hook module-defined-hook module)
2091 module))
2092
2093;; `module-defined-hook' is a hook that is run whenever a new module
2094;; is defined. Its members are called with one argument, the new
2095;; module.
2096(define module-defined-hook (make-hook 1))
2097
2098\f
2099
2100;;; {Autoload}
2101;;;
2102
2103(define (make-autoload-interface module name bindings)
2104 (let ((b (lambda (a sym definep)
2105 (and (memq sym bindings)
2106 (let ((i (module-public-interface (resolve-module name))))
2107 (if (not i)
2108 (error "missing interface for module" name))
2109 (let ((autoload (memq a (module-uses module))))
2110 ;; Replace autoload-interface with actual interface if
2111 ;; that has not happened yet.
2112 (if (pair? autoload)
2113 (set-car! autoload i)))
2114 (module-local-variable i sym))))))
2115 (module-constructor (make-hash-table 0) '() b #f #f name 'autoload #f
2116 (make-hash-table 0) '() (make-weak-value-hash-table 31))))
2117
2118(define (module-autoload! module . args)
2119 "Have @var{module} automatically load the module named @var{name} when one
2120of the symbols listed in @var{bindings} is looked up. @var{args} should be a
2121list of module-name/binding-list pairs, e.g., as in @code{(module-autoload!
2122module '(ice-9 q) '(make-q q-length))}."
2123 (let loop ((args args))
2124 (cond ((null? args)
2125 #t)
2126 ((null? (cdr args))
2127 (error "invalid name+binding autoload list" args))
2128 (else
2129 (let ((name (car args))
2130 (bindings (cadr args)))
2131 (module-use! module (make-autoload-interface module
2132 name bindings))
2133 (loop (cddr args)))))))
2134
2135
2136;;; {Compiled module}
2137
2138(define load-compiled #f)
2139
2140\f
2141
2142;;; {Autoloading modules}
2143;;;
2144
2145(define autoloads-in-progress '())
2146
2147;; This function is called from "modules.c". If you change it, be
2148;; sure to update "modules.c" as well.
2149
2150(define (try-module-autoload module-name)
2151 (let* ((reverse-name (reverse module-name))
2152 (name (symbol->string (car reverse-name)))
2153 (dir-hint-module-name (reverse (cdr reverse-name)))
2154 (dir-hint (apply string-append
2155 (map (lambda (elt)
2156 (string-append (symbol->string elt) "/"))
2157 dir-hint-module-name))))
2158 (resolve-module dir-hint-module-name #f)
2159 (and (not (autoload-done-or-in-progress? dir-hint name))
2160 (let ((didit #f))
2161 (define (load-file proc file)
2162 (save-module-excursion (lambda () (proc file)))
2163 (set! didit #t))
2164 (dynamic-wind
2165 (lambda () (autoload-in-progress! dir-hint name))
2166 (lambda ()
2167 (let ((file (in-vicinity dir-hint name)))
2168 (cond ((and load-compiled
2169 (%search-load-path (string-append file ".go")))
2170 => (lambda (full)
2171 (load-file load-compiled full)))
2172 ((%search-load-path file)
2173 => (lambda (full)
2174 (with-fluids ((current-reader #f))
2175 (load-file primitive-load full)))))))
2176 (lambda () (set-autoloaded! dir-hint name didit)))
2177 didit))))
2178
2179\f
2180
2181;;; {Dynamic linking of modules}
2182;;;
2183
2184(define autoloads-done '((guile . guile)))
2185
2186(define (autoload-done-or-in-progress? p m)
2187 (let ((n (cons p m)))
2188 (->bool (or (member n autoloads-done)
2189 (member n autoloads-in-progress)))))
2190
2191(define (autoload-done! p m)
2192 (let ((n (cons p m)))
2193 (set! autoloads-in-progress
2194 (delete! n autoloads-in-progress))
2195 (or (member n autoloads-done)
2196 (set! autoloads-done (cons n autoloads-done)))))
2197
2198(define (autoload-in-progress! p m)
2199 (let ((n (cons p m)))
2200 (set! autoloads-done
2201 (delete! n autoloads-done))
2202 (set! autoloads-in-progress (cons n autoloads-in-progress))))
2203
2204(define (set-autoloaded! p m done?)
2205 (if done?
2206 (autoload-done! p m)
2207 (let ((n (cons p m)))
2208 (set! autoloads-done (delete! n autoloads-done))
2209 (set! autoloads-in-progress (delete! n autoloads-in-progress)))))
2210
2211\f
2212
2213;;; {Run-time options}
2214;;;
2215
2216(define define-option-interface
2217 (let* ((option-name car)
2218 (option-value cadr)
2219 (option-documentation caddr)
2220
2221 (print-option (lambda (option)
2222 (display (option-name option))
2223 (if (< (string-length
2224 (symbol->string (option-name option)))
2225 8)
2226 (display #\tab))
2227 (display #\tab)
2228 (display (option-value option))
2229 (display #\tab)
2230 (display (option-documentation option))
2231 (newline)))
2232
2233 ;; Below follow the macros defining the run-time option interfaces.
2234
2235 (make-options (lambda (interface)
2236 `(lambda args
2237 (cond ((null? args) (,interface))
2238 ((list? (car args))
2239 (,interface (car args)) (,interface))
2240 (else (for-each ,print-option
2241 (,interface #t)))))))
2242
2243 (make-enable (lambda (interface)
2244 `(lambda flags
2245 (,interface (append flags (,interface)))
2246 (,interface))))
2247
2248 (make-disable (lambda (interface)
2249 `(lambda flags
2250 (let ((options (,interface)))
2251 (for-each (lambda (flag)
2252 (set! options (delq! flag options)))
2253 flags)
2254 (,interface options)
2255 (,interface))))))
2256 (procedure->memoizing-macro
2257 (lambda (exp env)
2258 (let* ((option-group (cadr exp))
2259 (interface (car option-group))
2260 (options/enable/disable (cadr option-group)))
2261 `(begin
2262 (define ,(car options/enable/disable)
2263 ,(make-options interface))
2264 (define ,(cadr options/enable/disable)
2265 ,(make-enable interface))
2266 (define ,(caddr options/enable/disable)
2267 ,(make-disable interface))
2268 (defmacro ,(caaddr option-group) (opt val)
2269 `(,,(car options/enable/disable)
2270 (append (,,(car options/enable/disable))
2271 (list ',opt ,val))))))))))
2272
2273(define-option-interface
2274 (eval-options-interface
2275 (eval-options eval-enable eval-disable)
2276 (eval-set!)))
2277
2278(define-option-interface
2279 (debug-options-interface
2280 (debug-options debug-enable debug-disable)
2281 (debug-set!)))
2282
2283(define-option-interface
2284 (evaluator-traps-interface
2285 (traps trap-enable trap-disable)
2286 (trap-set!)))
2287
2288(define-option-interface
2289 (read-options-interface
2290 (read-options read-enable read-disable)
2291 (read-set!)))
2292
2293(define-option-interface
2294 (print-options-interface
2295 (print-options print-enable print-disable)
2296 (print-set!)))
2297
2298\f
2299
2300;;; {Running Repls}
2301;;;
2302
2303(define (repl read evaler print)
2304 (let loop ((source (read (current-input-port))))
2305 (print (evaler source))
2306 (loop (read (current-input-port)))))
2307
2308;; A provisional repl that acts like the SCM repl:
2309;;
2310(define scm-repl-silent #f)
2311(define (assert-repl-silence v) (set! scm-repl-silent v))
2312
2313(define *unspecified* (if #f #f))
2314(define (unspecified? v) (eq? v *unspecified*))
2315
2316(define scm-repl-print-unspecified #f)
2317(define (assert-repl-print-unspecified v) (set! scm-repl-print-unspecified v))
2318
2319(define scm-repl-verbose #f)
2320(define (assert-repl-verbosity v) (set! scm-repl-verbose v))
2321
2322(define scm-repl-prompt "guile> ")
2323
2324(define (set-repl-prompt! v) (set! scm-repl-prompt v))
2325
2326(define (default-lazy-handler key . args)
2327 (save-stack lazy-handler-dispatch)
2328 (apply throw key args))
2329
2330(define (lazy-handler-dispatch key . args)
2331 (apply default-lazy-handler key args))
2332
2333(define abort-hook (make-hook))
2334
2335;; these definitions are used if running a script.
2336;; otherwise redefined in error-catching-loop.
2337(define (set-batch-mode?! arg) #t)
2338(define (batch-mode?) #t)
2339
2340(define (error-catching-loop thunk)
2341 (let ((status #f)
2342 (interactive #t))
2343 (define (loop first)
2344 (let ((next
2345 (catch #t
2346
2347 (lambda ()
2348 (call-with-unblocked-asyncs
2349 (lambda ()
2350 (with-traps
2351 (lambda ()
2352 (first)
2353
2354 ;; This line is needed because mark
2355 ;; doesn't do closures quite right.
2356 ;; Unreferenced locals should be
2357 ;; collected.
2358 (set! first #f)
2359 (let loop ((v (thunk)))
2360 (loop (thunk)))
2361 #f)))))
2362
2363 (lambda (key . args)
2364 (case key
2365 ((quit)
2366 (set! status args)
2367 #f)
2368
2369 ((switch-repl)
2370 (apply throw 'switch-repl args))
2371
2372 ((abort)
2373 ;; This is one of the closures that require
2374 ;; (set! first #f) above
2375 ;;
2376 (lambda ()
2377 (run-hook abort-hook)
2378 (force-output (current-output-port))
2379 (display "ABORT: " (current-error-port))
2380 (write args (current-error-port))
2381 (newline (current-error-port))
2382 (if interactive
2383 (begin
2384 (if (and
2385 (not has-shown-debugger-hint?)
2386 (not (memq 'backtrace
2387 (debug-options-interface)))
2388 (stack? (fluid-ref the-last-stack)))
2389 (begin
2390 (newline (current-error-port))
2391 (display
2392 "Type \"(backtrace)\" to get more information or \"(debug)\" to enter the debugger.\n"
2393 (current-error-port))
2394 (set! has-shown-debugger-hint? #t)))
2395 (force-output (current-error-port)))
2396 (begin
2397 (primitive-exit 1)))
2398 (set! stack-saved? #f)))
2399
2400 (else
2401 ;; This is the other cons-leak closure...
2402 (lambda ()
2403 (cond ((= (length args) 4)
2404 (apply handle-system-error key args))
2405 (else
2406 (apply bad-throw key args)))))))
2407
2408 ;; Note that having just `lazy-handler-dispatch'
2409 ;; here is connected with the mechanism that
2410 ;; produces a nice backtrace upon error. If, for
2411 ;; example, this is replaced with (lambda args
2412 ;; (apply lazy-handler-dispatch args)), the stack
2413 ;; cutting (in save-stack) goes wrong and ends up
2414 ;; saving no stack at all, so there is no
2415 ;; backtrace.
2416 lazy-handler-dispatch)))
2417
2418 (if next (loop next) status)))
2419 (set! set-batch-mode?! (lambda (arg)
2420 (cond (arg
2421 (set! interactive #f)
2422 (restore-signals))
2423 (#t
2424 (error "sorry, not implemented")))))
2425 (set! batch-mode? (lambda () (not interactive)))
2426 (call-with-blocked-asyncs
2427 (lambda () (loop (lambda () #t))))))
2428
2429;;(define the-last-stack (make-fluid)) Defined by scm_init_backtrace ()
2430(define before-signal-stack (make-fluid))
2431(define stack-saved? #f)
2432
2433(define (save-stack . narrowing)
2434 (or stack-saved?
2435 (cond ((not (memq 'debug (debug-options-interface)))
2436 (fluid-set! the-last-stack #f)
2437 (set! stack-saved? #t))
2438 (else
2439 (fluid-set!
2440 the-last-stack
2441 (case (stack-id #t)
2442 ((repl-stack)
2443 (apply make-stack #t save-stack primitive-eval #t 0 narrowing))
2444 ((load-stack)
2445 (apply make-stack #t save-stack 0 #t 0 narrowing))
2446 ((tk-stack)
2447 (apply make-stack #t save-stack tk-stack-mark #t 0 narrowing))
2448 ((#t)
2449 (apply make-stack #t save-stack 0 1 narrowing))
2450 (else
2451 (let ((id (stack-id #t)))
2452 (and (procedure? id)
2453 (apply make-stack #t save-stack id #t 0 narrowing))))))
2454 (set! stack-saved? #t)))))
2455
2456(define before-error-hook (make-hook))
2457(define after-error-hook (make-hook))
2458(define before-backtrace-hook (make-hook))
2459(define after-backtrace-hook (make-hook))
2460
2461(define has-shown-debugger-hint? #f)
2462
2463(define (handle-system-error key . args)
2464 (let ((cep (current-error-port)))
2465 (cond ((not (stack? (fluid-ref the-last-stack))))
2466 ((memq 'backtrace (debug-options-interface))
2467 (let ((highlights (if (or (eq? key 'wrong-type-arg)
2468 (eq? key 'out-of-range))
2469 (list-ref args 3)
2470 '())))
2471 (run-hook before-backtrace-hook)
2472 (newline cep)
2473 (display "Backtrace:\n")
2474 (display-backtrace (fluid-ref the-last-stack) cep
2475 #f #f highlights)
2476 (newline cep)
2477 (run-hook after-backtrace-hook))))
2478 (run-hook before-error-hook)
2479 (apply display-error (fluid-ref the-last-stack) cep args)
2480 (run-hook after-error-hook)
2481 (force-output cep)
2482 (throw 'abort key)))
2483
2484(define (quit . args)
2485 (apply throw 'quit args))
2486
2487(define exit quit)
2488
2489;;(define has-shown-backtrace-hint? #f) Defined by scm_init_backtrace ()
2490
2491;; Replaced by C code:
2492;;(define (backtrace)
2493;; (if (fluid-ref the-last-stack)
2494;; (begin
2495;; (newline)
2496;; (display-backtrace (fluid-ref the-last-stack) (current-output-port))
2497;; (newline)
2498;; (if (and (not has-shown-backtrace-hint?)
2499;; (not (memq 'backtrace (debug-options-interface))))
2500;; (begin
2501;; (display
2502;;"Type \"(debug-enable 'backtrace)\" if you would like a backtrace
2503;;automatically if an error occurs in the future.\n")
2504;; (set! has-shown-backtrace-hint? #t))))
2505;; (display "No backtrace available.\n")))
2506
2507(define (error-catching-repl r e p)
2508 (error-catching-loop
2509 (lambda ()
2510 (call-with-values (lambda () (e (r)))
2511 (lambda the-values (for-each p the-values))))))
2512
2513(define (gc-run-time)
2514 (cdr (assq 'gc-time-taken (gc-stats))))
2515
2516(define before-read-hook (make-hook))
2517(define after-read-hook (make-hook))
2518(define before-eval-hook (make-hook 1))
2519(define after-eval-hook (make-hook 1))
2520(define before-print-hook (make-hook 1))
2521(define after-print-hook (make-hook 1))
2522
2523;;; The default repl-reader function. We may override this if we've
2524;;; the readline library.
2525(define repl-reader
2526 (lambda (prompt)
2527 (display prompt)
2528 (force-output)
2529 (run-hook before-read-hook)
2530 ((or (fluid-ref current-reader) read) (current-input-port))))
2531
2532(define (scm-style-repl)
2533
2534 (letrec (
2535 (start-gc-rt #f)
2536 (start-rt #f)
2537 (repl-report-start-timing (lambda ()
2538 (set! start-gc-rt (gc-run-time))
2539 (set! start-rt (get-internal-run-time))))
2540 (repl-report (lambda ()
2541 (display ";;; ")
2542 (display (inexact->exact
2543 (* 1000 (/ (- (get-internal-run-time) start-rt)
2544 internal-time-units-per-second))))
2545 (display " msec (")
2546 (display (inexact->exact
2547 (* 1000 (/ (- (gc-run-time) start-gc-rt)
2548 internal-time-units-per-second))))
2549 (display " msec in gc)\n")))
2550
2551 (consume-trailing-whitespace
2552 (lambda ()
2553 (let ((ch (peek-char)))
2554 (cond
2555 ((eof-object? ch))
2556 ((or (char=? ch #\space) (char=? ch #\tab))
2557 (read-char)
2558 (consume-trailing-whitespace))
2559 ((char=? ch #\newline)
2560 (read-char))))))
2561 (-read (lambda ()
2562 (let ((val
2563 (let ((prompt (cond ((string? scm-repl-prompt)
2564 scm-repl-prompt)
2565 ((thunk? scm-repl-prompt)
2566 (scm-repl-prompt))
2567 (scm-repl-prompt "> ")
2568 (else ""))))
2569 (repl-reader prompt))))
2570
2571 ;; As described in R4RS, the READ procedure updates the
2572 ;; port to point to the first character past the end of
2573 ;; the external representation of the object. This
2574 ;; means that it doesn't consume the newline typically
2575 ;; found after an expression. This means that, when
2576 ;; debugging Guile with GDB, GDB gets the newline, which
2577 ;; it often interprets as a "continue" command, making
2578 ;; breakpoints kind of useless. So, consume any
2579 ;; trailing newline here, as well as any whitespace
2580 ;; before it.
2581 ;; But not if EOF, for control-D.
2582 (if (not (eof-object? val))
2583 (consume-trailing-whitespace))
2584 (run-hook after-read-hook)
2585 (if (eof-object? val)
2586 (begin
2587 (repl-report-start-timing)
2588 (if scm-repl-verbose
2589 (begin
2590 (newline)
2591 (display ";;; EOF -- quitting")
2592 (newline)))
2593 (quit 0)))
2594 val)))
2595
2596 (-eval (lambda (sourc)
2597 (repl-report-start-timing)
2598 (run-hook before-eval-hook sourc)
2599 (let ((val (start-stack 'repl-stack
2600 ;; If you change this procedure
2601 ;; (primitive-eval), please also
2602 ;; modify the repl-stack case in
2603 ;; save-stack so that stack cutting
2604 ;; continues to work.
2605 (primitive-eval sourc))))
2606 (run-hook after-eval-hook sourc)
2607 val)))
2608
2609
2610 (-print (let ((maybe-print (lambda (result)
2611 (if (or scm-repl-print-unspecified
2612 (not (unspecified? result)))
2613 (begin
2614 (write result)
2615 (newline))))))
2616 (lambda (result)
2617 (if (not scm-repl-silent)
2618 (begin
2619 (run-hook before-print-hook result)
2620 (maybe-print result)
2621 (run-hook after-print-hook result)
2622 (if scm-repl-verbose
2623 (repl-report))
2624 (force-output))))))
2625
2626 (-quit (lambda (args)
2627 (if scm-repl-verbose
2628 (begin
2629 (display ";;; QUIT executed, repl exitting")
2630 (newline)
2631 (repl-report)))
2632 args))
2633
2634 (-abort (lambda ()
2635 (if scm-repl-verbose
2636 (begin
2637 (display ";;; ABORT executed.")
2638 (newline)
2639 (repl-report)))
2640 (repl -read -eval -print))))
2641
2642 (let ((status (error-catching-repl -read
2643 -eval
2644 -print)))
2645 (-quit status))))
2646
2647
2648\f
2649
2650;;; {IOTA functions: generating lists of numbers}
2651;;;
2652
2653(define (iota n)
2654 (let loop ((count (1- n)) (result '()))
2655 (if (< count 0) result
2656 (loop (1- count) (cons count result)))))
2657
2658\f
2659
2660;;; {collect}
2661;;;
2662;;; Similar to `begin' but returns a list of the results of all constituent
2663;;; forms instead of the result of the last form.
2664;;; (The definition relies on the current left-to-right
2665;;; order of evaluation of operands in applications.)
2666;;;
2667
2668(defmacro collect forms
2669 (cons 'list forms))
2670
2671\f
2672
2673;;; {with-fluids}
2674;;;
2675
2676;; with-fluids is a convenience wrapper for the builtin procedure
2677;; `with-fluids*'. The syntax is just like `let':
2678;;
2679;; (with-fluids ((fluid val)
2680;; ...)
2681;; body)
2682
2683(defmacro with-fluids (bindings . body)
2684 (let ((fluids (map car bindings))
2685 (values (map cadr bindings)))
2686 (if (and (= (length fluids) 1) (= (length values) 1))
2687 `(with-fluid* ,(car fluids) ,(car values) (lambda () ,@body))
2688 `(with-fluids* (list ,@fluids) (list ,@values)
2689 (lambda () ,@body)))))
2690
2691\f
2692
2693;;; {Macros}
2694;;;
2695
2696;; actually....hobbit might be able to hack these with a little
2697;; coaxing
2698;;
2699
2700(define (primitive-macro? m)
2701 (and (macro? m)
2702 (not (macro-transformer m))))
2703
2704(defmacro define-macro (first . rest)
2705 (let ((name (if (symbol? first) first (car first)))
2706 (transformer
2707 (if (symbol? first)
2708 (car rest)
2709 `(lambda ,(cdr first) ,@rest))))
2710 `(eval-case
2711 ((load-toplevel)
2712 (define ,name (defmacro:transformer ,transformer)))
2713 (else
2714 (error "define-macro can only be used at the top level")))))
2715
2716
2717(defmacro define-syntax-macro (first . rest)
2718 (let ((name (if (symbol? first) first (car first)))
2719 (transformer
2720 (if (symbol? first)
2721 (car rest)
2722 `(lambda ,(cdr first) ,@rest))))
2723 `(eval-case
2724 ((load-toplevel)
2725 (define ,name (defmacro:syntax-transformer ,transformer)))
2726 (else
2727 (error "define-syntax-macro can only be used at the top level")))))
2728
2729\f
2730
2731;;; {While}
2732;;;
2733;;; with `continue' and `break'.
2734;;;
2735
2736;; The inner `do' loop avoids re-establishing a catch every iteration,
2737;; that's only necessary if continue is actually used. A new key is
2738;; generated every time, so break and continue apply to their originating
2739;; `while' even when recursing. `while-helper' is an easy way to keep the
2740;; `key' binding away from the cond and body code.
2741;;
2742;; FIXME: This is supposed to have an `unquote' on the `do' the same used
2743;; for lambda and not, so as to protect against any user rebinding of that
2744;; symbol, but unfortunately an unquote breaks with ice-9 syncase, eg.
2745;;
2746;; (use-modules (ice-9 syncase))
2747;; (while #f)
2748;; => ERROR: invalid syntax ()
2749;;
2750;; This is probably a bug in syncase.
2751;;
2752(define-macro (while cond . body)
2753 (define (while-helper proc)
2754 (do ((key (make-symbol "while-key")))
2755 ((catch key
2756 (lambda ()
2757 (proc (lambda () (throw key #t))
2758 (lambda () (throw key #f))))
2759 (lambda (key arg) arg)))))
2760 `(,while-helper (,lambda (break continue)
2761 (do ()
2762 ((,not ,cond))
2763 ,@body)
2764 #t)))
2765
2766
2767\f
2768
2769;;; {Module System Macros}
2770;;;
2771
2772;; Return a list of expressions that evaluate to the appropriate
2773;; arguments for resolve-interface according to SPEC.
2774
2775(define (compile-interface-spec spec)
2776 (define (make-keyarg sym key quote?)
2777 (cond ((or (memq sym spec)
2778 (memq key spec))
2779 => (lambda (rest)
2780 (if quote?
2781 (list key (list 'quote (cadr rest)))
2782 (list key (cadr rest)))))
2783 (else
2784 '())))
2785 (define (map-apply func list)
2786 (map (lambda (args) (apply func args)) list))
2787 (define keys
2788 ;; sym key quote?
2789 '((:select #:select #t)
2790 (:hide #:hide #t)
2791 (:prefix #:prefix #t)
2792 (:renamer #:renamer #f)))
2793 (if (not (pair? (car spec)))
2794 `(',spec)
2795 `(',(car spec)
2796 ,@(apply append (map-apply make-keyarg keys)))))
2797
2798(define (keyword-like-symbol->keyword sym)
2799 (symbol->keyword (string->symbol (substring (symbol->string sym) 1))))
2800
2801(define (compile-define-module-args args)
2802 ;; Just quote everything except #:use-module and #:use-syntax. We
2803 ;; need to know about all arguments regardless since we want to turn
2804 ;; symbols that look like keywords into real keywords, and the
2805 ;; keyword args in a define-module form are not regular
2806 ;; (i.e. no-backtrace doesn't take a value).
2807 (let loop ((compiled-args `((quote ,(car args))))
2808 (args (cdr args)))
2809 (cond ((null? args)
2810 (reverse! compiled-args))
2811 ;; symbol in keyword position
2812 ((symbol? (car args))
2813 (loop compiled-args
2814 (cons (keyword-like-symbol->keyword (car args)) (cdr args))))
2815 ((memq (car args) '(#:no-backtrace #:pure))
2816 (loop (cons (car args) compiled-args)
2817 (cdr args)))
2818 ((null? (cdr args))
2819 (error "keyword without value:" (car args)))
2820 ((memq (car args) '(#:use-module #:use-syntax))
2821 (loop (cons* `(list ,@(compile-interface-spec (cadr args)))
2822 (car args)
2823 compiled-args)
2824 (cddr args)))
2825 ((eq? (car args) #:autoload)
2826 (loop (cons* `(quote ,(caddr args))
2827 `(quote ,(cadr args))
2828 (car args)
2829 compiled-args)
2830 (cdddr args)))
2831 (else
2832 (loop (cons* `(quote ,(cadr args))
2833 (car args)
2834 compiled-args)
2835 (cddr args))))))
2836
2837(defmacro define-module args
2838 `(eval-case
2839 ((load-toplevel)
2840 (let ((m (process-define-module
2841 (list ,@(compile-define-module-args args)))))
2842 (set-current-module m)
2843 m))
2844 (else
2845 (error "define-module can only be used at the top level"))))
2846
2847;; The guts of the use-modules macro. Add the interfaces of the named
2848;; modules to the use-list of the current module, in order.
2849
2850;; This function is called by "modules.c". If you change it, be sure
2851;; to change scm_c_use_module as well.
2852
2853(define (process-use-modules module-interface-args)
2854 (let ((interfaces (map (lambda (mif-args)
2855 (or (apply resolve-interface mif-args)
2856 (error "no such module" mif-args)))
2857 module-interface-args)))
2858 (call-with-deferred-observers
2859 (lambda ()
2860 (module-use-interfaces! (current-module) interfaces)))))
2861
2862(defmacro use-modules modules
2863 `(eval-case
2864 ((load-toplevel)
2865 (process-use-modules
2866 (list ,@(map (lambda (m)
2867 `(list ,@(compile-interface-spec m)))
2868 modules)))
2869 *unspecified*)
2870 (else
2871 (error "use-modules can only be used at the top level"))))
2872
2873(defmacro use-syntax (spec)
2874 `(eval-case
2875 ((load-toplevel)
2876 ,@(if (pair? spec)
2877 `((process-use-modules (list
2878 (list ,@(compile-interface-spec spec))))
2879 (set-module-transformer! (current-module)
2880 ,(car (last-pair spec))))
2881 `((set-module-transformer! (current-module) ,spec)))
2882 *unspecified*)
2883 (else
2884 (error "use-syntax can only be used at the top level"))))
2885
2886;; Dirk:FIXME:: This incorrect (according to R5RS) syntax needs to be changed
2887;; as soon as guile supports hygienic macros.
2888(define define-private define)
2889
2890(defmacro define-public args
2891 (define (syntax)
2892 (error "bad syntax" (list 'define-public args)))
2893 (define (defined-name n)
2894 (cond
2895 ((symbol? n) n)
2896 ((pair? n) (defined-name (car n)))
2897 (else (syntax))))
2898 (cond
2899 ((null? args)
2900 (syntax))
2901 (#t
2902 (let ((name (defined-name (car args))))
2903 `(begin
2904 (define-private ,@args)
2905 (eval-case ((load-toplevel) (export ,name))))))))
2906
2907(defmacro defmacro-public args
2908 (define (syntax)
2909 (error "bad syntax" (list 'defmacro-public args)))
2910 (define (defined-name n)
2911 (cond
2912 ((symbol? n) n)
2913 (else (syntax))))
2914 (cond
2915 ((null? args)
2916 (syntax))
2917 (#t
2918 (let ((name (defined-name (car args))))
2919 `(begin
2920 (eval-case ((load-toplevel) (export-syntax ,name)))
2921 (defmacro ,@args))))))
2922
2923;; Export a local variable
2924
2925;; This function is called from "modules.c". If you change it, be
2926;; sure to update "modules.c" as well.
2927
2928(define (module-export! m names)
2929 (let ((public-i (module-public-interface m)))
2930 (for-each (lambda (name)
2931 (let ((var (module-ensure-local-variable! m name)))
2932 (module-add! public-i name var)))
2933 names)))
2934
2935(define (module-replace! m names)
2936 (let ((public-i (module-public-interface m)))
2937 (for-each (lambda (name)
2938 (let ((var (module-ensure-local-variable! m name)))
2939 (set-object-property! var 'replace #t)
2940 (module-add! public-i name var)))
2941 names)))
2942
2943;; Re-export a imported variable
2944;;
2945(define (module-re-export! m names)
2946 (let ((public-i (module-public-interface m)))
2947 (for-each (lambda (name)
2948 (let ((var (module-variable m name)))
2949 (cond ((not var)
2950 (error "Undefined variable:" name))
2951 ((eq? var (module-local-variable m name))
2952 (error "re-exporting local variable:" name))
2953 (else
2954 (module-add! public-i name var)))))
2955 names)))
2956
2957(defmacro export names
2958 `(eval-case
2959 ((load-toplevel)
2960 (call-with-deferred-observers
2961 (lambda ()
2962 (module-export! (current-module) ',names))))
2963 (else
2964 (error "export can only be used at the top level"))))
2965
2966(defmacro re-export names
2967 `(eval-case
2968 ((load-toplevel)
2969 (call-with-deferred-observers
2970 (lambda ()
2971 (module-re-export! (current-module) ',names))))
2972 (else
2973 (error "re-export can only be used at the top level"))))
2974
2975(defmacro export-syntax names
2976 `(export ,@names))
2977
2978(defmacro re-export-syntax names
2979 `(re-export ,@names))
2980
2981(define load load-module)
2982
2983;; The following macro allows one to write, for example,
2984;;
2985;; (@ (ice-9 pretty-print) pretty-print)
2986;;
2987;; to refer directly to the pretty-print variable in module (ice-9
2988;; pretty-print). It works by looking up the variable and inserting
2989;; it directly into the code. This is understood by the evaluator.
2990;; Indeed, all references to global variables are memoized into such
2991;; variable objects.
2992
2993(define-macro (@ mod-name var-name)
2994 (let ((var (module-variable (resolve-interface mod-name) var-name)))
2995 (if (not var)
2996 (error "no such public variable" (list '@ mod-name var-name)))
2997 var))
2998
2999;; The '@@' macro is like '@' but it can also access bindings that
3000;; have not been explicitely exported.
3001
3002(define-macro (@@ mod-name var-name)
3003 (let ((var (module-variable (resolve-module mod-name) var-name)))
3004 (if (not var)
3005 (error "no such variable" (list '@@ mod-name var-name)))
3006 var))
3007
3008\f
3009
3010;;; {Parameters}
3011;;;
3012
3013(define make-mutable-parameter
3014 (let ((make (lambda (fluid converter)
3015 (lambda args
3016 (if (null? args)
3017 (fluid-ref fluid)
3018 (fluid-set! fluid (converter (car args))))))))
3019 (lambda (init . converter)
3020 (let ((fluid (make-fluid))
3021 (converter (if (null? converter)
3022 identity
3023 (car converter))))
3024 (fluid-set! fluid (converter init))
3025 (make fluid converter)))))
3026
3027\f
3028
3029;;; {Handling of duplicate imported bindings}
3030;;;
3031
3032;; Duplicate handlers take the following arguments:
3033;;
3034;; module importing module
3035;; name conflicting name
3036;; int1 old interface where name occurs
3037;; val1 value of binding in old interface
3038;; int2 new interface where name occurs
3039;; val2 value of binding in new interface
3040;; var previous resolution or #f
3041;; val value of previous resolution
3042;;
3043;; A duplicate handler can take three alternative actions:
3044;;
3045;; 1. return #f => leave responsibility to next handler
3046;; 2. exit with an error
3047;; 3. return a variable resolving the conflict
3048;;
3049
3050(define duplicate-handlers
3051 (let ((m (make-module 7)))
3052
3053 (define (check module name int1 val1 int2 val2 var val)
3054 (scm-error 'misc-error
3055 #f
3056 "~A: `~A' imported from both ~A and ~A"
3057 (list (module-name module)
3058 name
3059 (module-name int1)
3060 (module-name int2))
3061 #f))
3062
3063 (define (warn module name int1 val1 int2 val2 var val)
3064 (format #t
3065 "WARNING: ~A: `~A' imported from both ~A and ~A\n"
3066 (module-name module)
3067 name
3068 (module-name int1)
3069 (module-name int2))
3070 #f)
3071
3072 (define (replace module name int1 val1 int2 val2 var val)
3073 (let ((old (or (and var (object-property var 'replace) var)
3074 (module-variable int1 name)))
3075 (new (module-variable int2 name)))
3076 (if (object-property old 'replace)
3077 (and (or (eq? old new)
3078 (not (object-property new 'replace)))
3079 old)
3080 (and (object-property new 'replace)
3081 new))))
3082
3083 (define (warn-override-core module name int1 val1 int2 val2 var val)
3084 (and (eq? int1 the-scm-module)
3085 (begin
3086 (format #t
3087 "WARNING: ~A: imported module ~A overrides core binding `~A'\n"
3088 (module-name module)
3089 (module-name int2)
3090 name)
3091 (module-local-variable int2 name))))
3092
3093 (define (first module name int1 val1 int2 val2 var val)
3094 (or var (module-local-variable int1 name)))
3095
3096 (define (last module name int1 val1 int2 val2 var val)
3097 (module-local-variable int2 name))
3098
3099 (define (noop module name int1 val1 int2 val2 var val)
3100 #f)
3101
3102 (set-module-name! m 'duplicate-handlers)
3103 (set-module-kind! m 'interface)
3104 (module-define! m 'check check)
3105 (module-define! m 'warn warn)
3106 (module-define! m 'replace replace)
3107 (module-define! m 'warn-override-core warn-override-core)
3108 (module-define! m 'first first)
3109 (module-define! m 'last last)
3110 (module-define! m 'merge-generics noop)
3111 (module-define! m 'merge-accessors noop)
3112 m))
3113
3114(define (lookup-duplicates-handlers handler-names)
3115 (and handler-names
3116 (map (lambda (handler-name)
3117 (or (module-symbol-local-binding
3118 duplicate-handlers handler-name #f)
3119 (error "invalid duplicate handler name:"
3120 handler-name)))
3121 (if (list? handler-names)
3122 handler-names
3123 (list handler-names)))))
3124
3125(define default-duplicate-binding-procedures
3126 (make-mutable-parameter #f))
3127
3128(define default-duplicate-binding-handler
3129 (make-mutable-parameter '(replace warn-override-core warn last)
3130 (lambda (handler-names)
3131 (default-duplicate-binding-procedures
3132 (lookup-duplicates-handlers handler-names))
3133 handler-names)))
3134
3135\f
3136
3137;;; {`cond-expand' for SRFI-0 support.}
3138;;;
3139;;; This syntactic form expands into different commands or
3140;;; definitions, depending on the features provided by the Scheme
3141;;; implementation.
3142;;;
3143;;; Syntax:
3144;;;
3145;;; <cond-expand>
3146;;; --> (cond-expand <cond-expand-clause>+)
3147;;; | (cond-expand <cond-expand-clause>* (else <command-or-definition>))
3148;;; <cond-expand-clause>
3149;;; --> (<feature-requirement> <command-or-definition>*)
3150;;; <feature-requirement>
3151;;; --> <feature-identifier>
3152;;; | (and <feature-requirement>*)
3153;;; | (or <feature-requirement>*)
3154;;; | (not <feature-requirement>)
3155;;; <feature-identifier>
3156;;; --> <a symbol which is the name or alias of a SRFI>
3157;;;
3158;;; Additionally, this implementation provides the
3159;;; <feature-identifier>s `guile' and `r5rs', so that programs can
3160;;; determine the implementation type and the supported standard.
3161;;;
3162;;; Currently, the following feature identifiers are supported:
3163;;;
3164;;; guile r5rs srfi-0 srfi-4 srfi-6 srfi-13 srfi-14 srfi-55 srfi-61
3165;;;
3166;;; Remember to update the features list when adding more SRFIs.
3167;;;
3168
3169(define %cond-expand-features
3170 ;; Adjust the above comment when changing this.
3171 '(guile
3172 r5rs
3173 srfi-0 ;; cond-expand itself
3174 srfi-4 ;; homogenous numeric vectors
3175 srfi-6 ;; open-input-string etc, in the guile core
3176 srfi-13 ;; string library
3177 srfi-14 ;; character sets
3178 srfi-55 ;; require-extension
3179 srfi-61 ;; general cond clause
3180 ))
3181
3182;; This table maps module public interfaces to the list of features.
3183;;
3184(define %cond-expand-table (make-hash-table 31))
3185
3186;; Add one or more features to the `cond-expand' feature list of the
3187;; module `module'.
3188;;
3189(define (cond-expand-provide module features)
3190 (let ((mod (module-public-interface module)))
3191 (and mod
3192 (hashq-set! %cond-expand-table mod
3193 (append (hashq-ref %cond-expand-table mod '())
3194 features)))))
3195
3196(define cond-expand
3197 (procedure->memoizing-macro
3198 (lambda (exp env)
3199 (let ((clauses (cdr exp))
3200 (syntax-error (lambda (cl)
3201 (error "invalid clause in `cond-expand'" cl))))
3202 (letrec
3203 ((test-clause
3204 (lambda (clause)
3205 (cond
3206 ((symbol? clause)
3207 (or (memq clause %cond-expand-features)
3208 (let lp ((uses (module-uses (env-module env))))
3209 (if (pair? uses)
3210 (or (memq clause
3211 (hashq-ref %cond-expand-table
3212 (car uses) '()))
3213 (lp (cdr uses)))
3214 #f))))
3215 ((pair? clause)
3216 (cond
3217 ((eq? 'and (car clause))
3218 (let lp ((l (cdr clause)))
3219 (cond ((null? l)
3220 #t)
3221 ((pair? l)
3222 (and (test-clause (car l)) (lp (cdr l))))
3223 (else
3224 (syntax-error clause)))))
3225 ((eq? 'or (car clause))
3226 (let lp ((l (cdr clause)))
3227 (cond ((null? l)
3228 #f)
3229 ((pair? l)
3230 (or (test-clause (car l)) (lp (cdr l))))
3231 (else
3232 (syntax-error clause)))))
3233 ((eq? 'not (car clause))
3234 (cond ((not (pair? (cdr clause)))
3235 (syntax-error clause))
3236 ((pair? (cddr clause))
3237 ((syntax-error clause))))
3238 (not (test-clause (cadr clause))))
3239 (else
3240 (syntax-error clause))))
3241 (else
3242 (syntax-error clause))))))
3243 (let lp ((c clauses))
3244 (cond
3245 ((null? c)
3246 (error "Unfulfilled `cond-expand'"))
3247 ((not (pair? c))
3248 (syntax-error c))
3249 ((not (pair? (car c)))
3250 (syntax-error (car c)))
3251 ((test-clause (caar c))
3252 `(begin ,@(cdar c)))
3253 ((eq? (caar c) 'else)
3254 (if (pair? (cdr c))
3255 (syntax-error c))
3256 `(begin ,@(cdar c)))
3257 (else
3258 (lp (cdr c))))))))))
3259
3260;; This procedure gets called from the startup code with a list of
3261;; numbers, which are the numbers of the SRFIs to be loaded on startup.
3262;;
3263(define (use-srfis srfis)
3264 (process-use-modules
3265 (map (lambda (num)
3266 (list (list 'srfi (string->symbol
3267 (string-append "srfi-" (number->string num))))))
3268 srfis)))
3269
3270\f
3271
3272;;; srfi-55: require-extension
3273;;;
3274
3275(define-macro (require-extension extension-spec)
3276 ;; This macro only handles the srfi extension, which, at present, is
3277 ;; the only one defined by the standard.
3278 (if (not (pair? extension-spec))
3279 (scm-error 'wrong-type-arg "require-extension"
3280 "Not an extension: ~S" (list extension-spec) #f))
3281 (let ((extension (car extension-spec))
3282 (extension-args (cdr extension-spec)))
3283 (case extension
3284 ((srfi)
3285 (let ((use-list '()))
3286 (for-each
3287 (lambda (i)
3288 (if (not (integer? i))
3289 (scm-error 'wrong-type-arg "require-extension"
3290 "Invalid srfi name: ~S" (list i) #f))
3291 (let ((srfi-sym (string->symbol
3292 (string-append "srfi-" (number->string i)))))
3293 (if (not (memq srfi-sym %cond-expand-features))
3294 (set! use-list (cons `(use-modules (srfi ,srfi-sym))
3295 use-list)))))
3296 extension-args)
3297 (if (pair? use-list)
3298 ;; i.e. (begin (use-modules x) (use-modules y) (use-modules z))
3299 `(begin ,@(reverse! use-list)))))
3300 (else
3301 (scm-error
3302 'wrong-type-arg "require-extension"
3303 "Not a recognized extension type: ~S" (list extension) #f)))))
3304
3305\f
3306
3307;;; {Load emacs interface support if emacs option is given.}
3308;;;
3309
3310(define (named-module-use! user usee)
3311 (module-use! (resolve-module user) (resolve-interface usee)))
3312
3313(define (load-emacs-interface)
3314 (and (provided? 'debug-extensions)
3315 (debug-enable 'backtrace))
3316 (named-module-use! '(guile-user) '(ice-9 emacs)))
3317
3318\f
3319
3320(define using-readline?
3321 (let ((using-readline? (make-fluid)))
3322 (make-procedure-with-setter
3323 (lambda () (fluid-ref using-readline?))
3324 (lambda (v) (fluid-set! using-readline? v)))))
3325
3326(define (top-repl)
3327 (let ((guile-user-module (resolve-module '(guile-user))))
3328
3329 ;; Load emacs interface support if emacs option is given.
3330 (if (and (module-defined? guile-user-module 'use-emacs-interface)
3331 (module-ref guile-user-module 'use-emacs-interface))
3332 (load-emacs-interface))
3333
3334 ;; Use some convenient modules (in reverse order)
3335
3336 (set-current-module guile-user-module)
3337 (process-use-modules
3338 (append
3339 '(((ice-9 r5rs))
3340 ((ice-9 session))
3341 ((ice-9 debug)))
3342 (if (provided? 'regex)
3343 '(((ice-9 regex)))
3344 '())
3345 (if (provided? 'threads)
3346 '(((ice-9 threads)))
3347 '())))
3348 ;; load debugger on demand
3349 (module-autoload! guile-user-module '(ice-9 debugger) '(debug))
3350
3351 ;; Note: SIGFPE, SIGSEGV and SIGBUS are actually "query-only" (see
3352 ;; scmsigs.c scm_sigaction_for_thread), so the handlers setup here have
3353 ;; no effect.
3354 (let ((old-handlers #f)
3355 (signals (if (provided? 'posix)
3356 `((,SIGINT . "User interrupt")
3357 (,SIGFPE . "Arithmetic error")
3358 (,SIGSEGV
3359 . "Bad memory access (Segmentation violation)"))
3360 '())))
3361 ;; no SIGBUS on mingw
3362 (if (defined? 'SIGBUS)
3363 (set! signals (acons SIGBUS "Bad memory access (bus error)"
3364 signals)))
3365
3366 (dynamic-wind
3367
3368 ;; call at entry
3369 (lambda ()
3370 (let ((make-handler (lambda (msg)
3371 (lambda (sig)
3372 ;; Make a backup copy of the stack
3373 (fluid-set! before-signal-stack
3374 (fluid-ref the-last-stack))
3375 (save-stack 2)
3376 (scm-error 'signal
3377 #f
3378 msg
3379 #f
3380 (list sig))))))
3381 (set! old-handlers
3382 (map (lambda (sig-msg)
3383 (sigaction (car sig-msg)
3384 (make-handler (cdr sig-msg))))
3385 signals))))
3386
3387 ;; the protected thunk.
3388 (lambda ()
3389 (let ((status (scm-style-repl)))
3390 (run-hook exit-hook)
3391 status))
3392
3393 ;; call at exit.
3394 (lambda ()
3395 (map (lambda (sig-msg old-handler)
3396 (if (not (car old-handler))
3397 ;; restore original C handler.
3398 (sigaction (car sig-msg) #f)
3399 ;; restore Scheme handler, SIG_IGN or SIG_DFL.
3400 (sigaction (car sig-msg)
3401 (car old-handler)
3402 (cdr old-handler))))
3403 signals old-handlers))))))
3404
3405;;; This hook is run at the very end of an interactive session.
3406;;;
3407(define exit-hook (make-hook))
3408
3409\f
3410
3411;;; {Deprecated stuff}
3412;;;
3413
3414(begin-deprecated
3415 (define (feature? sym)
3416 (issue-deprecation-warning
3417 "`feature?' is deprecated. Use `provided?' instead.")
3418 (provided? sym)))
3419
3420(begin-deprecated
3421 (primitive-load-path "ice-9/deprecated.scm"))
3422
3423\f
3424
3425;;; Place the user in the guile-user module.
3426;;;
3427
3428(define-module (guile-user))
3429
3430;;; boot-9.scm ends here