(Debugger options): Cross reference new Tail Calls
[bpt/guile.git] / doc / ref / api-data.texi
CommitLineData
07d83abe
MV
1@c -*-texinfo-*-
2@c This is part of the GNU Guile Reference Manual.
3@c Copyright (C) 1996, 1997, 2000, 2001, 2002, 2003, 2004
4@c Free Software Foundation, Inc.
5@c See the file guile.texi for copying conditions.
6
7@page
8@node Simple Data Types
9@section Simple Generic Data Types
10
11This chapter describes those of Guile's simple data types which are
12primarily used for their role as items of generic data. By
13@dfn{simple} we mean data types that are not primarily used as
14containers to hold other data --- i.e.@: pairs, lists, vectors and so on.
15For the documentation of such @dfn{compound} data types, see
16@ref{Compound Data Types}.
17
18@c One of the great strengths of Scheme is that there is no straightforward
19@c distinction between ``data'' and ``functionality''. For example,
20@c Guile's support for dynamic linking could be described:
21
22@c @itemize @bullet
23@c @item
24@c either in a ``data-centric'' way, as the behaviour and properties of the
25@c ``dynamically linked object'' data type, and the operations that may be
26@c applied to instances of this type
27
28@c @item
29@c or in a ``functionality-centric'' way, as the set of procedures that
30@c constitute Guile's support for dynamic linking, in the context of the
31@c module system.
32@c @end itemize
33
34@c The contents of this chapter are, therefore, a matter of judgment. By
35@c @dfn{generic}, we mean to select those data types whose typical use as
36@c @emph{data} in a wide variety of programming contexts is more important
37@c than their use in the implementation of a particular piece of
38@c @emph{functionality}. The last section of this chapter provides
39@c references for all the data types that are documented not here but in a
40@c ``functionality-centric'' way elsewhere in the manual.
41
42@menu
43* Booleans:: True/false values.
44* Numbers:: Numerical data types.
050ab45f
MV
45* Characters:: Single characters.
46* Character Sets:: Sets of characters.
47* Strings:: Sequences of characters.
07d83abe
MV
48* Regular Expressions:: Pattern matching and substitution.
49* Symbols:: Symbols.
50* Keywords:: Self-quoting, customizable display keywords.
51* Other Types:: "Functionality-centric" data types.
52@end menu
53
54
55@node Booleans
56@subsection Booleans
57@tpindex Booleans
58
59The two boolean values are @code{#t} for true and @code{#f} for false.
60
61Boolean values are returned by predicate procedures, such as the general
62equality predicates @code{eq?}, @code{eqv?} and @code{equal?}
63(@pxref{Equality}) and numerical and string comparison operators like
64@code{string=?} (@pxref{String Comparison}) and @code{<=}
65(@pxref{Comparison}).
66
67@lisp
68(<= 3 8)
69@result{} #t
70
71(<= 3 -3)
72@result{} #f
73
74(equal? "house" "houses")
75@result{} #f
76
77(eq? #f #f)
78@result{}
79#t
80@end lisp
81
82In test condition contexts like @code{if} and @code{cond} (@pxref{if
83cond case}), where a group of subexpressions will be evaluated only if a
84@var{condition} expression evaluates to ``true'', ``true'' means any
85value at all except @code{#f}.
86
87@lisp
88(if #t "yes" "no")
89@result{} "yes"
90
91(if 0 "yes" "no")
92@result{} "yes"
93
94(if #f "yes" "no")
95@result{} "no"
96@end lisp
97
98A result of this asymmetry is that typical Scheme source code more often
99uses @code{#f} explicitly than @code{#t}: @code{#f} is necessary to
100represent an @code{if} or @code{cond} false value, whereas @code{#t} is
101not necessary to represent an @code{if} or @code{cond} true value.
102
103It is important to note that @code{#f} is @strong{not} equivalent to any
104other Scheme value. In particular, @code{#f} is not the same as the
105number 0 (like in C and C++), and not the same as the ``empty list''
106(like in some Lisp dialects).
107
108In C, the two Scheme boolean values are available as the two constants
109@code{SCM_BOOL_T} for @code{#t} and @code{SCM_BOOL_F} for @code{#f}.
110Care must be taken with the false value @code{SCM_BOOL_F}: it is not
111false when used in C conditionals. In order to test for it, use
112@code{scm_is_false} or @code{scm_is_true}.
113
114@rnindex not
115@deffn {Scheme Procedure} not x
116@deffnx {C Function} scm_not (x)
117Return @code{#t} if @var{x} is @code{#f}, else return @code{#f}.
118@end deffn
119
120@rnindex boolean?
121@deffn {Scheme Procedure} boolean? obj
122@deffnx {C Function} scm_boolean_p (obj)
123Return @code{#t} if @var{obj} is either @code{#t} or @code{#f}, else
124return @code{#f}.
125@end deffn
126
127@deftypevr {C Macro} SCM SCM_BOOL_T
128The @code{SCM} representation of the Scheme object @code{#t}.
129@end deftypevr
130
131@deftypevr {C Macro} SCM SCM_BOOL_F
132The @code{SCM} representation of the Scheme object @code{#f}.
133@end deftypevr
134
135@deftypefn {C Function} int scm_is_true (SCM obj)
136Return @code{0} if @var{obj} is @code{#f}, else return @code{1}.
137@end deftypefn
138
139@deftypefn {C Function} int scm_is_false (SCM obj)
140Return @code{1} if @var{obj} is @code{#f}, else return @code{0}.
141@end deftypefn
142
143@deftypefn {C Function} int scm_is_bool (SCM obj)
144Return @code{1} if @var{obj} is either @code{#t} or @code{#f}, else
145return @code{0}.
146@end deftypefn
147
148@deftypefn {C Function} SCM scm_from_bool (int val)
149Return @code{#f} if @var{val} is @code{0}, else return @code{#t}.
150@end deftypefn
151
152@deftypefn {C Function} int scm_to_bool (SCM val)
153Return @code{1} if @var{val} is @code{SCM_BOOL_T}, return @code{0}
154when @var{val} is @code{SCM_BOOL_F}, else signal a `wrong type' error.
155
156You should probably use @code{scm_is_true} instead of this function
157when you just want to test a @code{SCM} value for trueness.
158@end deftypefn
159
160@node Numbers
161@subsection Numerical data types
162@tpindex Numbers
163
164Guile supports a rich ``tower'' of numerical types --- integer,
165rational, real and complex --- and provides an extensive set of
166mathematical and scientific functions for operating on numerical
167data. This section of the manual documents those types and functions.
168
169You may also find it illuminating to read R5RS's presentation of numbers
170in Scheme, which is particularly clear and accessible: see
171@ref{Numbers,,,r5rs,R5RS}.
172
173@menu
174* Numerical Tower:: Scheme's numerical "tower".
175* Integers:: Whole numbers.
176* Reals and Rationals:: Real and rational numbers.
177* Complex Numbers:: Complex numbers.
178* Exactness:: Exactness and inexactness.
179* Number Syntax:: Read syntax for numerical data.
180* Integer Operations:: Operations on integer values.
181* Comparison:: Comparison predicates.
182* Conversion:: Converting numbers to and from strings.
183* Complex:: Complex number operations.
184* Arithmetic:: Arithmetic functions.
185* Scientific:: Scientific functions.
186* Primitive Numerics:: Primitive numeric functions.
187* Bitwise Operations:: Logical AND, OR, NOT, and so on.
188* Random:: Random number generation.
189@end menu
190
191
192@node Numerical Tower
193@subsubsection Scheme's Numerical ``Tower''
194@rnindex number?
195
196Scheme's numerical ``tower'' consists of the following categories of
197numbers:
198
199@table @dfn
200@item integers
201Whole numbers, positive or negative; e.g.@: --5, 0, 18.
202
203@item rationals
204The set of numbers that can be expressed as @math{@var{p}/@var{q}}
205where @var{p} and @var{q} are integers; e.g.@: @math{9/16} works, but
206pi (an irrational number) doesn't. These include integers
207(@math{@var{n}/1}).
208
209@item real numbers
210The set of numbers that describes all possible positions along a
211one-dimensional line. This includes rationals as well as irrational
212numbers.
213
214@item complex numbers
215The set of numbers that describes all possible positions in a two
216dimensional space. This includes real as well as imaginary numbers
217(@math{@var{a}+@var{b}i}, where @var{a} is the @dfn{real part},
218@var{b} is the @dfn{imaginary part}, and @math{i} is the square root of
219@minus{}1.)
220@end table
221
222It is called a tower because each category ``sits on'' the one that
223follows it, in the sense that every integer is also a rational, every
224rational is also real, and every real number is also a complex number
225(but with zero imaginary part).
226
227In addition to the classification into integers, rationals, reals and
228complex numbers, Scheme also distinguishes between whether a number is
229represented exactly or not. For example, the result of
230@m{2\sin(\pi/4),sin(pi/4)} is exactly @m{\sqrt{2},2^(1/2)} but Guile
231can neither represent @m{\pi/4,pi/4} nor @m{\sqrt{2},2^(1/2)} exactly.
232Instead, it stores an inexact approximation, using the C type
233@code{double}.
234
235Guile can represent exact rationals of any magnitude, inexact
236rationals that fit into a C @code{double}, and inexact complex numbers
237with @code{double} real and imaginary parts.
238
239The @code{number?} predicate may be applied to any Scheme value to
240discover whether the value is any of the supported numerical types.
241
242@deffn {Scheme Procedure} number? obj
243@deffnx {C Function} scm_number_p (obj)
244Return @code{#t} if @var{obj} is any kind of number, else @code{#f}.
245@end deffn
246
247For example:
248
249@lisp
250(number? 3)
251@result{} #t
252
253(number? "hello there!")
254@result{} #f
255
256(define pi 3.141592654)
257(number? pi)
258@result{} #t
259@end lisp
260
5615f696
MV
261@deftypefn {C Function} int scm_is_number (SCM obj)
262This is equivalent to @code{scm_is_true (scm_number_p (obj))}.
263@end deftypefn
264
07d83abe
MV
265The next few subsections document each of Guile's numerical data types
266in detail.
267
268@node Integers
269@subsubsection Integers
270
271@tpindex Integer numbers
272
273@rnindex integer?
274
275Integers are whole numbers, that is numbers with no fractional part,
276such as 2, 83, and @minus{}3789.
277
278Integers in Guile can be arbitrarily big, as shown by the following
279example.
280
281@lisp
282(define (factorial n)
283 (let loop ((n n) (product 1))
284 (if (= n 0)
285 product
286 (loop (- n 1) (* product n)))))
287
288(factorial 3)
289@result{} 6
290
291(factorial 20)
292@result{} 2432902008176640000
293
294(- (factorial 45))
295@result{} -119622220865480194561963161495657715064383733760000000000
296@end lisp
297
298Readers whose background is in programming languages where integers are
299limited by the need to fit into just 4 or 8 bytes of memory may find
300this surprising, or suspect that Guile's representation of integers is
301inefficient. In fact, Guile achieves a near optimal balance of
302convenience and efficiency by using the host computer's native
303representation of integers where possible, and a more general
304representation where the required number does not fit in the native
305form. Conversion between these two representations is automatic and
306completely invisible to the Scheme level programmer.
307
308The infinities @samp{+inf.0} and @samp{-inf.0} are considered to be
309inexact integers. They are explained in detail in the next section,
310together with reals and rationals.
311
312C has a host of different integer types, and Guile offers a host of
313functions to convert between them and the @code{SCM} representation.
314For example, a C @code{int} can be handled with @code{scm_to_int} and
315@code{scm_from_int}. Guile also defines a few C integer types of its
316own, to help with differences between systems.
317
318C integer types that are not covered can be handled with the generic
319@code{scm_to_signed_integer} and @code{scm_from_signed_integer} for
320signed types, or with @code{scm_to_unsigned_integer} and
321@code{scm_from_unsigned_integer} for unsigned types.
322
323Scheme integers can be exact and inexact. For example, a number
324written as @code{3.0} with an explicit decimal-point is inexact, but
325it is also an integer. The functions @code{integer?} and
326@code{scm_is_integer} report true for such a number, but the functions
327@code{scm_is_signed_integer} and @code{scm_is_unsigned_integer} only
328allow exact integers and thus report false. Likewise, the conversion
329functions like @code{scm_to_signed_integer} only accept exact
330integers.
331
332The motivation for this behavior is that the inexactness of a number
333should not be lost silently. If you want to allow inexact integers,
334you can explicitely insert a call to @code{inexact->exact} or to its C
335equivalent @code{scm_inexact_to_exact}. (Only inexact integers will
336be converted by this call into exact integers; inexact non-integers
337will become exact fractions.)
338
339@deffn {Scheme Procedure} integer? x
340@deffnx {C Function} scm_integer_p (x)
909fcc97 341Return @code{#t} if @var{x} is an exact or inexact integer number, else
07d83abe
MV
342@code{#f}.
343
344@lisp
345(integer? 487)
346@result{} #t
347
348(integer? 3.0)
349@result{} #t
350
351(integer? -3.4)
352@result{} #f
353
354(integer? +inf.0)
355@result{} #t
356@end lisp
357@end deffn
358
359@deftypefn {C Function} int scm_is_integer (SCM x)
360This is equivalent to @code{scm_is_true (scm_integer_p (x))}.
361@end deftypefn
362
363@defvr {C Type} scm_t_int8
364@defvrx {C Type} scm_t_uint8
365@defvrx {C Type} scm_t_int16
366@defvrx {C Type} scm_t_uint16
367@defvrx {C Type} scm_t_int32
368@defvrx {C Type} scm_t_uint32
369@defvrx {C Type} scm_t_int64
370@defvrx {C Type} scm_t_uint64
371@defvrx {C Type} scm_t_intmax
372@defvrx {C Type} scm_t_uintmax
373The C types are equivalent to the corresponding ISO C types but are
374defined on all platforms, with the exception of @code{scm_t_int64} and
375@code{scm_t_uint64}, which are only defined when a 64-bit type is
376available. For example, @code{scm_t_int8} is equivalent to
377@code{int8_t}.
378
379You can regard these definitions as a stop-gap measure until all
380platforms provide these types. If you know that all the platforms
381that you are interested in already provide these types, it is better
382to use them directly instead of the types provided by Guile.
383@end defvr
384
385@deftypefn {C Function} int scm_is_signed_integer (SCM x, scm_t_intmax min, scm_t_intmax max)
386@deftypefnx {C Function} int scm_is_unsigned_integer (SCM x, scm_t_uintmax min, scm_t_uintmax max)
387Return @code{1} when @var{x} represents an exact integer that is
388between @var{min} and @var{max}, inclusive.
389
390These functions can be used to check whether a @code{SCM} value will
391fit into a given range, such as the range of a given C integer type.
392If you just want to convert a @code{SCM} value to a given C integer
393type, use one of the conversion functions directly.
394@end deftypefn
395
396@deftypefn {C Function} scm_t_intmax scm_to_signed_integer (SCM x, scm_t_intmax min, scm_t_intmax max)
397@deftypefnx {C Function} scm_t_uintmax scm_to_unsigned_integer (SCM x, scm_t_uintmax min, scm_t_uintmax max)
398When @var{x} represents an exact integer that is between @var{min} and
399@var{max} inclusive, return that integer. Else signal an error,
400either a `wrong-type' error when @var{x} is not an exact integer, or
401an `out-of-range' error when it doesn't fit the given range.
402@end deftypefn
403
404@deftypefn {C Function} SCM scm_from_signed_integer (scm_t_intmax x)
405@deftypefnx {C Function} SCM scm_from_unsigned_integer (scm_t_uintmax x)
406Return the @code{SCM} value that represents the integer @var{x}. This
407function will always succeed and will always return an exact number.
408@end deftypefn
409
410@deftypefn {C Function} char scm_to_char (SCM x)
411@deftypefnx {C Function} {signed char} scm_to_schar (SCM x)
412@deftypefnx {C Function} {unsigned char} scm_to_uchar (SCM x)
413@deftypefnx {C Function} short scm_to_short (SCM x)
414@deftypefnx {C Function} {unsigned short} scm_to_ushort (SCM x)
415@deftypefnx {C Function} int scm_to_int (SCM x)
416@deftypefnx {C Function} {unsigned int} scm_to_uint (SCM x)
417@deftypefnx {C Function} long scm_to_long (SCM x)
418@deftypefnx {C Function} {unsigned long} scm_to_ulong (SCM x)
419@deftypefnx {C Function} {long long} scm_to_long_long (SCM x)
420@deftypefnx {C Function} {unsigned long long} scm_to_ulong_long (SCM x)
421@deftypefnx {C Function} size_t scm_to_size_t (SCM x)
422@deftypefnx {C Function} ssize_t scm_to_ssize_t (SCM x)
423@deftypefnx {C Function} scm_t_int8 scm_to_int8 (SCM x)
424@deftypefnx {C Function} scm_t_uint8 scm_to_uint8 (SCM x)
425@deftypefnx {C Function} scm_t_int16 scm_to_int16 (SCM x)
426@deftypefnx {C Function} scm_t_uint16 scm_to_uint16 (SCM x)
427@deftypefnx {C Function} scm_t_int32 scm_to_int32 (SCM x)
428@deftypefnx {C Function} scm_t_uint32 scm_to_uint32 (SCM x)
429@deftypefnx {C Function} scm_t_int64 scm_to_int64 (SCM x)
430@deftypefnx {C Function} scm_t_uint64 scm_to_uint64 (SCM x)
431@deftypefnx {C Function} scm_t_intmax scm_to_intmax (SCM x)
432@deftypefnx {C Function} scm_t_uintmax scm_to_uintmax (SCM x)
433When @var{x} represents an exact integer that fits into the indicated
434C type, return that integer. Else signal an error, either a
435`wrong-type' error when @var{x} is not an exact integer, or an
436`out-of-range' error when it doesn't fit the given range.
437
438The functions @code{scm_to_long_long}, @code{scm_to_ulong_long},
439@code{scm_to_int64}, and @code{scm_to_uint64} are only available when
440the corresponding types are.
441@end deftypefn
442
443@deftypefn {C Function} SCM scm_from_char (char x)
444@deftypefnx {C Function} SCM scm_from_schar (signed char x)
445@deftypefnx {C Function} SCM scm_from_uchar (unsigned char x)
446@deftypefnx {C Function} SCM scm_from_short (short x)
447@deftypefnx {C Function} SCM scm_from_ushort (unsigned short x)
448@deftypefnx {C Function} SCM scm_from_int (int x)
449@deftypefnx {C Function} SCM scm_from_uint (unsigned int x)
450@deftypefnx {C Function} SCM scm_from_long (long x)
451@deftypefnx {C Function} SCM scm_from_ulong (unsigned long x)
452@deftypefnx {C Function} SCM scm_from_long_long (long long x)
453@deftypefnx {C Function} SCM scm_from_ulong_long (unsigned long long x)
454@deftypefnx {C Function} SCM scm_from_size_t (size_t x)
455@deftypefnx {C Function} SCM scm_from_ssize_t (ssize_t x)
456@deftypefnx {C Function} SCM scm_from_int8 (scm_t_int8 x)
457@deftypefnx {C Function} SCM scm_from_uint8 (scm_t_uint8 x)
458@deftypefnx {C Function} SCM scm_from_int16 (scm_t_int16 x)
459@deftypefnx {C Function} SCM scm_from_uint16 (scm_t_uint16 x)
460@deftypefnx {C Function} SCM scm_from_int32 (scm_t_int32 x)
461@deftypefnx {C Function} SCM scm_from_uint32 (scm_t_uint32 x)
462@deftypefnx {C Function} SCM scm_from_int64 (scm_t_int64 x)
463@deftypefnx {C Function} SCM scm_from_uint64 (scm_t_uint64 x)
464@deftypefnx {C Function} SCM scm_from_intmax (scm_t_intmax x)
465@deftypefnx {C Function} SCM scm_from_uintmax (scm_t_uintmax x)
466Return the @code{SCM} value that represents the integer @var{x}.
467These functions will always succeed and will always return an exact
468number.
469@end deftypefn
470
08962922
MV
471@deftypefn {C Function} void scm_to_mpz (SCM val, mpz_t rop)
472Assign @var{val} to the multiple precision integer @var{rop}.
473@var{val} must be an exact integer, otherwise an error will be
474signalled. @var{rop} must have been initialized with @code{mpz_init}
475before this function is called. When @var{rop} is no longer needed
476the occupied space must be freed with @code{mpz_clear}.
477@xref{Initializing Integers,,, gmp, GNU MP Manual}, for details.
478@end deftypefn
479
480@deftypefn {C Function} SCM scm_from_mpz_t (mpz_t val)
481Return the @code{SCM} value that represents @var{val}.
482@end deftypefn
483
07d83abe
MV
484@node Reals and Rationals
485@subsubsection Real and Rational Numbers
486@tpindex Real numbers
487@tpindex Rational numbers
488
489@rnindex real?
490@rnindex rational?
491
492Mathematically, the real numbers are the set of numbers that describe
493all possible points along a continuous, infinite, one-dimensional line.
494The rational numbers are the set of all numbers that can be written as
495fractions @var{p}/@var{q}, where @var{p} and @var{q} are integers.
496All rational numbers are also real, but there are real numbers that
34942993
KR
497are not rational, for example @m{\sqrt2, the square root of 2}, and
498@m{\pi,pi}.
07d83abe
MV
499
500Guile can represent both exact and inexact rational numbers, but it
501can not represent irrational numbers. Exact rationals are represented
502by storing the numerator and denominator as two exact integers.
503Inexact rationals are stored as floating point numbers using the C
504type @code{double}.
505
506Exact rationals are written as a fraction of integers. There must be
507no whitespace around the slash:
508
509@lisp
5101/2
511-22/7
512@end lisp
513
514Even though the actual encoding of inexact rationals is in binary, it
515may be helpful to think of it as a decimal number with a limited
516number of significant figures and a decimal point somewhere, since
517this corresponds to the standard notation for non-whole numbers. For
518example:
519
520@lisp
5210.34
522-0.00000142857931198
523-5648394822220000000000.0
5244.0
525@end lisp
526
527The limited precision of Guile's encoding means that any ``real'' number
528in Guile can be written in a rational form, by multiplying and then dividing
529by sufficient powers of 10 (or in fact, 2). For example,
530@samp{-0.00000142857931198} is the same as @minus{}142857931198 divided by
531100000000000000000. In Guile's current incarnation, therefore, the
532@code{rational?} and @code{real?} predicates are equivalent.
533
534
535Dividing by an exact zero leads to a error message, as one might
536expect. However, dividing by an inexact zero does not produce an
537error. Instead, the result of the division is either plus or minus
538infinity, depending on the sign of the divided number.
539
540The infinities are written @samp{+inf.0} and @samp{-inf.0},
541respectivly. This syntax is also recognized by @code{read} as an
542extension to the usual Scheme syntax.
543
544Dividing zero by zero yields something that is not a number at all:
545@samp{+nan.0}. This is the special `not a number' value.
546
547On platforms that follow @acronym{IEEE} 754 for their floating point
548arithmetic, the @samp{+inf.0}, @samp{-inf.0}, and @samp{+nan.0} values
549are implemented using the corresponding @acronym{IEEE} 754 values.
550They behave in arithmetic operations like @acronym{IEEE} 754 describes
551it, i.e., @code{(= +nan.0 +nan.0)} @result{} @code{#f}.
552
553The infinities are inexact integers and are considered to be both even
554and odd. While @samp{+nan.0} is not @code{=} to itself, it is
555@code{eqv?} to itself.
556
557To test for the special values, use the functions @code{inf?} and
558@code{nan?}.
559
560@deffn {Scheme Procedure} real? obj
561@deffnx {C Function} scm_real_p (obj)
562Return @code{#t} if @var{obj} is a real number, else @code{#f}. Note
563that the sets of integer and rational values form subsets of the set
564of real numbers, so the predicate will also be fulfilled if @var{obj}
565is an integer number or a rational number.
566@end deffn
567
568@deffn {Scheme Procedure} rational? x
569@deffnx {C Function} scm_rational_p (x)
570Return @code{#t} if @var{x} is a rational number, @code{#f} otherwise.
571Note that the set of integer values forms a subset of the set of
572rational numbers, i. e. the predicate will also be fulfilled if
573@var{x} is an integer number.
574
575Since Guile can not represent irrational numbers, every number
576satisfying @code{real?} also satisfies @code{rational?} in Guile.
577@end deffn
578
579@deffn {Scheme Procedure} rationalize x eps
580@deffnx {C Function} scm_rationalize (x, eps)
581Returns the @emph{simplest} rational number differing
582from @var{x} by no more than @var{eps}.
583
584As required by @acronym{R5RS}, @code{rationalize} only returns an
585exact result when both its arguments are exact. Thus, you might need
586to use @code{inexact->exact} on the arguments.
587
588@lisp
589(rationalize (inexact->exact 1.2) 1/100)
590@result{} 6/5
591@end lisp
592
593@end deffn
594
d3df9759
MV
595@deffn {Scheme Procedure} inf? x
596@deffnx {C Function} scm_inf_p (x)
07d83abe
MV
597Return @code{#t} if @var{x} is either @samp{+inf.0} or @samp{-inf.0},
598@code{#f} otherwise.
599@end deffn
600
601@deffn {Scheme Procedure} nan? x
d3df9759 602@deffnx {C Function} scm_nan_p (x)
07d83abe
MV
603Return @code{#t} if @var{x} is @samp{+nan.0}, @code{#f} otherwise.
604@end deffn
605
cdf1ad3b
MV
606@deffn {Scheme Procedure} nan
607@deffnx {C Function} scm_nan ()
608Return NaN.
609@end deffn
610
611@deffn {Scheme Procedure} inf
612@deffnx {C Function} scm_inf ()
613Return Inf.
614@end deffn
615
d3df9759
MV
616@deffn {Scheme Procedure} numerator x
617@deffnx {C Function} scm_numerator (x)
618Return the numerator of the rational number @var{x}.
619@end deffn
620
621@deffn {Scheme Procedure} denominator x
622@deffnx {C Function} scm_denominator (x)
623Return the denominator of the rational number @var{x}.
624@end deffn
625
626@deftypefn {C Function} int scm_is_real (SCM val)
627@deftypefnx {C Function} int scm_is_rational (SCM val)
628Equivalent to @code{scm_is_true (scm_real_p (val))} and
629@code{scm_is_true (scm_rational_p (val))}, respectively.
630@end deftypefn
631
632@deftypefn {C Function} double scm_to_double (SCM val)
633Returns the number closest to @var{val} that is representable as a
634@code{double}. Returns infinity for a @var{val} that is too large in
635magnitude. The argument @var{val} must be a real number.
636@end deftypefn
637
638@deftypefn {C Function} SCM scm_from_double (double val)
639Return the @code{SCM} value that representats @var{val}. The returned
640value is inexact according to the predicate @code{inexact?}, but it
641will be exactly equal to @var{val}.
642@end deftypefn
643
07d83abe
MV
644@node Complex Numbers
645@subsubsection Complex Numbers
646@tpindex Complex numbers
647
648@rnindex complex?
649
650Complex numbers are the set of numbers that describe all possible points
651in a two-dimensional space. The two coordinates of a particular point
652in this space are known as the @dfn{real} and @dfn{imaginary} parts of
653the complex number that describes that point.
654
655In Guile, complex numbers are written in rectangular form as the sum of
656their real and imaginary parts, using the symbol @code{i} to indicate
657the imaginary part.
658
659@lisp
6603+4i
661@result{}
6623.0+4.0i
663
664(* 3-8i 2.3+0.3i)
665@result{}
6669.3-17.5i
667@end lisp
668
34942993
KR
669@cindex polar form
670@noindent
671Polar form can also be used, with an @samp{@@} between magnitude and
672angle,
673
674@lisp
6751@@3.141592 @result{} -1.0 (approx)
676-1@@1.57079 @result{} 0.0-1.0i (approx)
677@end lisp
678
07d83abe
MV
679Guile represents a complex number with a non-zero imaginary part as a
680pair of inexact rationals, so the real and imaginary parts of a
681complex number have the same properties of inexactness and limited
682precision as single inexact rational numbers. Guile can not represent
683exact complex numbers with non-zero imaginary parts.
684
5615f696
MV
685@deffn {Scheme Procedure} complex? z
686@deffnx {C Function} scm_complex_p (z)
07d83abe
MV
687Return @code{#t} if @var{x} is a complex number, @code{#f}
688otherwise. Note that the sets of real, rational and integer
689values form subsets of the set of complex numbers, i. e. the
690predicate will also be fulfilled if @var{x} is a real,
691rational or integer number.
692@end deffn
693
c9dc8c6c
MV
694@deftypefn {C Function} int scm_is_complex (SCM val)
695Equivalent to @code{scm_is_true (scm_complex_p (val))}.
696@end deftypefn
697
07d83abe
MV
698@node Exactness
699@subsubsection Exact and Inexact Numbers
700@tpindex Exact numbers
701@tpindex Inexact numbers
702
703@rnindex exact?
704@rnindex inexact?
705@rnindex exact->inexact
706@rnindex inexact->exact
707
708R5RS requires that a calculation involving inexact numbers always
709produces an inexact result. To meet this requirement, Guile
710distinguishes between an exact integer value such as @samp{5} and the
711corresponding inexact real value which, to the limited precision
712available, has no fractional part, and is printed as @samp{5.0}. Guile
713will only convert the latter value to the former when forced to do so by
714an invocation of the @code{inexact->exact} procedure.
715
716@deffn {Scheme Procedure} exact? z
717@deffnx {C Function} scm_exact_p (z)
718Return @code{#t} if the number @var{z} is exact, @code{#f}
719otherwise.
720
721@lisp
722(exact? 2)
723@result{} #t
724
725(exact? 0.5)
726@result{} #f
727
728(exact? (/ 2))
729@result{} #t
730@end lisp
731
732@end deffn
733
734@deffn {Scheme Procedure} inexact? z
735@deffnx {C Function} scm_inexact_p (z)
736Return @code{#t} if the number @var{z} is inexact, @code{#f}
737else.
738@end deffn
739
740@deffn {Scheme Procedure} inexact->exact z
741@deffnx {C Function} scm_inexact_to_exact (z)
742Return an exact number that is numerically closest to @var{z}, when
743there is one. For inexact rationals, Guile returns the exact rational
744that is numerically equal to the inexact rational. Inexact complex
745numbers with a non-zero imaginary part can not be made exact.
746
747@lisp
748(inexact->exact 0.5)
749@result{} 1/2
750@end lisp
751
752The following happens because 12/10 is not exactly representable as a
753@code{double} (on most platforms). However, when reading a decimal
754number that has been marked exact with the ``#e'' prefix, Guile is
755able to represent it correctly.
756
757@lisp
758(inexact->exact 1.2)
759@result{} 5404319552844595/4503599627370496
760
761#e1.2
762@result{} 6/5
763@end lisp
764
765@end deffn
766
767@c begin (texi-doc-string "guile" "exact->inexact")
768@deffn {Scheme Procedure} exact->inexact z
769@deffnx {C Function} scm_exact_to_inexact (z)
770Convert the number @var{z} to its inexact representation.
771@end deffn
772
773
774@node Number Syntax
775@subsubsection Read Syntax for Numerical Data
776
777The read syntax for integers is a string of digits, optionally
778preceded by a minus or plus character, a code indicating the
779base in which the integer is encoded, and a code indicating whether
780the number is exact or inexact. The supported base codes are:
781
782@table @code
783@item #b
784@itemx #B
785the integer is written in binary (base 2)
786
787@item #o
788@itemx #O
789the integer is written in octal (base 8)
790
791@item #d
792@itemx #D
793the integer is written in decimal (base 10)
794
795@item #x
796@itemx #X
797the integer is written in hexadecimal (base 16)
798@end table
799
800If the base code is omitted, the integer is assumed to be decimal. The
801following examples show how these base codes are used.
802
803@lisp
804-13
805@result{} -13
806
807#d-13
808@result{} -13
809
810#x-13
811@result{} -19
812
813#b+1101
814@result{} 13
815
816#o377
817@result{} 255
818@end lisp
819
820The codes for indicating exactness (which can, incidentally, be applied
821to all numerical values) are:
822
823@table @code
824@item #e
825@itemx #E
826the number is exact
827
828@item #i
829@itemx #I
830the number is inexact.
831@end table
832
833If the exactness indicator is omitted, the number is exact unless it
834contains a radix point. Since Guile can not represent exact complex
835numbers, an error is signalled when asking for them.
836
837@lisp
838(exact? 1.2)
839@result{} #f
840
841(exact? #e1.2)
842@result{} #t
843
844(exact? #e+1i)
845ERROR: Wrong type argument
846@end lisp
847
848Guile also understands the syntax @samp{+inf.0} and @samp{-inf.0} for
849plus and minus infinity, respectively. The value must be written
850exactly as shown, that is, they always must have a sign and exactly
851one zero digit after the decimal point. It also understands
852@samp{+nan.0} and @samp{-nan.0} for the special `not-a-number' value.
853The sign is ignored for `not-a-number' and the value is always printed
854as @samp{+nan.0}.
855
856@node Integer Operations
857@subsubsection Operations on Integer Values
858@rnindex odd?
859@rnindex even?
860@rnindex quotient
861@rnindex remainder
862@rnindex modulo
863@rnindex gcd
864@rnindex lcm
865
866@deffn {Scheme Procedure} odd? n
867@deffnx {C Function} scm_odd_p (n)
868Return @code{#t} if @var{n} is an odd number, @code{#f}
869otherwise.
870@end deffn
871
872@deffn {Scheme Procedure} even? n
873@deffnx {C Function} scm_even_p (n)
874Return @code{#t} if @var{n} is an even number, @code{#f}
875otherwise.
876@end deffn
877
878@c begin (texi-doc-string "guile" "quotient")
879@c begin (texi-doc-string "guile" "remainder")
880@deffn {Scheme Procedure} quotient n d
881@deffnx {Scheme Procedure} remainder n d
882@deffnx {C Function} scm_quotient (n, d)
883@deffnx {C Function} scm_remainder (n, d)
884Return the quotient or remainder from @var{n} divided by @var{d}. The
885quotient is rounded towards zero, and the remainder will have the same
886sign as @var{n}. In all cases quotient and remainder satisfy
887@math{@var{n} = @var{q}*@var{d} + @var{r}}.
888
889@lisp
890(remainder 13 4) @result{} 1
891(remainder -13 4) @result{} -1
892@end lisp
893@end deffn
894
895@c begin (texi-doc-string "guile" "modulo")
896@deffn {Scheme Procedure} modulo n d
897@deffnx {C Function} scm_modulo (n, d)
898Return the remainder from @var{n} divided by @var{d}, with the same
899sign as @var{d}.
900
901@lisp
902(modulo 13 4) @result{} 1
903(modulo -13 4) @result{} 3
904(modulo 13 -4) @result{} -3
905(modulo -13 -4) @result{} -1
906@end lisp
907@end deffn
908
909@c begin (texi-doc-string "guile" "gcd")
fd8a1df5 910@deffn {Scheme Procedure} gcd x@dots{}
07d83abe
MV
911@deffnx {C Function} scm_gcd (x, y)
912Return the greatest common divisor of all arguments.
913If called without arguments, 0 is returned.
914
915The C function @code{scm_gcd} always takes two arguments, while the
916Scheme function can take an arbitrary number.
917@end deffn
918
919@c begin (texi-doc-string "guile" "lcm")
fd8a1df5 920@deffn {Scheme Procedure} lcm x@dots{}
07d83abe
MV
921@deffnx {C Function} scm_lcm (x, y)
922Return the least common multiple of the arguments.
923If called without arguments, 1 is returned.
924
925The C function @code{scm_lcm} always takes two arguments, while the
926Scheme function can take an arbitrary number.
927@end deffn
928
cdf1ad3b
MV
929@deffn {Scheme Procedure} modulo-expt n k m
930@deffnx {C Function} scm_modulo_expt (n, k, m)
931Return @var{n} raised to the integer exponent
932@var{k}, modulo @var{m}.
933
934@lisp
935(modulo-expt 2 3 5)
936 @result{} 3
937@end lisp
938@end deffn
07d83abe
MV
939
940@node Comparison
941@subsubsection Comparison Predicates
942@rnindex zero?
943@rnindex positive?
944@rnindex negative?
945
946The C comparison functions below always takes two arguments, while the
947Scheme functions can take an arbitrary number. Also keep in mind that
948the C functions return one of the Scheme boolean values
949@code{SCM_BOOL_T} or @code{SCM_BOOL_F} which are both true as far as C
950is concerned. Thus, always write @code{scm_is_true (scm_num_eq_p (x,
951y))} when testing the two Scheme numbers @code{x} and @code{y} for
952equality, for example.
953
954@c begin (texi-doc-string "guile" "=")
955@deffn {Scheme Procedure} =
956@deffnx {C Function} scm_num_eq_p (x, y)
957Return @code{#t} if all parameters are numerically equal.
958@end deffn
959
960@c begin (texi-doc-string "guile" "<")
961@deffn {Scheme Procedure} <
962@deffnx {C Function} scm_less_p (x, y)
963Return @code{#t} if the list of parameters is monotonically
964increasing.
965@end deffn
966
967@c begin (texi-doc-string "guile" ">")
968@deffn {Scheme Procedure} >
969@deffnx {C Function} scm_gr_p (x, y)
970Return @code{#t} if the list of parameters is monotonically
971decreasing.
972@end deffn
973
974@c begin (texi-doc-string "guile" "<=")
975@deffn {Scheme Procedure} <=
976@deffnx {C Function} scm_leq_p (x, y)
977Return @code{#t} if the list of parameters is monotonically
978non-decreasing.
979@end deffn
980
981@c begin (texi-doc-string "guile" ">=")
982@deffn {Scheme Procedure} >=
983@deffnx {C Function} scm_geq_p (x, y)
984Return @code{#t} if the list of parameters is monotonically
985non-increasing.
986@end deffn
987
988@c begin (texi-doc-string "guile" "zero?")
989@deffn {Scheme Procedure} zero? z
990@deffnx {C Function} scm_zero_p (z)
991Return @code{#t} if @var{z} is an exact or inexact number equal to
992zero.
993@end deffn
994
995@c begin (texi-doc-string "guile" "positive?")
996@deffn {Scheme Procedure} positive? x
997@deffnx {C Function} scm_positive_p (x)
998Return @code{#t} if @var{x} is an exact or inexact number greater than
999zero.
1000@end deffn
1001
1002@c begin (texi-doc-string "guile" "negative?")
1003@deffn {Scheme Procedure} negative? x
1004@deffnx {C Function} scm_negative_p (x)
1005Return @code{#t} if @var{x} is an exact or inexact number less than
1006zero.
1007@end deffn
1008
1009
1010@node Conversion
1011@subsubsection Converting Numbers To and From Strings
1012@rnindex number->string
1013@rnindex string->number
1014
1015@deffn {Scheme Procedure} number->string n [radix]
1016@deffnx {C Function} scm_number_to_string (n, radix)
1017Return a string holding the external representation of the
1018number @var{n} in the given @var{radix}. If @var{n} is
1019inexact, a radix of 10 will be used.
1020@end deffn
1021
1022@deffn {Scheme Procedure} string->number string [radix]
1023@deffnx {C Function} scm_string_to_number (string, radix)
1024Return a number of the maximally precise representation
1025expressed by the given @var{string}. @var{radix} must be an
1026exact integer, either 2, 8, 10, or 16. If supplied, @var{radix}
1027is a default radix that may be overridden by an explicit radix
1028prefix in @var{string} (e.g. "#o177"). If @var{radix} is not
1029supplied, then the default radix is 10. If string is not a
1030syntactically valid notation for a number, then
1031@code{string->number} returns @code{#f}.
1032@end deffn
1033
1034
1035@node Complex
1036@subsubsection Complex Number Operations
1037@rnindex make-rectangular
1038@rnindex make-polar
1039@rnindex real-part
1040@rnindex imag-part
1041@rnindex magnitude
1042@rnindex angle
1043
1044@deffn {Scheme Procedure} make-rectangular real imaginary
1045@deffnx {C Function} scm_make_rectangular (real, imaginary)
1046Return a complex number constructed of the given @var{real} and
1047@var{imaginary} parts.
1048@end deffn
1049
1050@deffn {Scheme Procedure} make-polar x y
1051@deffnx {C Function} scm_make_polar (x, y)
34942993 1052@cindex polar form
07d83abe
MV
1053Return the complex number @var{x} * e^(i * @var{y}).
1054@end deffn
1055
1056@c begin (texi-doc-string "guile" "real-part")
1057@deffn {Scheme Procedure} real-part z
1058@deffnx {C Function} scm_real_part (z)
1059Return the real part of the number @var{z}.
1060@end deffn
1061
1062@c begin (texi-doc-string "guile" "imag-part")
1063@deffn {Scheme Procedure} imag-part z
1064@deffnx {C Function} scm_imag_part (z)
1065Return the imaginary part of the number @var{z}.
1066@end deffn
1067
1068@c begin (texi-doc-string "guile" "magnitude")
1069@deffn {Scheme Procedure} magnitude z
1070@deffnx {C Function} scm_magnitude (z)
1071Return the magnitude of the number @var{z}. This is the same as
1072@code{abs} for real arguments, but also allows complex numbers.
1073@end deffn
1074
1075@c begin (texi-doc-string "guile" "angle")
1076@deffn {Scheme Procedure} angle z
1077@deffnx {C Function} scm_angle (z)
1078Return the angle of the complex number @var{z}.
1079@end deffn
1080
5615f696
MV
1081@deftypefn {C Function} SCM scm_c_make_rectangular (double re, double im)
1082@deftypefnx {C Function} SCM scm_c_make_polar (double x, double y)
1083Like @code{scm_make_rectangular} or @code{scm_make_polar},
1084respectively, but these functions take @code{double}s as their
1085arguments.
1086@end deftypefn
1087
1088@deftypefn {C Function} double scm_c_real_part (z)
1089@deftypefnx {C Function} double scm_c_imag_part (z)
1090Returns the real or imaginary part of @var{z} as a @code{double}.
1091@end deftypefn
1092
1093@deftypefn {C Function} double scm_c_magnitude (z)
1094@deftypefnx {C Function} double scm_c_angle (z)
1095Returns the magnitude or angle of @var{z} as a @code{double}.
1096@end deftypefn
1097
07d83abe
MV
1098
1099@node Arithmetic
1100@subsubsection Arithmetic Functions
1101@rnindex max
1102@rnindex min
1103@rnindex +
1104@rnindex *
1105@rnindex -
1106@rnindex /
1107@rnindex abs
1108@rnindex floor
1109@rnindex ceiling
1110@rnindex truncate
1111@rnindex round
1112
1113The C arithmetic functions below always takes two arguments, while the
1114Scheme functions can take an arbitrary number. When you need to
1115invoke them with just one argument, for example to compute the
1116equivalent od @code{(- x)}, pass @code{SCM_UNDEFINED} as the second
1117one: @code{scm_difference (x, SCM_UNDEFINED)}.
1118
1119@c begin (texi-doc-string "guile" "+")
1120@deffn {Scheme Procedure} + z1 @dots{}
1121@deffnx {C Function} scm_sum (z1, z2)
1122Return the sum of all parameter values. Return 0 if called without any
1123parameters.
1124@end deffn
1125
1126@c begin (texi-doc-string "guile" "-")
1127@deffn {Scheme Procedure} - z1 z2 @dots{}
1128@deffnx {C Function} scm_difference (z1, z2)
1129If called with one argument @var{z1}, -@var{z1} is returned. Otherwise
1130the sum of all but the first argument are subtracted from the first
1131argument.
1132@end deffn
1133
1134@c begin (texi-doc-string "guile" "*")
1135@deffn {Scheme Procedure} * z1 @dots{}
1136@deffnx {C Function} scm_product (z1, z2)
1137Return the product of all arguments. If called without arguments, 1 is
1138returned.
1139@end deffn
1140
1141@c begin (texi-doc-string "guile" "/")
1142@deffn {Scheme Procedure} / z1 z2 @dots{}
1143@deffnx {C Function} scm_divide (z1, z2)
1144Divide the first argument by the product of the remaining arguments. If
1145called with one argument @var{z1}, 1/@var{z1} is returned.
1146@end deffn
1147
1148@c begin (texi-doc-string "guile" "abs")
1149@deffn {Scheme Procedure} abs x
1150@deffnx {C Function} scm_abs (x)
1151Return the absolute value of @var{x}.
1152
1153@var{x} must be a number with zero imaginary part. To calculate the
1154magnitude of a complex number, use @code{magnitude} instead.
1155@end deffn
1156
1157@c begin (texi-doc-string "guile" "max")
1158@deffn {Scheme Procedure} max x1 x2 @dots{}
1159@deffnx {C Function} scm_max (x1, x2)
1160Return the maximum of all parameter values.
1161@end deffn
1162
1163@c begin (texi-doc-string "guile" "min")
1164@deffn {Scheme Procedure} min x1 x2 @dots{}
1165@deffnx {C Function} scm_min (x1, x2)
1166Return the minimum of all parameter values.
1167@end deffn
1168
1169@c begin (texi-doc-string "guile" "truncate")
fd8a1df5 1170@deffn {Scheme Procedure} truncate x
07d83abe
MV
1171@deffnx {C Function} scm_truncate_number (x)
1172Round the inexact number @var{x} towards zero.
1173@end deffn
1174
1175@c begin (texi-doc-string "guile" "round")
1176@deffn {Scheme Procedure} round x
1177@deffnx {C Function} scm_round_number (x)
1178Round the inexact number @var{x} to the nearest integer. When exactly
1179halfway between two integers, round to the even one.
1180@end deffn
1181
1182@c begin (texi-doc-string "guile" "floor")
1183@deffn {Scheme Procedure} floor x
1184@deffnx {C Function} scm_floor (x)
1185Round the number @var{x} towards minus infinity.
1186@end deffn
1187
1188@c begin (texi-doc-string "guile" "ceiling")
1189@deffn {Scheme Procedure} ceiling x
1190@deffnx {C Function} scm_ceiling (x)
1191Round the number @var{x} towards infinity.
1192@end deffn
1193
35da08ee
MV
1194@deftypefn {C Function} double scm_c_truncate (double x)
1195@deftypefnx {C Function} double scm_c_round (double x)
1196Like @code{scm_truncate_number} or @code{scm_round_number},
1197respectively, but these functions take and return @code{double}
1198values.
1199@end deftypefn
07d83abe
MV
1200
1201@node Scientific
1202@subsubsection Scientific Functions
1203
1204The following procedures accept any kind of number as arguments,
1205including complex numbers.
1206
1207@rnindex sqrt
1208@c begin (texi-doc-string "guile" "sqrt")
1209@deffn {Scheme Procedure} sqrt z
1210Return the square root of @var{z}.
1211@end deffn
1212
1213@rnindex expt
1214@c begin (texi-doc-string "guile" "expt")
1215@deffn {Scheme Procedure} expt z1 z2
1216Return @var{z1} raised to the power of @var{z2}.
1217@end deffn
1218
1219@rnindex sin
1220@c begin (texi-doc-string "guile" "sin")
1221@deffn {Scheme Procedure} sin z
1222Return the sine of @var{z}.
1223@end deffn
1224
1225@rnindex cos
1226@c begin (texi-doc-string "guile" "cos")
1227@deffn {Scheme Procedure} cos z
1228Return the cosine of @var{z}.
1229@end deffn
1230
1231@rnindex tan
1232@c begin (texi-doc-string "guile" "tan")
1233@deffn {Scheme Procedure} tan z
1234Return the tangent of @var{z}.
1235@end deffn
1236
1237@rnindex asin
1238@c begin (texi-doc-string "guile" "asin")
1239@deffn {Scheme Procedure} asin z
1240Return the arcsine of @var{z}.
1241@end deffn
1242
1243@rnindex acos
1244@c begin (texi-doc-string "guile" "acos")
1245@deffn {Scheme Procedure} acos z
1246Return the arccosine of @var{z}.
1247@end deffn
1248
1249@rnindex atan
1250@c begin (texi-doc-string "guile" "atan")
1251@deffn {Scheme Procedure} atan z
1252@deffnx {Scheme Procedure} atan y x
1253Return the arctangent of @var{z}, or of @math{@var{y}/@var{x}}.
1254@end deffn
1255
1256@rnindex exp
1257@c begin (texi-doc-string "guile" "exp")
1258@deffn {Scheme Procedure} exp z
1259Return e to the power of @var{z}, where e is the base of natural
1260logarithms (2.71828@dots{}).
1261@end deffn
1262
1263@rnindex log
1264@c begin (texi-doc-string "guile" "log")
1265@deffn {Scheme Procedure} log z
1266Return the natural logarithm of @var{z}.
1267@end deffn
1268
1269@c begin (texi-doc-string "guile" "log10")
1270@deffn {Scheme Procedure} log10 z
1271Return the base 10 logarithm of @var{z}.
1272@end deffn
1273
1274@c begin (texi-doc-string "guile" "sinh")
1275@deffn {Scheme Procedure} sinh z
1276Return the hyperbolic sine of @var{z}.
1277@end deffn
1278
1279@c begin (texi-doc-string "guile" "cosh")
1280@deffn {Scheme Procedure} cosh z
1281Return the hyperbolic cosine of @var{z}.
1282@end deffn
1283
1284@c begin (texi-doc-string "guile" "tanh")
1285@deffn {Scheme Procedure} tanh z
1286Return the hyperbolic tangent of @var{z}.
1287@end deffn
1288
1289@c begin (texi-doc-string "guile" "asinh")
1290@deffn {Scheme Procedure} asinh z
1291Return the hyperbolic arcsine of @var{z}.
1292@end deffn
1293
1294@c begin (texi-doc-string "guile" "acosh")
1295@deffn {Scheme Procedure} acosh z
1296Return the hyperbolic arccosine of @var{z}.
1297@end deffn
1298
1299@c begin (texi-doc-string "guile" "atanh")
1300@deffn {Scheme Procedure} atanh z
1301Return the hyperbolic arctangent of @var{z}.
1302@end deffn
1303
1304
1305@node Primitive Numerics
1306@subsubsection Primitive Numeric Functions
1307
1308Many of Guile's numeric procedures which accept any kind of numbers as
1309arguments, including complex numbers, are implemented as Scheme
1310procedures that use the following real number-based primitives. These
1311primitives signal an error if they are called with complex arguments.
1312
1313@c begin (texi-doc-string "guile" "$abs")
1314@deffn {Scheme Procedure} $abs x
1315Return the absolute value of @var{x}.
1316@end deffn
1317
1318@c begin (texi-doc-string "guile" "$sqrt")
1319@deffn {Scheme Procedure} $sqrt x
1320Return the square root of @var{x}.
1321@end deffn
1322
1323@deffn {Scheme Procedure} $expt x y
1324@deffnx {C Function} scm_sys_expt (x, y)
1325Return @var{x} raised to the power of @var{y}. This
1326procedure does not accept complex arguments.
1327@end deffn
1328
1329@c begin (texi-doc-string "guile" "$sin")
1330@deffn {Scheme Procedure} $sin x
1331Return the sine of @var{x}.
1332@end deffn
1333
1334@c begin (texi-doc-string "guile" "$cos")
1335@deffn {Scheme Procedure} $cos x
1336Return the cosine of @var{x}.
1337@end deffn
1338
1339@c begin (texi-doc-string "guile" "$tan")
1340@deffn {Scheme Procedure} $tan x
1341Return the tangent of @var{x}.
1342@end deffn
1343
1344@c begin (texi-doc-string "guile" "$asin")
1345@deffn {Scheme Procedure} $asin x
1346Return the arcsine of @var{x}.
1347@end deffn
1348
1349@c begin (texi-doc-string "guile" "$acos")
1350@deffn {Scheme Procedure} $acos x
1351Return the arccosine of @var{x}.
1352@end deffn
1353
1354@c begin (texi-doc-string "guile" "$atan")
1355@deffn {Scheme Procedure} $atan x
1356Return the arctangent of @var{x} in the range @minus{}@math{PI/2} to
1357@math{PI/2}.
1358@end deffn
1359
1360@deffn {Scheme Procedure} $atan2 x y
1361@deffnx {C Function} scm_sys_atan2 (x, y)
1362Return the arc tangent of the two arguments @var{x} and
1363@var{y}. This is similar to calculating the arc tangent of
1364@var{x} / @var{y}, except that the signs of both arguments
1365are used to determine the quadrant of the result. This
1366procedure does not accept complex arguments.
1367@end deffn
1368
1369@c begin (texi-doc-string "guile" "$exp")
1370@deffn {Scheme Procedure} $exp x
1371Return e to the power of @var{x}, where e is the base of natural
1372logarithms (2.71828@dots{}).
1373@end deffn
1374
1375@c begin (texi-doc-string "guile" "$log")
1376@deffn {Scheme Procedure} $log x
1377Return the natural logarithm of @var{x}.
1378@end deffn
1379
1380@c begin (texi-doc-string "guile" "$sinh")
1381@deffn {Scheme Procedure} $sinh x
1382Return the hyperbolic sine of @var{x}.
1383@end deffn
1384
1385@c begin (texi-doc-string "guile" "$cosh")
1386@deffn {Scheme Procedure} $cosh x
1387Return the hyperbolic cosine of @var{x}.
1388@end deffn
1389
1390@c begin (texi-doc-string "guile" "$tanh")
1391@deffn {Scheme Procedure} $tanh x
1392Return the hyperbolic tangent of @var{x}.
1393@end deffn
1394
1395@c begin (texi-doc-string "guile" "$asinh")
1396@deffn {Scheme Procedure} $asinh x
1397Return the hyperbolic arcsine of @var{x}.
1398@end deffn
1399
1400@c begin (texi-doc-string "guile" "$acosh")
1401@deffn {Scheme Procedure} $acosh x
1402Return the hyperbolic arccosine of @var{x}.
1403@end deffn
1404
1405@c begin (texi-doc-string "guile" "$atanh")
1406@deffn {Scheme Procedure} $atanh x
1407Return the hyperbolic arctangent of @var{x}.
1408@end deffn
1409
1410C functions for the above are provided by the standard mathematics
1411library. Naturally these expect and return @code{double} arguments
1412(@pxref{Mathematics,,, libc, GNU C Library Reference Manual}).
1413
1414@multitable {xx} {Scheme Procedure} {C Function}
1415@item @tab Scheme Procedure @tab C Function
1416
1417@item @tab @code{$abs} @tab @code{fabs}
1418@item @tab @code{$sqrt} @tab @code{sqrt}
1419@item @tab @code{$sin} @tab @code{sin}
1420@item @tab @code{$cos} @tab @code{cos}
1421@item @tab @code{$tan} @tab @code{tan}
1422@item @tab @code{$asin} @tab @code{asin}
1423@item @tab @code{$acos} @tab @code{acos}
1424@item @tab @code{$atan} @tab @code{atan}
1425@item @tab @code{$atan2} @tab @code{atan2}
1426@item @tab @code{$exp} @tab @code{exp}
1427@item @tab @code{$expt} @tab @code{pow}
1428@item @tab @code{$log} @tab @code{log}
1429@item @tab @code{$sinh} @tab @code{sinh}
1430@item @tab @code{$cosh} @tab @code{cosh}
1431@item @tab @code{$tanh} @tab @code{tanh}
1432@item @tab @code{$asinh} @tab @code{asinh}
1433@item @tab @code{$acosh} @tab @code{acosh}
1434@item @tab @code{$atanh} @tab @code{atanh}
1435@end multitable
1436
1437@code{asinh}, @code{acosh} and @code{atanh} are C99 standard but might
1438not be available on older systems. Guile provides the following
1439equivalents (on all systems).
1440
1441@deftypefn {C Function} double scm_asinh (double x)
1442@deftypefnx {C Function} double scm_acosh (double x)
1443@deftypefnx {C Function} double scm_atanh (double x)
1444Return the hyperbolic arcsine, arccosine or arctangent of @var{x}
1445respectively.
1446@end deftypefn
1447
1448
1449@node Bitwise Operations
1450@subsubsection Bitwise Operations
1451
1452For the following bitwise functions, negative numbers are treated as
1453infinite precision twos-complements. For instance @math{-6} is bits
1454@math{@dots{}111010}, with infinitely many ones on the left. It can
1455be seen that adding 6 (binary 110) to such a bit pattern gives all
1456zeros.
1457
1458@deffn {Scheme Procedure} logand n1 n2 @dots{}
1459@deffnx {C Function} scm_logand (n1, n2)
1460Return the bitwise @sc{and} of the integer arguments.
1461
1462@lisp
1463(logand) @result{} -1
1464(logand 7) @result{} 7
1465(logand #b111 #b011 #b001) @result{} 1
1466@end lisp
1467@end deffn
1468
1469@deffn {Scheme Procedure} logior n1 n2 @dots{}
1470@deffnx {C Function} scm_logior (n1, n2)
1471Return the bitwise @sc{or} of the integer arguments.
1472
1473@lisp
1474(logior) @result{} 0
1475(logior 7) @result{} 7
1476(logior #b000 #b001 #b011) @result{} 3
1477@end lisp
1478@end deffn
1479
1480@deffn {Scheme Procedure} logxor n1 n2 @dots{}
1481@deffnx {C Function} scm_loxor (n1, n2)
1482Return the bitwise @sc{xor} of the integer arguments. A bit is
1483set in the result if it is set in an odd number of arguments.
1484
1485@lisp
1486(logxor) @result{} 0
1487(logxor 7) @result{} 7
1488(logxor #b000 #b001 #b011) @result{} 2
1489(logxor #b000 #b001 #b011 #b011) @result{} 1
1490@end lisp
1491@end deffn
1492
1493@deffn {Scheme Procedure} lognot n
1494@deffnx {C Function} scm_lognot (n)
1495Return the integer which is the ones-complement of the integer
1496argument, ie.@: each 0 bit is changed to 1 and each 1 bit to 0.
1497
1498@lisp
1499(number->string (lognot #b10000000) 2)
1500 @result{} "-10000001"
1501(number->string (lognot #b0) 2)
1502 @result{} "-1"
1503@end lisp
1504@end deffn
1505
1506@deffn {Scheme Procedure} logtest j k
1507@deffnx {C Function} scm_logtest (j, k)
a46648ac
KR
1508Test whether @var{j} and @var{k} have any 1 bits in common. This is
1509equivalent to @code{(not (zero? (logand j k)))}, but without actually
1510calculating the @code{logand}, just testing for non-zero.
07d83abe 1511
a46648ac 1512@lisp
07d83abe
MV
1513(logtest #b0100 #b1011) @result{} #f
1514(logtest #b0100 #b0111) @result{} #t
1515@end lisp
1516@end deffn
1517
1518@deffn {Scheme Procedure} logbit? index j
1519@deffnx {C Function} scm_logbit_p (index, j)
a46648ac
KR
1520Test whether bit number @var{index} in @var{j} is set. @var{index}
1521starts from 0 for the least significant bit.
07d83abe 1522
a46648ac 1523@lisp
07d83abe
MV
1524(logbit? 0 #b1101) @result{} #t
1525(logbit? 1 #b1101) @result{} #f
1526(logbit? 2 #b1101) @result{} #t
1527(logbit? 3 #b1101) @result{} #t
1528(logbit? 4 #b1101) @result{} #f
1529@end lisp
1530@end deffn
1531
1532@deffn {Scheme Procedure} ash n cnt
1533@deffnx {C Function} scm_ash (n, cnt)
1534Return @var{n} shifted left by @var{cnt} bits, or shifted right if
1535@var{cnt} is negative. This is an ``arithmetic'' shift.
1536
1537This is effectively a multiplication by @m{2^{cnt}, 2^@var{cnt}}, and
1538when @var{cnt} is negative it's a division, rounded towards negative
1539infinity. (Note that this is not the same rounding as @code{quotient}
1540does.)
1541
1542With @var{n} viewed as an infinite precision twos complement,
1543@code{ash} means a left shift introducing zero bits, or a right shift
1544dropping bits.
1545
1546@lisp
1547(number->string (ash #b1 3) 2) @result{} "1000"
1548(number->string (ash #b1010 -1) 2) @result{} "101"
1549
1550;; -23 is bits ...11101001, -6 is bits ...111010
1551(ash -23 -2) @result{} -6
1552@end lisp
1553@end deffn
1554
1555@deffn {Scheme Procedure} logcount n
1556@deffnx {C Function} scm_logcount (n)
a46648ac 1557Return the number of bits in integer @var{n}. If @var{n} is
07d83abe
MV
1558positive, the 1-bits in its binary representation are counted.
1559If negative, the 0-bits in its two's-complement binary
a46648ac 1560representation are counted. If zero, 0 is returned.
07d83abe
MV
1561
1562@lisp
1563(logcount #b10101010)
1564 @result{} 4
1565(logcount 0)
1566 @result{} 0
1567(logcount -2)
1568 @result{} 1
1569@end lisp
1570@end deffn
1571
1572@deffn {Scheme Procedure} integer-length n
1573@deffnx {C Function} scm_integer_length (n)
1574Return the number of bits necessary to represent @var{n}.
1575
1576For positive @var{n} this is how many bits to the most significant one
1577bit. For negative @var{n} it's how many bits to the most significant
1578zero bit in twos complement form.
1579
1580@lisp
1581(integer-length #b10101010) @result{} 8
1582(integer-length #b1111) @result{} 4
1583(integer-length 0) @result{} 0
1584(integer-length -1) @result{} 0
1585(integer-length -256) @result{} 8
1586(integer-length -257) @result{} 9
1587@end lisp
1588@end deffn
1589
1590@deffn {Scheme Procedure} integer-expt n k
1591@deffnx {C Function} scm_integer_expt (n, k)
a46648ac
KR
1592Return @var{n} raised to the power @var{k}. @var{k} must be an exact
1593integer, @var{n} can be any number.
1594
1595Negative @var{k} is supported, and results in @m{1/n^|k|, 1/n^abs(k)}
1596in the usual way. @math{@var{n}^0} is 1, as usual, and that includes
1597@math{0^0} is 1.
07d83abe
MV
1598
1599@lisp
a46648ac
KR
1600(integer-expt 2 5) @result{} 32
1601(integer-expt -3 3) @result{} -27
1602(integer-expt 5 -3) @result{} 1/125
1603(integer-expt 0 0) @result{} 1
07d83abe
MV
1604@end lisp
1605@end deffn
1606
1607@deffn {Scheme Procedure} bit-extract n start end
1608@deffnx {C Function} scm_bit_extract (n, start, end)
1609Return the integer composed of the @var{start} (inclusive)
1610through @var{end} (exclusive) bits of @var{n}. The
1611@var{start}th bit becomes the 0-th bit in the result.
1612
1613@lisp
1614(number->string (bit-extract #b1101101010 0 4) 2)
1615 @result{} "1010"
1616(number->string (bit-extract #b1101101010 4 9) 2)
1617 @result{} "10110"
1618@end lisp
1619@end deffn
1620
1621
1622@node Random
1623@subsubsection Random Number Generation
1624
1625Pseudo-random numbers are generated from a random state object, which
1626can be created with @code{seed->random-state}. The @var{state}
1627parameter to the various functions below is optional, it defaults to
1628the state object in the @code{*random-state*} variable.
1629
1630@deffn {Scheme Procedure} copy-random-state [state]
1631@deffnx {C Function} scm_copy_random_state (state)
1632Return a copy of the random state @var{state}.
1633@end deffn
1634
1635@deffn {Scheme Procedure} random n [state]
1636@deffnx {C Function} scm_random (n, state)
1637Return a number in [0, @var{n}).
1638
1639Accepts a positive integer or real n and returns a
1640number of the same type between zero (inclusive) and
1641@var{n} (exclusive). The values returned have a uniform
1642distribution.
1643@end deffn
1644
1645@deffn {Scheme Procedure} random:exp [state]
1646@deffnx {C Function} scm_random_exp (state)
1647Return an inexact real in an exponential distribution with mean
16481. For an exponential distribution with mean @var{u} use @code{(*
1649@var{u} (random:exp))}.
1650@end deffn
1651
1652@deffn {Scheme Procedure} random:hollow-sphere! vect [state]
1653@deffnx {C Function} scm_random_hollow_sphere_x (vect, state)
1654Fills @var{vect} with inexact real random numbers the sum of whose
1655squares is equal to 1.0. Thinking of @var{vect} as coordinates in
1656space of dimension @var{n} @math{=} @code{(vector-length @var{vect})},
1657the coordinates are uniformly distributed over the surface of the unit
1658n-sphere.
1659@end deffn
1660
1661@deffn {Scheme Procedure} random:normal [state]
1662@deffnx {C Function} scm_random_normal (state)
1663Return an inexact real in a normal distribution. The distribution
1664used has mean 0 and standard deviation 1. For a normal distribution
1665with mean @var{m} and standard deviation @var{d} use @code{(+ @var{m}
1666(* @var{d} (random:normal)))}.
1667@end deffn
1668
1669@deffn {Scheme Procedure} random:normal-vector! vect [state]
1670@deffnx {C Function} scm_random_normal_vector_x (vect, state)
1671Fills @var{vect} with inexact real random numbers that are
1672independent and standard normally distributed
1673(i.e., with mean 0 and variance 1).
1674@end deffn
1675
1676@deffn {Scheme Procedure} random:solid-sphere! vect [state]
1677@deffnx {C Function} scm_random_solid_sphere_x (vect, state)
1678Fills @var{vect} with inexact real random numbers the sum of whose
1679squares is less than 1.0. Thinking of @var{vect} as coordinates in
1680space of dimension @var{n} @math{=} @code{(vector-length @var{vect})},
1681the coordinates are uniformly distributed within the unit
4497bd2f 1682@var{n}-sphere.
07d83abe
MV
1683@c FIXME: What does this mean, particularly the n-sphere part?
1684@end deffn
1685
1686@deffn {Scheme Procedure} random:uniform [state]
1687@deffnx {C Function} scm_random_uniform (state)
1688Return a uniformly distributed inexact real random number in
1689[0,1).
1690@end deffn
1691
1692@deffn {Scheme Procedure} seed->random-state seed
1693@deffnx {C Function} scm_seed_to_random_state (seed)
1694Return a new random state using @var{seed}.
1695@end deffn
1696
1697@defvar *random-state*
1698The global random state used by the above functions when the
1699@var{state} parameter is not given.
1700@end defvar
1701
1702
1703@node Characters
1704@subsection Characters
1705@tpindex Characters
1706
050ab45f
MV
1707In Scheme, a character literal is written as @code{#\@var{name}} where
1708@var{name} is the name of the character that you want. Printable
1709characters have their usual single character name; for example,
1710@code{#\a} is a lower case @code{a}.
07d83abe
MV
1711
1712Most of the ``control characters'' (those below codepoint 32) in the
1713@acronym{ASCII} character set, as well as the space, may be referred
050ab45f
MV
1714to by longer names: for example, @code{#\tab}, @code{#\esc},
1715@code{#\stx}, and so on. The following table describes the
1716@acronym{ASCII} names for each character.
07d83abe
MV
1717
1718@multitable @columnfractions .25 .25 .25 .25
1719@item 0 = @code{#\nul}
1720 @tab 1 = @code{#\soh}
1721 @tab 2 = @code{#\stx}
1722 @tab 3 = @code{#\etx}
1723@item 4 = @code{#\eot}
1724 @tab 5 = @code{#\enq}
1725 @tab 6 = @code{#\ack}
1726 @tab 7 = @code{#\bel}
1727@item 8 = @code{#\bs}
1728 @tab 9 = @code{#\ht}
1729 @tab 10 = @code{#\nl}
1730 @tab 11 = @code{#\vt}
1731@item 12 = @code{#\np}
1732 @tab 13 = @code{#\cr}
1733 @tab 14 = @code{#\so}
1734 @tab 15 = @code{#\si}
1735@item 16 = @code{#\dle}
1736 @tab 17 = @code{#\dc1}
1737 @tab 18 = @code{#\dc2}
1738 @tab 19 = @code{#\dc3}
1739@item 20 = @code{#\dc4}
1740 @tab 21 = @code{#\nak}
1741 @tab 22 = @code{#\syn}
1742 @tab 23 = @code{#\etb}
1743@item 24 = @code{#\can}
1744 @tab 25 = @code{#\em}
1745 @tab 26 = @code{#\sub}
1746 @tab 27 = @code{#\esc}
1747@item 28 = @code{#\fs}
1748 @tab 29 = @code{#\gs}
1749 @tab 30 = @code{#\rs}
1750 @tab 31 = @code{#\us}
1751@item 32 = @code{#\sp}
1752@end multitable
1753
1754The ``delete'' character (octal 177) may be referred to with the name
1755@code{#\del}.
1756
1757Several characters have more than one name:
1758
1759@multitable {@code{#\backspace}} {Original}
1760@item Alias @tab Original
1761@item @code{#\space} @tab @code{#\sp}
1762@item @code{#\newline} @tab @code{#\nl}
1763@item @code{#\tab} @tab @code{#\ht}
1764@item @code{#\backspace} @tab @code{#\bs}
1765@item @code{#\return} @tab @code{#\cr}
1766@item @code{#\page} @tab @code{#\np}
1767@item @code{#\null} @tab @code{#\nul}
1768@end multitable
1769
1770@rnindex char?
1771@deffn {Scheme Procedure} char? x
1772@deffnx {C Function} scm_char_p (x)
1773Return @code{#t} iff @var{x} is a character, else @code{#f}.
1774@end deffn
1775
1776@rnindex char=?
1777@deffn {Scheme Procedure} char=? x y
1778Return @code{#t} iff @var{x} is the same character as @var{y}, else @code{#f}.
1779@end deffn
1780
1781@rnindex char<?
1782@deffn {Scheme Procedure} char<? x y
1783Return @code{#t} iff @var{x} is less than @var{y} in the @acronym{ASCII} sequence,
1784else @code{#f}.
1785@end deffn
1786
1787@rnindex char<=?
1788@deffn {Scheme Procedure} char<=? x y
1789Return @code{#t} iff @var{x} is less than or equal to @var{y} in the
1790@acronym{ASCII} sequence, else @code{#f}.
1791@end deffn
1792
1793@rnindex char>?
1794@deffn {Scheme Procedure} char>? x y
1795Return @code{#t} iff @var{x} is greater than @var{y} in the @acronym{ASCII}
1796sequence, else @code{#f}.
1797@end deffn
1798
1799@rnindex char>=?
1800@deffn {Scheme Procedure} char>=? x y
1801Return @code{#t} iff @var{x} is greater than or equal to @var{y} in the
1802@acronym{ASCII} sequence, else @code{#f}.
1803@end deffn
1804
1805@rnindex char-ci=?
1806@deffn {Scheme Procedure} char-ci=? x y
1807Return @code{#t} iff @var{x} is the same character as @var{y} ignoring
1808case, else @code{#f}.
1809@end deffn
1810
1811@rnindex char-ci<?
1812@deffn {Scheme Procedure} char-ci<? x y
1813Return @code{#t} iff @var{x} is less than @var{y} in the @acronym{ASCII} sequence
1814ignoring case, else @code{#f}.
1815@end deffn
1816
1817@rnindex char-ci<=?
1818@deffn {Scheme Procedure} char-ci<=? x y
1819Return @code{#t} iff @var{x} is less than or equal to @var{y} in the
1820@acronym{ASCII} sequence ignoring case, else @code{#f}.
1821@end deffn
1822
1823@rnindex char-ci>?
1824@deffn {Scheme Procedure} char-ci>? x y
1825Return @code{#t} iff @var{x} is greater than @var{y} in the @acronym{ASCII}
1826sequence ignoring case, else @code{#f}.
1827@end deffn
1828
1829@rnindex char-ci>=?
1830@deffn {Scheme Procedure} char-ci>=? x y
1831Return @code{#t} iff @var{x} is greater than or equal to @var{y} in the
1832@acronym{ASCII} sequence ignoring case, else @code{#f}.
1833@end deffn
1834
1835@rnindex char-alphabetic?
1836@deffn {Scheme Procedure} char-alphabetic? chr
1837@deffnx {C Function} scm_char_alphabetic_p (chr)
1838Return @code{#t} iff @var{chr} is alphabetic, else @code{#f}.
07d83abe
MV
1839@end deffn
1840
1841@rnindex char-numeric?
1842@deffn {Scheme Procedure} char-numeric? chr
1843@deffnx {C Function} scm_char_numeric_p (chr)
1844Return @code{#t} iff @var{chr} is numeric, else @code{#f}.
07d83abe
MV
1845@end deffn
1846
1847@rnindex char-whitespace?
1848@deffn {Scheme Procedure} char-whitespace? chr
1849@deffnx {C Function} scm_char_whitespace_p (chr)
1850Return @code{#t} iff @var{chr} is whitespace, else @code{#f}.
07d83abe
MV
1851@end deffn
1852
1853@rnindex char-upper-case?
1854@deffn {Scheme Procedure} char-upper-case? chr
1855@deffnx {C Function} scm_char_upper_case_p (chr)
1856Return @code{#t} iff @var{chr} is uppercase, else @code{#f}.
07d83abe
MV
1857@end deffn
1858
1859@rnindex char-lower-case?
1860@deffn {Scheme Procedure} char-lower-case? chr
1861@deffnx {C Function} scm_char_lower_case_p (chr)
1862Return @code{#t} iff @var{chr} is lowercase, else @code{#f}.
07d83abe
MV
1863@end deffn
1864
1865@deffn {Scheme Procedure} char-is-both? chr
1866@deffnx {C Function} scm_char_is_both_p (chr)
1867Return @code{#t} iff @var{chr} is either uppercase or lowercase, else
5676b4fa 1868@code{#f}.
07d83abe
MV
1869@end deffn
1870
1871@rnindex char->integer
1872@deffn {Scheme Procedure} char->integer chr
1873@deffnx {C Function} scm_char_to_integer (chr)
1874Return the number corresponding to ordinal position of @var{chr} in the
1875@acronym{ASCII} sequence.
1876@end deffn
1877
1878@rnindex integer->char
1879@deffn {Scheme Procedure} integer->char n
1880@deffnx {C Function} scm_integer_to_char (n)
1881Return the character at position @var{n} in the @acronym{ASCII} sequence.
1882@end deffn
1883
1884@rnindex char-upcase
1885@deffn {Scheme Procedure} char-upcase chr
1886@deffnx {C Function} scm_char_upcase (chr)
1887Return the uppercase character version of @var{chr}.
1888@end deffn
1889
1890@rnindex char-downcase
1891@deffn {Scheme Procedure} char-downcase chr
1892@deffnx {C Function} scm_char_downcase (chr)
1893Return the lowercase character version of @var{chr}.
1894@end deffn
1895
050ab45f
MV
1896@node Character Sets
1897@subsection Character Sets
07d83abe 1898
050ab45f
MV
1899The features described in this section correspond directly to SRFI-14.
1900
1901The data type @dfn{charset} implements sets of characters
1902(@pxref{Characters}). Because the internal representation of
1903character sets is not visible to the user, a lot of procedures for
1904handling them are provided.
1905
1906Character sets can be created, extended, tested for the membership of a
1907characters and be compared to other character sets.
1908
1909The Guile implementation of character sets currently deals only with
19108-bit characters. In the future, when Guile gets support for
1911international character sets, this will change, but the functions
1912provided here will always then be able to efficiently cope with very
1913large character sets.
1914
1915@menu
1916* Character Set Predicates/Comparison::
1917* Iterating Over Character Sets:: Enumerate charset elements.
1918* Creating Character Sets:: Making new charsets.
1919* Querying Character Sets:: Test charsets for membership etc.
1920* Character-Set Algebra:: Calculating new charsets.
1921* Standard Character Sets:: Variables containing predefined charsets.
1922@end menu
1923
1924@node Character Set Predicates/Comparison
1925@subsubsection Character Set Predicates/Comparison
1926
1927Use these procedures for testing whether an object is a character set,
1928or whether several character sets are equal or subsets of each other.
1929@code{char-set-hash} can be used for calculating a hash value, maybe for
1930usage in fast lookup procedures.
1931
1932@deffn {Scheme Procedure} char-set? obj
1933@deffnx {C Function} scm_char_set_p (obj)
1934Return @code{#t} if @var{obj} is a character set, @code{#f}
1935otherwise.
1936@end deffn
1937
1938@deffn {Scheme Procedure} char-set= . char_sets
1939@deffnx {C Function} scm_char_set_eq (char_sets)
1940Return @code{#t} if all given character sets are equal.
1941@end deffn
1942
1943@deffn {Scheme Procedure} char-set<= . char_sets
1944@deffnx {C Function} scm_char_set_leq (char_sets)
1945Return @code{#t} if every character set @var{cs}i is a subset
1946of character set @var{cs}i+1.
1947@end deffn
1948
1949@deffn {Scheme Procedure} char-set-hash cs [bound]
1950@deffnx {C Function} scm_char_set_hash (cs, bound)
1951Compute a hash value for the character set @var{cs}. If
1952@var{bound} is given and non-zero, it restricts the
1953returned value to the range 0 @dots{} @var{bound - 1}.
1954@end deffn
1955
1956@c ===================================================================
1957
1958@node Iterating Over Character Sets
1959@subsubsection Iterating Over Character Sets
1960
1961Character set cursors are a means for iterating over the members of a
1962character sets. After creating a character set cursor with
1963@code{char-set-cursor}, a cursor can be dereferenced with
1964@code{char-set-ref}, advanced to the next member with
1965@code{char-set-cursor-next}. Whether a cursor has passed past the last
1966element of the set can be checked with @code{end-of-char-set?}.
1967
1968Additionally, mapping and (un-)folding procedures for character sets are
1969provided.
1970
1971@deffn {Scheme Procedure} char-set-cursor cs
1972@deffnx {C Function} scm_char_set_cursor (cs)
1973Return a cursor into the character set @var{cs}.
1974@end deffn
1975
1976@deffn {Scheme Procedure} char-set-ref cs cursor
1977@deffnx {C Function} scm_char_set_ref (cs, cursor)
1978Return the character at the current cursor position
1979@var{cursor} in the character set @var{cs}. It is an error to
1980pass a cursor for which @code{end-of-char-set?} returns true.
1981@end deffn
1982
1983@deffn {Scheme Procedure} char-set-cursor-next cs cursor
1984@deffnx {C Function} scm_char_set_cursor_next (cs, cursor)
1985Advance the character set cursor @var{cursor} to the next
1986character in the character set @var{cs}. It is an error if the
1987cursor given satisfies @code{end-of-char-set?}.
1988@end deffn
1989
1990@deffn {Scheme Procedure} end-of-char-set? cursor
1991@deffnx {C Function} scm_end_of_char_set_p (cursor)
1992Return @code{#t} if @var{cursor} has reached the end of a
1993character set, @code{#f} otherwise.
1994@end deffn
1995
1996@deffn {Scheme Procedure} char-set-fold kons knil cs
1997@deffnx {C Function} scm_char_set_fold (kons, knil, cs)
1998Fold the procedure @var{kons} over the character set @var{cs},
1999initializing it with @var{knil}.
2000@end deffn
2001
2002@deffn {Scheme Procedure} char-set-unfold p f g seed [base_cs]
2003@deffnx {C Function} scm_char_set_unfold (p, f, g, seed, base_cs)
2004This is a fundamental constructor for character sets.
2005@itemize @bullet
2006@item @var{g} is used to generate a series of ``seed'' values
2007from the initial seed: @var{seed}, (@var{g} @var{seed}),
2008(@var{g}^2 @var{seed}), (@var{g}^3 @var{seed}), @dots{}
2009@item @var{p} tells us when to stop -- when it returns true
2010when applied to one of the seed values.
2011@item @var{f} maps each seed value to a character. These
2012characters are added to the base character set @var{base_cs} to
2013form the result; @var{base_cs} defaults to the empty set.
2014@end itemize
2015@end deffn
2016
2017@deffn {Scheme Procedure} char-set-unfold! p f g seed base_cs
2018@deffnx {C Function} scm_char_set_unfold_x (p, f, g, seed, base_cs)
2019This is a fundamental constructor for character sets.
2020@itemize @bullet
2021@item @var{g} is used to generate a series of ``seed'' values
2022from the initial seed: @var{seed}, (@var{g} @var{seed}),
2023(@var{g}^2 @var{seed}), (@var{g}^3 @var{seed}), @dots{}
2024@item @var{p} tells us when to stop -- when it returns true
2025when applied to one of the seed values.
2026@item @var{f} maps each seed value to a character. These
2027characters are added to the base character set @var{base_cs} to
2028form the result; @var{base_cs} defaults to the empty set.
2029@end itemize
2030@end deffn
2031
2032@deffn {Scheme Procedure} char-set-for-each proc cs
2033@deffnx {C Function} scm_char_set_for_each (proc, cs)
2034Apply @var{proc} to every character in the character set
2035@var{cs}. The return value is not specified.
2036@end deffn
2037
2038@deffn {Scheme Procedure} char-set-map proc cs
2039@deffnx {C Function} scm_char_set_map (proc, cs)
2040Map the procedure @var{proc} over every character in @var{cs}.
2041@var{proc} must be a character -> character procedure.
2042@end deffn
2043
2044@c ===================================================================
2045
2046@node Creating Character Sets
2047@subsubsection Creating Character Sets
2048
2049New character sets are produced with these procedures.
2050
2051@deffn {Scheme Procedure} char-set-copy cs
2052@deffnx {C Function} scm_char_set_copy (cs)
2053Return a newly allocated character set containing all
2054characters in @var{cs}.
2055@end deffn
2056
2057@deffn {Scheme Procedure} char-set . rest
2058@deffnx {C Function} scm_char_set (rest)
2059Return a character set containing all given characters.
2060@end deffn
2061
2062@deffn {Scheme Procedure} list->char-set list [base_cs]
2063@deffnx {C Function} scm_list_to_char_set (list, base_cs)
2064Convert the character list @var{list} to a character set. If
2065the character set @var{base_cs} is given, the character in this
2066set are also included in the result.
2067@end deffn
2068
2069@deffn {Scheme Procedure} list->char-set! list base_cs
2070@deffnx {C Function} scm_list_to_char_set_x (list, base_cs)
2071Convert the character list @var{list} to a character set. The
2072characters are added to @var{base_cs} and @var{base_cs} is
2073returned.
2074@end deffn
2075
2076@deffn {Scheme Procedure} string->char-set str [base_cs]
2077@deffnx {C Function} scm_string_to_char_set (str, base_cs)
2078Convert the string @var{str} to a character set. If the
2079character set @var{base_cs} is given, the characters in this
2080set are also included in the result.
2081@end deffn
2082
2083@deffn {Scheme Procedure} string->char-set! str base_cs
2084@deffnx {C Function} scm_string_to_char_set_x (str, base_cs)
2085Convert the string @var{str} to a character set. The
2086characters from the string are added to @var{base_cs}, and
2087@var{base_cs} is returned.
2088@end deffn
2089
2090@deffn {Scheme Procedure} char-set-filter pred cs [base_cs]
2091@deffnx {C Function} scm_char_set_filter (pred, cs, base_cs)
2092Return a character set containing every character from @var{cs}
2093so that it satisfies @var{pred}. If provided, the characters
2094from @var{base_cs} are added to the result.
2095@end deffn
2096
2097@deffn {Scheme Procedure} char-set-filter! pred cs base_cs
2098@deffnx {C Function} scm_char_set_filter_x (pred, cs, base_cs)
2099Return a character set containing every character from @var{cs}
2100so that it satisfies @var{pred}. The characters are added to
2101@var{base_cs} and @var{base_cs} is returned.
2102@end deffn
2103
2104@deffn {Scheme Procedure} ucs-range->char-set lower upper [error [base_cs]]
2105@deffnx {C Function} scm_ucs_range_to_char_set (lower, upper, error, base_cs)
2106Return a character set containing all characters whose
2107character codes lie in the half-open range
2108[@var{lower},@var{upper}).
2109
2110If @var{error} is a true value, an error is signalled if the
2111specified range contains characters which are not contained in
2112the implemented character range. If @var{error} is @code{#f},
2113these characters are silently left out of the resultung
2114character set.
2115
2116The characters in @var{base_cs} are added to the result, if
2117given.
2118@end deffn
2119
2120@deffn {Scheme Procedure} ucs-range->char-set! lower upper error base_cs
2121@deffnx {C Function} scm_ucs_range_to_char_set_x (lower, upper, error, base_cs)
2122Return a character set containing all characters whose
2123character codes lie in the half-open range
2124[@var{lower},@var{upper}).
2125
2126If @var{error} is a true value, an error is signalled if the
2127specified range contains characters which are not contained in
2128the implemented character range. If @var{error} is @code{#f},
2129these characters are silently left out of the resultung
2130character set.
2131
2132The characters are added to @var{base_cs} and @var{base_cs} is
2133returned.
2134@end deffn
2135
2136@deffn {Scheme Procedure} ->char-set x
2137@deffnx {C Function} scm_to_char_set (x)
2138Coerces x into a char-set. @var{x} may be a string, character or char-set. A string is converted to the set of its constituent characters; a character is converted to a singleton set; a char-set is returned as-is.
2139@end deffn
2140
2141@c ===================================================================
2142
2143@node Querying Character Sets
2144@subsubsection Querying Character Sets
2145
2146Access the elements and other information of a character set with these
2147procedures.
2148
2149@deffn {Scheme Procedure} char-set-size cs
2150@deffnx {C Function} scm_char_set_size (cs)
2151Return the number of elements in character set @var{cs}.
2152@end deffn
2153
2154@deffn {Scheme Procedure} char-set-count pred cs
2155@deffnx {C Function} scm_char_set_count (pred, cs)
2156Return the number of the elements int the character set
2157@var{cs} which satisfy the predicate @var{pred}.
2158@end deffn
2159
2160@deffn {Scheme Procedure} char-set->list cs
2161@deffnx {C Function} scm_char_set_to_list (cs)
2162Return a list containing the elements of the character set
2163@var{cs}.
2164@end deffn
2165
2166@deffn {Scheme Procedure} char-set->string cs
2167@deffnx {C Function} scm_char_set_to_string (cs)
2168Return a string containing the elements of the character set
2169@var{cs}. The order in which the characters are placed in the
2170string is not defined.
2171@end deffn
2172
2173@deffn {Scheme Procedure} char-set-contains? cs ch
2174@deffnx {C Function} scm_char_set_contains_p (cs, ch)
2175Return @code{#t} iff the character @var{ch} is contained in the
2176character set @var{cs}.
2177@end deffn
2178
2179@deffn {Scheme Procedure} char-set-every pred cs
2180@deffnx {C Function} scm_char_set_every (pred, cs)
2181Return a true value if every character in the character set
2182@var{cs} satisfies the predicate @var{pred}.
2183@end deffn
2184
2185@deffn {Scheme Procedure} char-set-any pred cs
2186@deffnx {C Function} scm_char_set_any (pred, cs)
2187Return a true value if any character in the character set
2188@var{cs} satisfies the predicate @var{pred}.
2189@end deffn
2190
2191@c ===================================================================
2192
2193@node Character-Set Algebra
2194@subsubsection Character-Set Algebra
2195
2196Character sets can be manipulated with the common set algebra operation,
2197such as union, complement, intersection etc. All of these procedures
2198provide side-effecting variants, which modify their character set
2199argument(s).
2200
2201@deffn {Scheme Procedure} char-set-adjoin cs . rest
2202@deffnx {C Function} scm_char_set_adjoin (cs, rest)
2203Add all character arguments to the first argument, which must
2204be a character set.
2205@end deffn
2206
2207@deffn {Scheme Procedure} char-set-delete cs . rest
2208@deffnx {C Function} scm_char_set_delete (cs, rest)
2209Delete all character arguments from the first argument, which
2210must be a character set.
2211@end deffn
2212
2213@deffn {Scheme Procedure} char-set-adjoin! cs . rest
2214@deffnx {C Function} scm_char_set_adjoin_x (cs, rest)
2215Add all character arguments to the first argument, which must
2216be a character set.
2217@end deffn
2218
2219@deffn {Scheme Procedure} char-set-delete! cs . rest
2220@deffnx {C Function} scm_char_set_delete_x (cs, rest)
2221Delete all character arguments from the first argument, which
2222must be a character set.
2223@end deffn
2224
2225@deffn {Scheme Procedure} char-set-complement cs
2226@deffnx {C Function} scm_char_set_complement (cs)
2227Return the complement of the character set @var{cs}.
2228@end deffn
2229
2230@deffn {Scheme Procedure} char-set-union . rest
2231@deffnx {C Function} scm_char_set_union (rest)
2232Return the union of all argument character sets.
2233@end deffn
2234
2235@deffn {Scheme Procedure} char-set-intersection . rest
2236@deffnx {C Function} scm_char_set_intersection (rest)
2237Return the intersection of all argument character sets.
2238@end deffn
2239
2240@deffn {Scheme Procedure} char-set-difference cs1 . rest
2241@deffnx {C Function} scm_char_set_difference (cs1, rest)
2242Return the difference of all argument character sets.
2243@end deffn
2244
2245@deffn {Scheme Procedure} char-set-xor . rest
2246@deffnx {C Function} scm_char_set_xor (rest)
2247Return the exclusive-or of all argument character sets.
2248@end deffn
2249
2250@deffn {Scheme Procedure} char-set-diff+intersection cs1 . rest
2251@deffnx {C Function} scm_char_set_diff_plus_intersection (cs1, rest)
2252Return the difference and the intersection of all argument
2253character sets.
2254@end deffn
2255
2256@deffn {Scheme Procedure} char-set-complement! cs
2257@deffnx {C Function} scm_char_set_complement_x (cs)
2258Return the complement of the character set @var{cs}.
2259@end deffn
2260
2261@deffn {Scheme Procedure} char-set-union! cs1 . rest
2262@deffnx {C Function} scm_char_set_union_x (cs1, rest)
2263Return the union of all argument character sets.
2264@end deffn
2265
2266@deffn {Scheme Procedure} char-set-intersection! cs1 . rest
2267@deffnx {C Function} scm_char_set_intersection_x (cs1, rest)
2268Return the intersection of all argument character sets.
2269@end deffn
2270
2271@deffn {Scheme Procedure} char-set-difference! cs1 . rest
2272@deffnx {C Function} scm_char_set_difference_x (cs1, rest)
2273Return the difference of all argument character sets.
2274@end deffn
2275
2276@deffn {Scheme Procedure} char-set-xor! cs1 . rest
2277@deffnx {C Function} scm_char_set_xor_x (cs1, rest)
2278Return the exclusive-or of all argument character sets.
2279@end deffn
2280
2281@deffn {Scheme Procedure} char-set-diff+intersection! cs1 cs2 . rest
2282@deffnx {C Function} scm_char_set_diff_plus_intersection_x (cs1, cs2, rest)
2283Return the difference and the intersection of all argument
2284character sets.
2285@end deffn
2286
2287@c ===================================================================
2288
2289@node Standard Character Sets
2290@subsubsection Standard Character Sets
2291
2292In order to make the use of the character set data type and procedures
2293useful, several predefined character set variables exist.
2294
c9dc8c6c
MV
2295@defvr {Scheme Variable} char-set:lower-case
2296@defvrx {C Variable} scm_char_set_lower_case
050ab45f 2297All lower-case characters.
c9dc8c6c 2298@end defvr
050ab45f 2299
c9dc8c6c
MV
2300@defvr {Scheme Variable} char-set:upper-case
2301@defvrx {C Variable} scm_char_set_upper_case
050ab45f 2302All upper-case characters.
c9dc8c6c 2303@end defvr
050ab45f 2304
c9dc8c6c
MV
2305@defvr {Scheme Variable} char-set:title-case
2306@defvrx {C Variable} scm_char_set_title_case
050ab45f 2307This is empty, because ASCII has no titlecase characters.
c9dc8c6c 2308@end defvr
050ab45f 2309
c9dc8c6c
MV
2310@defvr {Scheme Variable} char-set:letter
2311@defvrx {C Variable} scm_char_set_letter
050ab45f
MV
2312All letters, e.g. the union of @code{char-set:lower-case} and
2313@code{char-set:upper-case}.
c9dc8c6c 2314@end defvr
050ab45f 2315
c9dc8c6c
MV
2316@defvr {Scheme Variable} char-set:digit
2317@defvrx {C Variable} scm_char_set_digit
050ab45f 2318All digits.
c9dc8c6c 2319@end defvr
050ab45f 2320
c9dc8c6c
MV
2321@defvr {Scheme Variable} char-set:letter+digit
2322@defvrx {C Variable} scm_char_set_letter_and_digit
050ab45f 2323The union of @code{char-set:letter} and @code{char-set:digit}.
c9dc8c6c 2324@end defvr
050ab45f 2325
c9dc8c6c
MV
2326@defvr {Scheme Variable} char-set:graphic
2327@defvrx {C Variable} scm_char_set_graphic
050ab45f 2328All characters which would put ink on the paper.
c9dc8c6c 2329@end defvr
050ab45f 2330
c9dc8c6c
MV
2331@defvr {Scheme Variable} char-set:printing
2332@defvrx {C Variable} scm_char_set_printing
050ab45f 2333The union of @code{char-set:graphic} and @code{char-set:whitespace}.
c9dc8c6c 2334@end defvr
050ab45f 2335
c9dc8c6c
MV
2336@defvr {Scheme Variable} char-set:whitespace
2337@defvrx {C Variable} scm_char_set_whitespace
050ab45f 2338All whitespace characters.
c9dc8c6c 2339@end defvr
050ab45f 2340
c9dc8c6c
MV
2341@defvr {Scheme Variable} char-set:blank
2342@defvrx {C Variable} scm_char_set_blank
050ab45f
MV
2343All horizontal whitespace characters, that is @code{#\space} and
2344@code{#\tab}.
c9dc8c6c 2345@end defvr
050ab45f 2346
c9dc8c6c
MV
2347@defvr {Scheme Variable} char-set:iso-control
2348@defvrx {C Variable} scm_char_set_iso_control
050ab45f 2349The ISO control characters with the codes 0--31 and 127.
c9dc8c6c 2350@end defvr
050ab45f 2351
c9dc8c6c
MV
2352@defvr {Scheme Variable} char-set:punctuation
2353@defvrx {C Variable} scm_char_set_punctuation
050ab45f 2354The characters @code{!"#%&'()*,-./:;?@@[\\]_@{@}}
c9dc8c6c 2355@end defvr
050ab45f 2356
c9dc8c6c
MV
2357@defvr {Scheme Variable} char-set:symbol
2358@defvrx {C Variable} scm_char_set_symbol
050ab45f 2359The characters @code{$+<=>^`|~}.
c9dc8c6c 2360@end defvr
050ab45f 2361
c9dc8c6c
MV
2362@defvr {Scheme Variable} char-set:hex-digit
2363@defvrx {C Variable} scm_char_set_hex_digit
050ab45f 2364The hexadecimal digits @code{0123456789abcdefABCDEF}.
c9dc8c6c 2365@end defvr
050ab45f 2366
c9dc8c6c
MV
2367@defvr {Scheme Variable} char-set:ascii
2368@defvrx {C Variable} scm_char_set_ascii
050ab45f 2369All ASCII characters.
c9dc8c6c 2370@end defvr
050ab45f 2371
c9dc8c6c
MV
2372@defvr {Scheme Variable} char-set:empty
2373@defvrx {C Variable} scm_char_set_empty
050ab45f 2374The empty character set.
c9dc8c6c 2375@end defvr
050ab45f 2376
c9dc8c6c
MV
2377@defvr {Scheme Variable} char-set:full
2378@defvrx {C Variable} scm_char_set_full
050ab45f 2379This character set contains all possible characters.
c9dc8c6c 2380@end defvr
07d83abe
MV
2381
2382@node Strings
2383@subsection Strings
2384@tpindex Strings
2385
2386Strings are fixed-length sequences of characters. They can be created
2387by calling constructor procedures, but they can also literally get
2388entered at the @acronym{REPL} or in Scheme source files.
2389
2390@c Guile provides a rich set of string processing procedures, because text
2391@c handling is very important when Guile is used as a scripting language.
2392
2393Strings always carry the information about how many characters they are
2394composed of with them, so there is no special end-of-string character,
2395like in C. That means that Scheme strings can contain any character,
c48c62d0
MV
2396even the @samp{#\nul} character @samp{\0}.
2397
2398To use strings efficiently, you need to know a bit about how Guile
2399implements them. In Guile, a string consists of two parts, a head and
2400the actual memory where the characters are stored. When a string (or
2401a substring of it) is copied, only a new head gets created, the memory
2402is usually not copied. The two heads start out pointing to the same
2403memory.
2404
2405When one of these two strings is modified, as with @code{string-set!},
2406their common memory does get copied so that each string has its own
2407memory and modifying one does not accidently modify the other as well.
2408Thus, Guile's strings are `copy on write'; the actual copying of their
2409memory is delayed until one string is written to.
2410
2411This implementation makes functions like @code{substring} very
2412efficient in the common case that no modifications are done to the
2413involved strings.
2414
2415If you do know that your strings are getting modified right away, you
2416can use @code{substring/copy} instead of @code{substring}. This
2417function performs the copy immediately at the time of creation. This
2418is more efficient, especially in a multi-threaded program. Also,
2419@code{substring/copy} can avoid the problem that a short substring
2420holds on to the memory of a very large original string that could
2421otherwise be recycled.
2422
2423If you want to avoid the copy altogether, so that modifications of one
2424string show up in the other, you can use @code{substring/shared}. The
2425strings created by this procedure are called @dfn{mutation sharing
2426substrings} since the substring and the original string share
2427modifications to each other.
07d83abe 2428
05256760
MV
2429If you want to prevent modifications, use @code{substring/read-only}.
2430
c9dc8c6c
MV
2431Guile provides all procedures of SRFI-13 and a few more.
2432
07d83abe 2433@menu
5676b4fa
MV
2434* String Syntax:: Read syntax for strings.
2435* String Predicates:: Testing strings for certain properties.
2436* String Constructors:: Creating new string objects.
2437* List/String Conversion:: Converting from/to lists of characters.
2438* String Selection:: Select portions from strings.
2439* String Modification:: Modify parts or whole strings.
2440* String Comparison:: Lexicographic ordering predicates.
2441* String Searching:: Searching in strings.
2442* Alphabetic Case Mapping:: Convert the alphabetic case of strings.
2443* Reversing and Appending Strings:: Appending strings to form a new string.
2444* Mapping Folding and Unfolding:: Iterating over strings.
2445* Miscellaneous String Operations:: Replicating, insertion, parsing, ...
91210d62 2446* Conversion to/from C::
07d83abe
MV
2447@end menu
2448
2449@node String Syntax
2450@subsubsection String Read Syntax
2451
2452@c In the following @code is used to get a good font in TeX etc, but
2453@c is omitted for Info format, so as not to risk any confusion over
2454@c whether surrounding ` ' quotes are part of the escape or are
2455@c special in a string (they're not).
2456
2457The read syntax for strings is an arbitrarily long sequence of
c48c62d0 2458characters enclosed in double quotes (@nicode{"}).
07d83abe
MV
2459
2460Backslash is an escape character and can be used to insert the
2461following special characters. @nicode{\"} and @nicode{\\} are R5RS
2462standard, the rest are Guile extensions, notice they follow C string
2463syntax.
2464
2465@table @asis
2466@item @nicode{\\}
2467Backslash character.
2468
2469@item @nicode{\"}
2470Double quote character (an unescaped @nicode{"} is otherwise the end
2471of the string).
2472
2473@item @nicode{\0}
2474NUL character (ASCII 0).
2475
2476@item @nicode{\a}
2477Bell character (ASCII 7).
2478
2479@item @nicode{\f}
2480Formfeed character (ASCII 12).
2481
2482@item @nicode{\n}
2483Newline character (ASCII 10).
2484
2485@item @nicode{\r}
2486Carriage return character (ASCII 13).
2487
2488@item @nicode{\t}
2489Tab character (ASCII 9).
2490
2491@item @nicode{\v}
2492Vertical tab character (ASCII 11).
2493
2494@item @nicode{\xHH}
2495Character code given by two hexadecimal digits. For example
2496@nicode{\x7f} for an ASCII DEL (127).
2497@end table
2498
2499@noindent
2500The following are examples of string literals:
2501
2502@lisp
2503"foo"
2504"bar plonk"
2505"Hello World"
2506"\"Hi\", he said."
2507@end lisp
2508
2509
2510@node String Predicates
2511@subsubsection String Predicates
2512
2513The following procedures can be used to check whether a given string
2514fulfills some specified property.
2515
2516@rnindex string?
2517@deffn {Scheme Procedure} string? obj
2518@deffnx {C Function} scm_string_p (obj)
2519Return @code{#t} if @var{obj} is a string, else @code{#f}.
2520@end deffn
2521
91210d62
MV
2522@deftypefn {C Function} int scm_is_string (SCM obj)
2523Returns @code{1} if @var{obj} is a string, @code{0} otherwise.
2524@end deftypefn
2525
07d83abe
MV
2526@deffn {Scheme Procedure} string-null? str
2527@deffnx {C Function} scm_string_null_p (str)
2528Return @code{#t} if @var{str}'s length is zero, and
2529@code{#f} otherwise.
2530@lisp
2531(string-null? "") @result{} #t
2532y @result{} "foo"
2533(string-null? y) @result{} #f
2534@end lisp
2535@end deffn
2536
5676b4fa
MV
2537@deffn {Scheme Procedure} string-any char_pred s [start [end]]
2538@deffnx {C Function} scm_string_any (char_pred, s, start, end)
c100a12c 2539Check if @var{char_pred} is true for any character in string @var{s}.
5676b4fa 2540
c100a12c
KR
2541@var{char_pred} can be a character to check for any equal to that, or
2542a character set (@pxref{Character Sets}) to check for any in that set,
2543or a predicate procedure to call.
5676b4fa 2544
c100a12c
KR
2545For a procedure, calls @code{(@var{char_pred} c)} are made
2546successively on the characters from @var{start} to @var{end}. If
2547@var{char_pred} returns true (ie.@: non-@code{#f}), @code{string-any}
2548stops and that return value is the return from @code{string-any}. The
2549call on the last character (ie.@: at @math{@var{end}-1}), if that
2550point is reached, is a tail call.
2551
2552If there are no characters in @var{s} (ie.@: @var{start} equals
2553@var{end}) then the return is @code{#f}.
5676b4fa
MV
2554@end deffn
2555
2556@deffn {Scheme Procedure} string-every char_pred s [start [end]]
2557@deffnx {C Function} scm_string_every (char_pred, s, start, end)
c100a12c
KR
2558Check if @var{char_pred} is true for every character in string
2559@var{s}.
5676b4fa 2560
c100a12c
KR
2561@var{char_pred} can be a character to check for every character equal
2562to that, or a character set (@pxref{Character Sets}) to check for
2563every character being in that set, or a predicate procedure to call.
2564
2565For a procedure, calls @code{(@var{char_pred} c)} are made
2566successively on the characters from @var{start} to @var{end}. If
2567@var{char_pred} returns @code{#f}, @code{string-every} stops and
2568returns @code{#f}. The call on the last character (ie.@: at
2569@math{@var{end}-1}), if that point is reached, is a tail call and the
2570return from that call is the return from @code{string-every}.
5676b4fa
MV
2571
2572If there are no characters in @var{s} (ie.@: @var{start} equals
2573@var{end}) then the return is @code{#t}.
5676b4fa
MV
2574@end deffn
2575
07d83abe
MV
2576@node String Constructors
2577@subsubsection String Constructors
2578
2579The string constructor procedures create new string objects, possibly
c48c62d0
MV
2580initializing them with some specified character data. See also
2581@xref{String Selection}, for ways to create strings from existing
2582strings.
07d83abe
MV
2583
2584@c FIXME::martin: list->string belongs into `List/String Conversion'
2585
bba26c32 2586@deffn {Scheme Procedure} string char@dots{}
07d83abe 2587@rnindex string
bba26c32
KR
2588Return a newly allocated string made from the given character
2589arguments.
2590
2591@example
2592(string #\x #\y #\z) @result{} "xyz"
2593(string) @result{} ""
2594@end example
2595@end deffn
2596
2597@deffn {Scheme Procedure} list->string lst
2598@deffnx {C Function} scm_string (lst)
07d83abe 2599@rnindex list->string
bba26c32
KR
2600Return a newly allocated string made from a list of characters.
2601
2602@example
2603(list->string '(#\a #\b #\c)) @result{} "abc"
2604@end example
2605@end deffn
2606
2607@deffn {Scheme Procedure} reverse-list->string lst
2608@deffnx {C Function} scm_reverse_list_to_string (lst)
2609Return a newly allocated string made from a list of characters, in
2610reverse order.
2611
2612@example
2613(reverse-list->string '(#\a #\B #\c)) @result{} "cBa"
2614@end example
07d83abe
MV
2615@end deffn
2616
2617@rnindex make-string
2618@deffn {Scheme Procedure} make-string k [chr]
2619@deffnx {C Function} scm_make_string (k, chr)
2620Return a newly allocated string of
2621length @var{k}. If @var{chr} is given, then all elements of
2622the string are initialized to @var{chr}, otherwise the contents
2623of the @var{string} are unspecified.
2624@end deffn
2625
c48c62d0
MV
2626@deftypefn {C Function} SCM scm_c_make_string (size_t len, SCM chr)
2627Like @code{scm_make_string}, but expects the length as a
2628@code{size_t}.
2629@end deftypefn
2630
5676b4fa
MV
2631@deffn {Scheme Procedure} string-tabulate proc len
2632@deffnx {C Function} scm_string_tabulate (proc, len)
2633@var{proc} is an integer->char procedure. Construct a string
2634of size @var{len} by applying @var{proc} to each index to
2635produce the corresponding string element. The order in which
2636@var{proc} is applied to the indices is not specified.
2637@end deffn
2638
5676b4fa
MV
2639@deffn {Scheme Procedure} string-join ls [delimiter [grammar]]
2640@deffnx {C Function} scm_string_join (ls, delimiter, grammar)
2641Append the string in the string list @var{ls}, using the string
2642@var{delim} as a delimiter between the elements of @var{ls}.
2643@var{grammar} is a symbol which specifies how the delimiter is
2644placed between the strings, and defaults to the symbol
2645@code{infix}.
2646
2647@table @code
2648@item infix
2649Insert the separator between list elements. An empty string
2650will produce an empty list.
2651@item string-infix
2652Like @code{infix}, but will raise an error if given the empty
2653list.
2654@item suffix
2655Insert the separator after every list element.
2656@item prefix
2657Insert the separator before each list element.
2658@end table
2659@end deffn
2660
07d83abe
MV
2661@node List/String Conversion
2662@subsubsection List/String conversion
2663
2664When processing strings, it is often convenient to first convert them
2665into a list representation by using the procedure @code{string->list},
2666work with the resulting list, and then convert it back into a string.
2667These procedures are useful for similar tasks.
2668
2669@rnindex string->list
5676b4fa
MV
2670@deffn {Scheme Procedure} string->list str [start [end]]
2671@deffnx {C Function} scm_substring_to_list (str, start, end)
07d83abe 2672@deffnx {C Function} scm_string_to_list (str)
5676b4fa 2673Convert the string @var{str} into a list of characters.
07d83abe
MV
2674@end deffn
2675
2676@deffn {Scheme Procedure} string-split str chr
2677@deffnx {C Function} scm_string_split (str, chr)
2678Split the string @var{str} into the a list of the substrings delimited
2679by appearances of the character @var{chr}. Note that an empty substring
2680between separator characters will result in an empty string in the
2681result list.
2682
2683@lisp
2684(string-split "root:x:0:0:root:/root:/bin/bash" #\:)
2685@result{}
2686("root" "x" "0" "0" "root" "/root" "/bin/bash")
2687
2688(string-split "::" #\:)
2689@result{}
2690("" "" "")
2691
2692(string-split "" #\:)
2693@result{}
2694("")
2695@end lisp
2696@end deffn
2697
2698
2699@node String Selection
2700@subsubsection String Selection
2701
2702Portions of strings can be extracted by these procedures.
2703@code{string-ref} delivers individual characters whereas
2704@code{substring} can be used to extract substrings from longer strings.
2705
2706@rnindex string-length
2707@deffn {Scheme Procedure} string-length string
2708@deffnx {C Function} scm_string_length (string)
2709Return the number of characters in @var{string}.
2710@end deffn
2711
c48c62d0
MV
2712@deftypefn {C Function} size_t scm_c_string_length (SCM str)
2713Return the number of characters in @var{str} as a @code{size_t}.
2714@end deftypefn
2715
07d83abe
MV
2716@rnindex string-ref
2717@deffn {Scheme Procedure} string-ref str k
2718@deffnx {C Function} scm_string_ref (str, k)
2719Return character @var{k} of @var{str} using zero-origin
2720indexing. @var{k} must be a valid index of @var{str}.
2721@end deffn
2722
c48c62d0
MV
2723@deftypefn {C Function} SCM scm_c_string_ref (SCM str, size_t k)
2724Return character @var{k} of @var{str} using zero-origin
2725indexing. @var{k} must be a valid index of @var{str}.
2726@end deftypefn
2727
07d83abe 2728@rnindex string-copy
5676b4fa
MV
2729@deffn {Scheme Procedure} string-copy str [start [end]]
2730@deffnx {C Function} scm_substring_copy (str, start, end)
07d83abe 2731@deffnx {C Function} scm_string_copy (str)
5676b4fa 2732Return a copy of the given string @var{str}.
c48c62d0
MV
2733
2734The returned string shares storage with @var{str} initially, but it is
2735copied as soon as one of the two strings is modified.
07d83abe
MV
2736@end deffn
2737
2738@rnindex substring
2739@deffn {Scheme Procedure} substring str start [end]
2740@deffnx {C Function} scm_substring (str, start, end)
c48c62d0 2741Return a new string formed from the characters
07d83abe
MV
2742of @var{str} beginning with index @var{start} (inclusive) and
2743ending with index @var{end} (exclusive).
2744@var{str} must be a string, @var{start} and @var{end} must be
2745exact integers satisfying:
2746
27470 <= @var{start} <= @var{end} <= @code{(string-length @var{str})}.
c48c62d0
MV
2748
2749The returned string shares storage with @var{str} initially, but it is
2750copied as soon as one of the two strings is modified.
2751@end deffn
2752
2753@deffn {Scheme Procedure} substring/shared str start [end]
2754@deffnx {C Function} scm_substring_shared (str, start, end)
2755Like @code{substring}, but the strings continue to share their storage
2756even if they are modified. Thus, modifications to @var{str} show up
2757in the new string, and vice versa.
2758@end deffn
2759
2760@deffn {Scheme Procedure} substring/copy str start [end]
2761@deffnx {C Function} scm_substring_copy (str, start, end)
2762Like @code{substring}, but the storage for the new string is copied
2763immediately.
07d83abe
MV
2764@end deffn
2765
05256760
MV
2766@deffn {Scheme Procedure} substring/read-only str start [end]
2767@deffnx {C Function} scm_substring_read_only (str, start, end)
2768Like @code{substring}, but the resulting string can not be modified.
2769@end deffn
2770
c48c62d0
MV
2771@deftypefn {C Function} SCM scm_c_substring (SCM str, size_t start, size_t end)
2772@deftypefnx {C Function} SCM scm_c_substring_shared (SCM str, size_t start, size_t end)
2773@deftypefnx {C Function} SCM scm_c_substring_copy (SCM str, size_t start, size_t end)
05256760 2774@deftypefnx {C Function} SCM scm_c_substring_read_only (SCM str, size_t start, size_t end)
c48c62d0
MV
2775Like @code{scm_substring}, etc. but the bounds are given as a @code{size_t}.
2776@end deftypefn
2777
5676b4fa
MV
2778@deffn {Scheme Procedure} string-take s n
2779@deffnx {C Function} scm_string_take (s, n)
2780Return the @var{n} first characters of @var{s}.
2781@end deffn
2782
2783@deffn {Scheme Procedure} string-drop s n
2784@deffnx {C Function} scm_string_drop (s, n)
2785Return all but the first @var{n} characters of @var{s}.
2786@end deffn
2787
2788@deffn {Scheme Procedure} string-take-right s n
2789@deffnx {C Function} scm_string_take_right (s, n)
2790Return the @var{n} last characters of @var{s}.
2791@end deffn
2792
2793@deffn {Scheme Procedure} string-drop-right s n
2794@deffnx {C Function} scm_string_drop_right (s, n)
2795Return all but the last @var{n} characters of @var{s}.
2796@end deffn
2797
2798@deffn {Scheme Procedure} string-pad s len [chr [start [end]]]
6337e7fb 2799@deffnx {Scheme Procedure} string-pad-right s len [chr [start [end]]]
5676b4fa 2800@deffnx {C Function} scm_string_pad (s, len, chr, start, end)
5676b4fa 2801@deffnx {C Function} scm_string_pad_right (s, len, chr, start, end)
6337e7fb
KR
2802Take characters @var{start} to @var{end} from the string @var{s} and
2803either pad with @var{char} or truncate them to give @var{len}
2804characters.
2805
2806@code{string-pad} pads or truncates on the left, so for example
2807
2808@example
2809(string-pad "x" 3) @result{} " x"
2810(string-pad "abcde" 3) @result{} "cde"
2811@end example
2812
2813@code{string-pad-right} pads or truncates on the right, so for example
2814
2815@example
2816(string-pad-right "x" 3) @result{} "x "
2817(string-pad-right "abcde" 3) @result{} "abc"
2818@end example
2819
2820The return string may share storage with @var{s}, or it can be @var{s}
2821itself (if @var{start} to @var{end} is the whole string and it's
2822already @var{len} characters).
5676b4fa
MV
2823@end deffn
2824
2825@deffn {Scheme Procedure} string-trim s [char_pred [start [end]]]
2826@deffnx {C Function} scm_string_trim (s, char_pred, start, end)
2827Trim @var{s} by skipping over all characters on the left
2828that satisfy the parameter @var{char_pred}:
2829
2830@itemize @bullet
2831@item
2832if it is the character @var{ch}, characters equal to
2833@var{ch} are trimmed,
2834
2835@item
2836if it is a procedure @var{pred} characters that
2837satisfy @var{pred} are trimmed,
2838
2839@item
2840if it is a character set, characters in that set are trimmed.
2841@end itemize
2842
2843If called without a @var{char_pred} argument, all whitespace is
2844trimmed.
2845@end deffn
2846
2847@deffn {Scheme Procedure} string-trim-right s [char_pred [start [end]]]
2848@deffnx {C Function} scm_string_trim_right (s, char_pred, start, end)
2849Trim @var{s} by skipping over all characters on the rightt
2850that satisfy the parameter @var{char_pred}:
2851
2852@itemize @bullet
2853@item
2854if it is the character @var{ch}, characters equal to @var{ch}
2855are trimmed,
2856
2857@item
2858if it is a procedure @var{pred} characters that satisfy
2859@var{pred} are trimmed,
2860
2861@item
2862if it is a character sets, all characters in that set are
2863trimmed.
2864@end itemize
2865
2866If called without a @var{char_pred} argument, all whitespace is
2867trimmed.
2868@end deffn
2869
2870@deffn {Scheme Procedure} string-trim-both s [char_pred [start [end]]]
2871@deffnx {C Function} scm_string_trim_both (s, char_pred, start, end)
2872Trim @var{s} by skipping over all characters on both sides of
2873the string that satisfy the parameter @var{char_pred}:
2874
2875@itemize @bullet
2876@item
2877if it is the character @var{ch}, characters equal to @var{ch}
2878are trimmed,
2879
2880@item
2881if it is a procedure @var{pred} characters that satisfy
2882@var{pred} are trimmed,
2883
2884@item
2885if it is a character set, the characters in the set are
2886trimmed.
2887@end itemize
2888
2889If called without a @var{char_pred} argument, all whitespace is
2890trimmed.
2891@end deffn
2892
07d83abe
MV
2893@node String Modification
2894@subsubsection String Modification
2895
2896These procedures are for modifying strings in-place. This means that the
2897result of the operation is not a new string; instead, the original string's
2898memory representation is modified.
2899
2900@rnindex string-set!
2901@deffn {Scheme Procedure} string-set! str k chr
2902@deffnx {C Function} scm_string_set_x (str, k, chr)
2903Store @var{chr} in element @var{k} of @var{str} and return
2904an unspecified value. @var{k} must be a valid index of
2905@var{str}.
2906@end deffn
2907
c48c62d0
MV
2908@deftypefn {C Function} void scm_c_string_set_x (SCM str, size_t k, SCM chr)
2909Like @code{scm_string_set_x}, but the index is given as a @code{size_t}.
2910@end deftypefn
2911
07d83abe 2912@rnindex string-fill!
5676b4fa
MV
2913@deffn {Scheme Procedure} string-fill! str chr [start [end]]
2914@deffnx {C Function} scm_substring_fill_x (str, chr, start, end)
07d83abe 2915@deffnx {C Function} scm_string_fill_x (str, chr)
5676b4fa
MV
2916Stores @var{chr} in every element of the given @var{str} and
2917returns an unspecified value.
07d83abe
MV
2918@end deffn
2919
2920@deffn {Scheme Procedure} substring-fill! str start end fill
2921@deffnx {C Function} scm_substring_fill_x (str, start, end, fill)
2922Change every character in @var{str} between @var{start} and
2923@var{end} to @var{fill}.
2924
2925@lisp
2926(define y "abcdefg")
2927(substring-fill! y 1 3 #\r)
2928y
2929@result{} "arrdefg"
2930@end lisp
2931@end deffn
2932
2933@deffn {Scheme Procedure} substring-move! str1 start1 end1 str2 start2
2934@deffnx {C Function} scm_substring_move_x (str1, start1, end1, str2, start2)
2935Copy the substring of @var{str1} bounded by @var{start1} and @var{end1}
2936into @var{str2} beginning at position @var{start2}.
2937@var{str1} and @var{str2} can be the same string.
2938@end deffn
2939
5676b4fa
MV
2940@deffn {Scheme Procedure} string-copy! target tstart s [start [end]]
2941@deffnx {C Function} scm_string_copy_x (target, tstart, s, start, end)
2942Copy the sequence of characters from index range [@var{start},
2943@var{end}) in string @var{s} to string @var{target}, beginning
2944at index @var{tstart}. The characters are copied left-to-right
2945or right-to-left as needed -- the copy is guaranteed to work,
2946even if @var{target} and @var{s} are the same string. It is an
2947error if the copy operation runs off the end of the target
2948string.
2949@end deffn
2950
07d83abe
MV
2951
2952@node String Comparison
2953@subsubsection String Comparison
2954
2955The procedures in this section are similar to the character ordering
2956predicates (@pxref{Characters}), but are defined on character sequences.
07d83abe 2957
5676b4fa
MV
2958The first set is specified in R5RS and has names that end in @code{?}.
2959The second set is specified in SRFI-13 and the names have no ending
2960@code{?}. The predicates ending in @code{-ci} ignore the character case
2961when comparing strings.
07d83abe
MV
2962
2963@rnindex string=?
2964@deffn {Scheme Procedure} string=? s1 s2
2965Lexicographic equality predicate; return @code{#t} if the two
2966strings are the same length and contain the same characters in
2967the same positions, otherwise return @code{#f}.
2968
2969The procedure @code{string-ci=?} treats upper and lower case
2970letters as though they were the same character, but
2971@code{string=?} treats upper and lower case as distinct
2972characters.
2973@end deffn
2974
2975@rnindex string<?
2976@deffn {Scheme Procedure} string<? s1 s2
2977Lexicographic ordering predicate; return @code{#t} if @var{s1}
2978is lexicographically less than @var{s2}.
2979@end deffn
2980
2981@rnindex string<=?
2982@deffn {Scheme Procedure} string<=? s1 s2
2983Lexicographic ordering predicate; return @code{#t} if @var{s1}
2984is lexicographically less than or equal to @var{s2}.
2985@end deffn
2986
2987@rnindex string>?
2988@deffn {Scheme Procedure} string>? s1 s2
2989Lexicographic ordering predicate; return @code{#t} if @var{s1}
2990is lexicographically greater than @var{s2}.
2991@end deffn
2992
2993@rnindex string>=?
2994@deffn {Scheme Procedure} string>=? s1 s2
2995Lexicographic ordering predicate; return @code{#t} if @var{s1}
2996is lexicographically greater than or equal to @var{s2}.
2997@end deffn
2998
2999@rnindex string-ci=?
3000@deffn {Scheme Procedure} string-ci=? s1 s2
3001Case-insensitive string equality predicate; return @code{#t} if
3002the two strings are the same length and their component
3003characters match (ignoring case) at each position; otherwise
3004return @code{#f}.
3005@end deffn
3006
5676b4fa 3007@rnindex string-ci<?
07d83abe
MV
3008@deffn {Scheme Procedure} string-ci<? s1 s2
3009Case insensitive lexicographic ordering predicate; return
3010@code{#t} if @var{s1} is lexicographically less than @var{s2}
3011regardless of case.
3012@end deffn
3013
3014@rnindex string<=?
3015@deffn {Scheme Procedure} string-ci<=? s1 s2
3016Case insensitive lexicographic ordering predicate; return
3017@code{#t} if @var{s1} is lexicographically less than or equal
3018to @var{s2} regardless of case.
3019@end deffn
3020
3021@rnindex string-ci>?
3022@deffn {Scheme Procedure} string-ci>? s1 s2
3023Case insensitive lexicographic ordering predicate; return
3024@code{#t} if @var{s1} is lexicographically greater than
3025@var{s2} regardless of case.
3026@end deffn
3027
3028@rnindex string-ci>=?
3029@deffn {Scheme Procedure} string-ci>=? s1 s2
3030Case insensitive lexicographic ordering predicate; return
3031@code{#t} if @var{s1} is lexicographically greater than or
3032equal to @var{s2} regardless of case.
3033@end deffn
3034
5676b4fa
MV
3035@deffn {Scheme Procedure} string-compare s1 s2 proc_lt proc_eq proc_gt [start1 [end1 [start2 [end2]]]]
3036@deffnx {C Function} scm_string_compare (s1, s2, proc_lt, proc_eq, proc_gt, start1, end1, start2, end2)
3037Apply @var{proc_lt}, @var{proc_eq}, @var{proc_gt} to the
3038mismatch index, depending upon whether @var{s1} is less than,
3039equal to, or greater than @var{s2}. The mismatch index is the
3040largest index @var{i} such that for every 0 <= @var{j} <
3041@var{i}, @var{s1}[@var{j}] = @var{s2}[@var{j}] -- that is,
3042@var{i} is the first position that does not match.
3043@end deffn
3044
3045@deffn {Scheme Procedure} string-compare-ci s1 s2 proc_lt proc_eq proc_gt [start1 [end1 [start2 [end2]]]]
3046@deffnx {C Function} scm_string_compare_ci (s1, s2, proc_lt, proc_eq, proc_gt, start1, end1, start2, end2)
3047Apply @var{proc_lt}, @var{proc_eq}, @var{proc_gt} to the
3048mismatch index, depending upon whether @var{s1} is less than,
3049equal to, or greater than @var{s2}. The mismatch index is the
3050largest index @var{i} such that for every 0 <= @var{j} <
3051@var{i}, @var{s1}[@var{j}] = @var{s2}[@var{j}] -- that is,
3052@var{i} is the first position that does not match. The
3053character comparison is done case-insensitively.
3054@end deffn
3055
3056@deffn {Scheme Procedure} string= s1 s2 [start1 [end1 [start2 [end2]]]]
3057@deffnx {C Function} scm_string_eq (s1, s2, start1, end1, start2, end2)
3058Return @code{#f} if @var{s1} and @var{s2} are not equal, a true
3059value otherwise.
3060@end deffn
3061
3062@deffn {Scheme Procedure} string<> s1 s2 [start1 [end1 [start2 [end2]]]]
3063@deffnx {C Function} scm_string_neq (s1, s2, start1, end1, start2, end2)
3064Return @code{#f} if @var{s1} and @var{s2} are equal, a true
3065value otherwise.
3066@end deffn
3067
3068@deffn {Scheme Procedure} string< s1 s2 [start1 [end1 [start2 [end2]]]]
3069@deffnx {C Function} scm_string_lt (s1, s2, start1, end1, start2, end2)
3070Return @code{#f} if @var{s1} is greater or equal to @var{s2}, a
3071true value otherwise.
3072@end deffn
3073
3074@deffn {Scheme Procedure} string> s1 s2 [start1 [end1 [start2 [end2]]]]
3075@deffnx {C Function} scm_string_gt (s1, s2, start1, end1, start2, end2)
3076Return @code{#f} if @var{s1} is less or equal to @var{s2}, a
3077true value otherwise.
3078@end deffn
3079
3080@deffn {Scheme Procedure} string<= s1 s2 [start1 [end1 [start2 [end2]]]]
3081@deffnx {C Function} scm_string_le (s1, s2, start1, end1, start2, end2)
3082Return @code{#f} if @var{s1} is greater to @var{s2}, a true
3083value otherwise.
3084@end deffn
3085
3086@deffn {Scheme Procedure} string>= s1 s2 [start1 [end1 [start2 [end2]]]]
3087@deffnx {C Function} scm_string_ge (s1, s2, start1, end1, start2, end2)
3088Return @code{#f} if @var{s1} is less to @var{s2}, a true value
3089otherwise.
3090@end deffn
3091
3092@deffn {Scheme Procedure} string-ci= s1 s2 [start1 [end1 [start2 [end2]]]]
3093@deffnx {C Function} scm_string_ci_eq (s1, s2, start1, end1, start2, end2)
3094Return @code{#f} if @var{s1} and @var{s2} are not equal, a true
3095value otherwise. The character comparison is done
3096case-insensitively.
3097@end deffn
3098
3099@deffn {Scheme Procedure} string-ci<> s1 s2 [start1 [end1 [start2 [end2]]]]
3100@deffnx {C Function} scm_string_ci_neq (s1, s2, start1, end1, start2, end2)
3101Return @code{#f} if @var{s1} and @var{s2} are equal, a true
3102value otherwise. The character comparison is done
3103case-insensitively.
3104@end deffn
3105
3106@deffn {Scheme Procedure} string-ci< s1 s2 [start1 [end1 [start2 [end2]]]]
3107@deffnx {C Function} scm_string_ci_lt (s1, s2, start1, end1, start2, end2)
3108Return @code{#f} if @var{s1} is greater or equal to @var{s2}, a
3109true value otherwise. The character comparison is done
3110case-insensitively.
3111@end deffn
3112
3113@deffn {Scheme Procedure} string-ci> s1 s2 [start1 [end1 [start2 [end2]]]]
3114@deffnx {C Function} scm_string_ci_gt (s1, s2, start1, end1, start2, end2)
3115Return @code{#f} if @var{s1} is less or equal to @var{s2}, a
3116true value otherwise. The character comparison is done
3117case-insensitively.
3118@end deffn
3119
3120@deffn {Scheme Procedure} string-ci<= s1 s2 [start1 [end1 [start2 [end2]]]]
3121@deffnx {C Function} scm_string_ci_le (s1, s2, start1, end1, start2, end2)
3122Return @code{#f} if @var{s1} is greater to @var{s2}, a true
3123value otherwise. The character comparison is done
3124case-insensitively.
3125@end deffn
3126
3127@deffn {Scheme Procedure} string-ci>= s1 s2 [start1 [end1 [start2 [end2]]]]
3128@deffnx {C Function} scm_string_ci_ge (s1, s2, start1, end1, start2, end2)
3129Return @code{#f} if @var{s1} is less to @var{s2}, a true value
3130otherwise. The character comparison is done
3131case-insensitively.
3132@end deffn
3133
3134@deffn {Scheme Procedure} string-hash s [bound [start [end]]]
3135@deffnx {C Function} scm_substring_hash (s, bound, start, end)
3136Compute a hash value for @var{S}. the optional argument @var{bound} is a non-negative exact integer specifying the range of the hash function. A positive value restricts the return value to the range [0,bound).
3137@end deffn
3138
3139@deffn {Scheme Procedure} string-hash-ci s [bound [start [end]]]
3140@deffnx {C Function} scm_substring_hash_ci (s, bound, start, end)
3141Compute a hash value for @var{S}. the optional argument @var{bound} is a non-negative exact integer specifying the range of the hash function. A positive value restricts the return value to the range [0,bound).
3142@end deffn
07d83abe
MV
3143
3144@node String Searching
3145@subsubsection String Searching
3146
5676b4fa
MV
3147@deffn {Scheme Procedure} string-index s char_pred [start [end]]
3148@deffnx {C Function} scm_string_index (s, char_pred, start, end)
3149Search through the string @var{s} from left to right, returning
3150the index of the first occurence of a character which
07d83abe 3151
5676b4fa
MV
3152@itemize @bullet
3153@item
3154equals @var{char_pred}, if it is character,
07d83abe 3155
5676b4fa
MV
3156@item
3157satisifies the predicate @var{char_pred}, if it is a procedure,
07d83abe 3158
5676b4fa
MV
3159@item
3160is in the set @var{char_pred}, if it is a character set.
3161@end itemize
3162@end deffn
07d83abe 3163
5676b4fa
MV
3164@deffn {Scheme Procedure} string-rindex s char_pred [start [end]]
3165@deffnx {C Function} scm_string_rindex (s, char_pred, start, end)
3166Search through the string @var{s} from right to left, returning
3167the index of the last occurence of a character which
3168
3169@itemize @bullet
3170@item
3171equals @var{char_pred}, if it is character,
3172
3173@item
3174satisifies the predicate @var{char_pred}, if it is a procedure,
3175
3176@item
3177is in the set if @var{char_pred} is a character set.
3178@end itemize
07d83abe
MV
3179@end deffn
3180
5676b4fa
MV
3181@deffn {Scheme Procedure} string-prefix-length s1 s2 [start1 [end1 [start2 [end2]]]]
3182@deffnx {C Function} scm_string_prefix_length (s1, s2, start1, end1, start2, end2)
3183Return the length of the longest common prefix of the two
3184strings.
3185@end deffn
07d83abe 3186
5676b4fa
MV
3187@deffn {Scheme Procedure} string-prefix-length-ci s1 s2 [start1 [end1 [start2 [end2]]]]
3188@deffnx {C Function} scm_string_prefix_length_ci (s1, s2, start1, end1, start2, end2)
3189Return the length of the longest common prefix of the two
3190strings, ignoring character case.
3191@end deffn
07d83abe 3192
5676b4fa
MV
3193@deffn {Scheme Procedure} string-suffix-length s1 s2 [start1 [end1 [start2 [end2]]]]
3194@deffnx {C Function} scm_string_suffix_length (s1, s2, start1, end1, start2, end2)
3195Return the length of the longest common suffix of the two
3196strings.
3197@end deffn
07d83abe 3198
5676b4fa
MV
3199@deffn {Scheme Procedure} string-suffix-length-ci s1 s2 [start1 [end1 [start2 [end2]]]]
3200@deffnx {C Function} scm_string_suffix_length_ci (s1, s2, start1, end1, start2, end2)
3201Return the length of the longest common suffix of the two
3202strings, ignoring character case.
3203@end deffn
3204
3205@deffn {Scheme Procedure} string-prefix? s1 s2 [start1 [end1 [start2 [end2]]]]
3206@deffnx {C Function} scm_string_prefix_p (s1, s2, start1, end1, start2, end2)
3207Is @var{s1} a prefix of @var{s2}?
3208@end deffn
3209
3210@deffn {Scheme Procedure} string-prefix-ci? s1 s2 [start1 [end1 [start2 [end2]]]]
3211@deffnx {C Function} scm_string_prefix_ci_p (s1, s2, start1, end1, start2, end2)
3212Is @var{s1} a prefix of @var{s2}, ignoring character case?
3213@end deffn
3214
3215@deffn {Scheme Procedure} string-suffix? s1 s2 [start1 [end1 [start2 [end2]]]]
3216@deffnx {C Function} scm_string_suffix_p (s1, s2, start1, end1, start2, end2)
3217Is @var{s1} a suffix of @var{s2}?
3218@end deffn
3219
3220@deffn {Scheme Procedure} string-suffix-ci? s1 s2 [start1 [end1 [start2 [end2]]]]
3221@deffnx {C Function} scm_string_suffix_ci_p (s1, s2, start1, end1, start2, end2)
3222Is @var{s1} a suffix of @var{s2}, ignoring character case?
3223@end deffn
3224
3225@deffn {Scheme Procedure} string-index-right s char_pred [start [end]]
3226@deffnx {C Function} scm_string_index_right (s, char_pred, start, end)
3227Search through the string @var{s} from right to left, returning
3228the index of the last occurence of a character which
3229
3230@itemize @bullet
3231@item
3232equals @var{char_pred}, if it is character,
3233
3234@item
3235satisifies the predicate @var{char_pred}, if it is a procedure,
3236
3237@item
3238is in the set if @var{char_pred} is a character set.
3239@end itemize
3240@end deffn
3241
3242@deffn {Scheme Procedure} string-skip s char_pred [start [end]]
3243@deffnx {C Function} scm_string_skip (s, char_pred, start, end)
3244Search through the string @var{s} from left to right, returning
3245the index of the first occurence of a character which
3246
3247@itemize @bullet
3248@item
3249does not equal @var{char_pred}, if it is character,
3250
3251@item
3252does not satisify the predicate @var{char_pred}, if it is a
3253procedure,
3254
3255@item
3256is not in the set if @var{char_pred} is a character set.
3257@end itemize
3258@end deffn
3259
3260@deffn {Scheme Procedure} string-skip-right s char_pred [start [end]]
3261@deffnx {C Function} scm_string_skip_right (s, char_pred, start, end)
3262Search through the string @var{s} from right to left, returning
3263the index of the last occurence of a character which
3264
3265@itemize @bullet
3266@item
3267does not equal @var{char_pred}, if it is character,
3268
3269@item
3270does not satisfy the predicate @var{char_pred}, if it is a
3271procedure,
3272
3273@item
3274is not in the set if @var{char_pred} is a character set.
3275@end itemize
3276@end deffn
3277
3278@deffn {Scheme Procedure} string-count s char_pred [start [end]]
3279@deffnx {C Function} scm_string_count (s, char_pred, start, end)
3280Return the count of the number of characters in the string
3281@var{s} which
3282
3283@itemize @bullet
3284@item
3285equals @var{char_pred}, if it is character,
3286
3287@item
3288satisifies the predicate @var{char_pred}, if it is a procedure.
3289
3290@item
3291is in the set @var{char_pred}, if it is a character set.
3292@end itemize
3293@end deffn
3294
3295@deffn {Scheme Procedure} string-contains s1 s2 [start1 [end1 [start2 [end2]]]]
3296@deffnx {C Function} scm_string_contains (s1, s2, start1, end1, start2, end2)
3297Does string @var{s1} contain string @var{s2}? Return the index
3298in @var{s1} where @var{s2} occurs as a substring, or false.
3299The optional start/end indices restrict the operation to the
3300indicated substrings.
3301@end deffn
3302
3303@deffn {Scheme Procedure} string-contains-ci s1 s2 [start1 [end1 [start2 [end2]]]]
3304@deffnx {C Function} scm_string_contains_ci (s1, s2, start1, end1, start2, end2)
3305Does string @var{s1} contain string @var{s2}? Return the index
3306in @var{s1} where @var{s2} occurs as a substring, or false.
3307The optional start/end indices restrict the operation to the
3308indicated substrings. Character comparison is done
3309case-insensitively.
07d83abe
MV
3310@end deffn
3311
3312@node Alphabetic Case Mapping
3313@subsubsection Alphabetic Case Mapping
3314
3315These are procedures for mapping strings to their upper- or lower-case
3316equivalents, respectively, or for capitalizing strings.
3317
5676b4fa
MV
3318@deffn {Scheme Procedure} string-upcase str [start [end]]
3319@deffnx {C Function} scm_substring_upcase (str, start, end)
07d83abe 3320@deffnx {C Function} scm_string_upcase (str)
5676b4fa 3321Upcase every character in @code{str}.
07d83abe
MV
3322@end deffn
3323
5676b4fa
MV
3324@deffn {Scheme Procedure} string-upcase! str [start [end]]
3325@deffnx {C Function} scm_substring_upcase_x (str, start, end)
07d83abe 3326@deffnx {C Function} scm_string_upcase_x (str)
5676b4fa
MV
3327Destructively upcase every character in @code{str}.
3328
07d83abe 3329@lisp
5676b4fa
MV
3330(string-upcase! y)
3331@result{} "ARRDEFG"
3332y
3333@result{} "ARRDEFG"
07d83abe
MV
3334@end lisp
3335@end deffn
3336
5676b4fa
MV
3337@deffn {Scheme Procedure} string-downcase str [start [end]]
3338@deffnx {C Function} scm_substring_downcase (str, start, end)
07d83abe 3339@deffnx {C Function} scm_string_downcase (str)
5676b4fa 3340Downcase every character in @var{str}.
07d83abe
MV
3341@end deffn
3342
5676b4fa
MV
3343@deffn {Scheme Procedure} string-downcase! str [start [end]]
3344@deffnx {C Function} scm_substring_downcase_x (str, start, end)
07d83abe 3345@deffnx {C Function} scm_string_downcase_x (str)
5676b4fa
MV
3346Destructively downcase every character in @var{str}.
3347
07d83abe 3348@lisp
5676b4fa
MV
3349y
3350@result{} "ARRDEFG"
3351(string-downcase! y)
3352@result{} "arrdefg"
3353y
3354@result{} "arrdefg"
07d83abe
MV
3355@end lisp
3356@end deffn
3357
3358@deffn {Scheme Procedure} string-capitalize str
3359@deffnx {C Function} scm_string_capitalize (str)
3360Return a freshly allocated string with the characters in
3361@var{str}, where the first character of every word is
3362capitalized.
3363@end deffn
3364
3365@deffn {Scheme Procedure} string-capitalize! str
3366@deffnx {C Function} scm_string_capitalize_x (str)
3367Upcase the first character of every word in @var{str}
3368destructively and return @var{str}.
3369
3370@lisp
3371y @result{} "hello world"
3372(string-capitalize! y) @result{} "Hello World"
3373y @result{} "Hello World"
3374@end lisp
3375@end deffn
3376
5676b4fa
MV
3377@deffn {Scheme Procedure} string-titlecase str [start [end]]
3378@deffnx {C Function} scm_string_titlecase (str, start, end)
3379Titlecase every first character in a word in @var{str}.
3380@end deffn
07d83abe 3381
5676b4fa
MV
3382@deffn {Scheme Procedure} string-titlecase! str [start [end]]
3383@deffnx {C Function} scm_string_titlecase_x (str, start, end)
3384Destructively titlecase every first character in a word in
3385@var{str}.
3386@end deffn
3387
3388@node Reversing and Appending Strings
3389@subsubsection Reversing and Appending Strings
07d83abe 3390
5676b4fa
MV
3391@deffn {Scheme Procedure} string-reverse str [start [end]]
3392@deffnx {C Function} scm_string_reverse (str, start, end)
3393Reverse the string @var{str}. The optional arguments
3394@var{start} and @var{end} delimit the region of @var{str} to
3395operate on.
3396@end deffn
3397
3398@deffn {Scheme Procedure} string-reverse! str [start [end]]
3399@deffnx {C Function} scm_string_reverse_x (str, start, end)
3400Reverse the string @var{str} in-place. The optional arguments
3401@var{start} and @var{end} delimit the region of @var{str} to
3402operate on. The return value is unspecified.
3403@end deffn
07d83abe
MV
3404
3405@rnindex string-append
3406@deffn {Scheme Procedure} string-append . args
3407@deffnx {C Function} scm_string_append (args)
3408Return a newly allocated string whose characters form the
3409concatenation of the given strings, @var{args}.
3410
3411@example
3412(let ((h "hello "))
3413 (string-append h "world"))
3414@result{} "hello world"
3415@end example
3416@end deffn
3417
5676b4fa
MV
3418@deffn {Scheme Procedure} string-append/shared . ls
3419@deffnx {C Function} scm_string_append_shared (ls)
3420Like @code{string-append}, but the result may share memory
3421with the argument strings.
3422@end deffn
3423
3424@deffn {Scheme Procedure} string-concatenate ls
3425@deffnx {C Function} scm_string_concatenate (ls)
3426Append the elements of @var{ls} (which must be strings)
3427together into a single string. Guaranteed to return a freshly
3428allocated string.
3429@end deffn
3430
3431@deffn {Scheme Procedure} string-concatenate-reverse ls [final_string [end]]
3432@deffnx {C Function} scm_string_concatenate_reverse (ls, final_string, end)
3433Without optional arguments, this procedure is equivalent to
3434
3435@smalllisp
3436(string-concatenate (reverse ls))
3437@end smalllisp
3438
3439If the optional argument @var{final_string} is specified, it is
3440consed onto the beginning to @var{ls} before performing the
3441list-reverse and string-concatenate operations. If @var{end}
3442is given, only the characters of @var{final_string} up to index
3443@var{end} are used.
3444
3445Guaranteed to return a freshly allocated string.
3446@end deffn
3447
3448@deffn {Scheme Procedure} string-concatenate/shared ls
3449@deffnx {C Function} scm_string_concatenate_shared (ls)
3450Like @code{string-concatenate}, but the result may share memory
3451with the strings in the list @var{ls}.
3452@end deffn
3453
3454@deffn {Scheme Procedure} string-concatenate-reverse/shared ls [final_string [end]]
3455@deffnx {C Function} scm_string_concatenate_reverse_shared (ls, final_string, end)
3456Like @code{string-concatenate-reverse}, but the result may
3457share memory with the the strings in the @var{ls} arguments.
3458@end deffn
3459
3460@node Mapping Folding and Unfolding
3461@subsubsection Mapping, Folding, and Unfolding
3462
3463@deffn {Scheme Procedure} string-map proc s [start [end]]
3464@deffnx {C Function} scm_string_map (proc, s, start, end)
3465@var{proc} is a char->char procedure, it is mapped over
3466@var{s}. The order in which the procedure is applied to the
3467string elements is not specified.
3468@end deffn
3469
3470@deffn {Scheme Procedure} string-map! proc s [start [end]]
3471@deffnx {C Function} scm_string_map_x (proc, s, start, end)
3472@var{proc} is a char->char procedure, it is mapped over
3473@var{s}. The order in which the procedure is applied to the
3474string elements is not specified. The string @var{s} is
3475modified in-place, the return value is not specified.
3476@end deffn
3477
3478@deffn {Scheme Procedure} string-for-each proc s [start [end]]
3479@deffnx {C Function} scm_string_for_each (proc, s, start, end)
3480@var{proc} is mapped over @var{s} in left-to-right order. The
3481return value is not specified.
3482@end deffn
3483
3484@deffn {Scheme Procedure} string-for-each-index proc s [start [end]]
3485@deffnx {C Function} scm_string_for_each_index (proc, s, start, end)
2a7820f2
KR
3486Call @code{(@var{proc} i)} for each index i in @var{s}, from left to
3487right.
3488
3489For example, to change characters to alternately upper and lower case,
3490
3491@example
3492(define str (string-copy "studly"))
3493(string-for-each-index (lambda (i)
3494 (string-set! str i
3495 ((if (even? i) char-upcase char-downcase)
3496 (string-ref str i))))
3497 str)
3498str @result{} "StUdLy"
3499@end example
5676b4fa
MV
3500@end deffn
3501
3502@deffn {Scheme Procedure} string-fold kons knil s [start [end]]
3503@deffnx {C Function} scm_string_fold (kons, knil, s, start, end)
3504Fold @var{kons} over the characters of @var{s}, with @var{knil}
3505as the terminating element, from left to right. @var{kons}
3506must expect two arguments: The actual character and the last
3507result of @var{kons}' application.
3508@end deffn
3509
3510@deffn {Scheme Procedure} string-fold-right kons knil s [start [end]]
3511@deffnx {C Function} scm_string_fold_right (kons, knil, s, start, end)
3512Fold @var{kons} over the characters of @var{s}, with @var{knil}
3513as the terminating element, from right to left. @var{kons}
3514must expect two arguments: The actual character and the last
3515result of @var{kons}' application.
3516@end deffn
3517
3518@deffn {Scheme Procedure} string-unfold p f g seed [base [make_final]]
3519@deffnx {C Function} scm_string_unfold (p, f, g, seed, base, make_final)
3520@itemize @bullet
3521@item @var{g} is used to generate a series of @emph{seed}
3522values from the initial @var{seed}: @var{seed}, (@var{g}
3523@var{seed}), (@var{g}^2 @var{seed}), (@var{g}^3 @var{seed}),
3524@dots{}
3525@item @var{p} tells us when to stop -- when it returns true
3526when applied to one of these seed values.
3527@item @var{f} maps each seed value to the corresponding
3528character in the result string. These chars are assembled
3529into the string in a left-to-right order.
3530@item @var{base} is the optional initial/leftmost portion
3531of the constructed string; it default to the empty
3532string.
3533@item @var{make_final} is applied to the terminal seed
3534value (on which @var{p} returns true) to produce
3535the final/rightmost portion of the constructed string.
3536It defaults to @code{(lambda (x) )}.
3537@end itemize
3538@end deffn
3539
3540@deffn {Scheme Procedure} string-unfold-right p f g seed [base [make_final]]
3541@deffnx {C Function} scm_string_unfold_right (p, f, g, seed, base, make_final)
3542@itemize @bullet
3543@item @var{g} is used to generate a series of @emph{seed}
3544values from the initial @var{seed}: @var{seed}, (@var{g}
3545@var{seed}), (@var{g}^2 @var{seed}), (@var{g}^3 @var{seed}),
3546@dots{}
3547@item @var{p} tells us when to stop -- when it returns true
3548when applied to one of these seed values.
3549@item @var{f} maps each seed value to the corresponding
3550character in the result string. These chars are assembled
3551into the string in a right-to-left order.
3552@item @var{base} is the optional initial/rightmost portion
3553of the constructed string; it default to the empty
3554string.
3555@item @var{make_final} is applied to the terminal seed
3556value (on which @var{p} returns true) to produce
3557the final/leftmost portion of the constructed string.
3558It defaults to @code{(lambda (x) )}.
3559@end itemize
3560@end deffn
3561
3562@node Miscellaneous String Operations
3563@subsubsection Miscellaneous String Operations
3564
3565@deffn {Scheme Procedure} xsubstring s from [to [start [end]]]
3566@deffnx {C Function} scm_xsubstring (s, from, to, start, end)
3567This is the @emph{extended substring} procedure that implements
3568replicated copying of a substring of some string.
3569
3570@var{s} is a string, @var{start} and @var{end} are optional
3571arguments that demarcate a substring of @var{s}, defaulting to
35720 and the length of @var{s}. Replicate this substring up and
3573down index space, in both the positive and negative directions.
3574@code{xsubstring} returns the substring of this string
3575beginning at index @var{from}, and ending at @var{to}, which
3576defaults to @var{from} + (@var{end} - @var{start}).
3577@end deffn
3578
3579@deffn {Scheme Procedure} string-xcopy! target tstart s sfrom [sto [start [end]]]
3580@deffnx {C Function} scm_string_xcopy_x (target, tstart, s, sfrom, sto, start, end)
3581Exactly the same as @code{xsubstring}, but the extracted text
3582is written into the string @var{target} starting at index
3583@var{tstart}. The operation is not defined if @code{(eq?
3584@var{target} @var{s})} or these arguments share storage -- you
3585cannot copy a string on top of itself.
3586@end deffn
3587
3588@deffn {Scheme Procedure} string-replace s1 s2 [start1 [end1 [start2 [end2]]]]
3589@deffnx {C Function} scm_string_replace (s1, s2, start1, end1, start2, end2)
3590Return the string @var{s1}, but with the characters
3591@var{start1} @dots{} @var{end1} replaced by the characters
3592@var{start2} @dots{} @var{end2} from @var{s2}.
3593@end deffn
3594
3595@deffn {Scheme Procedure} string-tokenize s [token_set [start [end]]]
3596@deffnx {C Function} scm_string_tokenize (s, token_set, start, end)
3597Split the string @var{s} into a list of substrings, where each
3598substring is a maximal non-empty contiguous sequence of
3599characters from the character set @var{token_set}, which
3600defaults to @code{char-set:graphic}.
3601If @var{start} or @var{end} indices are provided, they restrict
3602@code{string-tokenize} to operating on the indicated substring
3603of @var{s}.
3604@end deffn
3605
3606@deffn {Scheme Procedure} string-filter s char_pred [start [end]]
3607@deffnx {C Function} scm_string_filter (s, char_pred, start, end)
08de3e24
KR
3608Filter the string @var{s}, retaining only those characters which
3609satisfy @var{char_pred}. The result may share storage with @var{s}.
3610
3611If @var{char_pred} is a procedure, it is applied to each character as
3612a predicate, if it is a character, it is tested for equality and if it
3613is a character set, it is tested for membership.
5676b4fa
MV
3614@end deffn
3615
3616@deffn {Scheme Procedure} string-delete s char_pred [start [end]]
3617@deffnx {C Function} scm_string_delete (s, char_pred, start, end)
08de3e24
KR
3618Delete characters satisfying @var{char_pred} from @var{s}. The result
3619may share storage with @var{s}.
3620
3621If @var{char_pred} is a procedure, it is applied to each character as
3622a predicate, if it is a character, it is tested for equality and if it
3623is a character set, it is tested for membership.
5676b4fa
MV
3624@end deffn
3625
91210d62
MV
3626@node Conversion to/from C
3627@subsubsection Conversion to/from C
3628
3629When creating a Scheme string from a C string or when converting a
3630Scheme string to a C string, the concept of character encoding becomes
3631important.
3632
3633In C, a string is just a sequence of bytes, and the character encoding
3634describes the relation between these bytes and the actual characters
c88453e8
MV
3635that make up the string. For Scheme strings, character encoding is
3636not an issue (most of the time), since in Scheme you never get to see
3637the bytes, only the characters.
91210d62
MV
3638
3639Well, ideally, anyway. Right now, Guile simply equates Scheme
3640characters and bytes, ignoring the possibility of multi-byte encodings
3641completely. This will change in the future, where Guile will use
c48c62d0
MV
3642Unicode codepoints as its characters and UTF-8 or some other encoding
3643as its internal encoding. When you exclusively use the functions
3644listed in this section, you are `future-proof'.
91210d62 3645
c88453e8
MV
3646Converting a Scheme string to a C string will often allocate fresh
3647memory to hold the result. You must take care that this memory is
3648properly freed eventually. In many cases, this can be achieved by
3649using @code{scm_frame_free} inside an appropriate frame,
3650@xref{Frames}.
91210d62
MV
3651
3652@deftypefn {C Function} SCM scm_from_locale_string (const char *str)
3653@deftypefnx {C Function} SCM scm_from_locale_stringn (const char *str, size_t len)
3654Creates a new Scheme string that has the same contents as @var{str}
3655when interpreted in the current locale character encoding.
3656
3657For @code{scm_from_locale_string}, @var{str} must be null-terminated.
3658
3659For @code{scm_from_locale_stringn}, @var{len} specifies the length of
3660@var{str} in bytes, and @var{str} does not need to be null-terminated.
3661If @var{len} is @code{(size_t)-1}, then @var{str} does need to be
3662null-terminated and the real length will be found with @code{strlen}.
3663@end deftypefn
3664
3665@deftypefn {C Function} SCM scm_take_locale_string (char *str)
3666@deftypefnx {C Function} SCM scm_take_locale_stringn (char *str, size_t len)
3667Like @code{scm_from_locale_string} and @code{scm_from_locale_stringn},
3668respectively, but also frees @var{str} with @code{free} eventually.
3669Thus, you can use this function when you would free @var{str} anyway
3670immediately after creating the Scheme string. In certain cases, Guile
3671can then use @var{str} directly as its internal representation.
3672@end deftypefn
3673
4846ae2c
KR
3674@deftypefn {C Function} {char *} scm_to_locale_string (SCM str)
3675@deftypefnx {C Function} {char *} scm_to_locale_stringn (SCM str, size_t *lenp)
91210d62
MV
3676Returns a C string in the current locale encoding with the same
3677contents as @var{str}. The C string must be freed with @code{free}
3678eventually, maybe by using @code{scm_frame_free}, @xref{Frames}.
3679
3680For @code{scm_to_locale_string}, the returned string is
3681null-terminated and an error is signalled when @var{str} contains
3682@code{#\nul} characters.
3683
3684For @code{scm_to_locale_stringn} and @var{lenp} not @code{NULL},
3685@var{str} might contain @code{#\nul} characters and the length of the
3686returned string in bytes is stored in @code{*@var{lenp}}. The
3687returned string will not be null-terminated in this case. If
3688@var{lenp} is @code{NULL}, @code{scm_to_locale_stringn} behaves like
3689@code{scm_to_locale_string}.
3690@end deftypefn
3691
3692@deftypefn {C Function} size_t scm_to_locale_stringbuf (SCM str, char *buf, size_t max_len)
3693Puts @var{str} as a C string in the current locale encoding into the
3694memory pointed to by @var{buf}. The buffer at @var{buf} has room for
3695@var{max_len} bytes and @code{scm_to_local_stringbuf} will never store
3696more than that. No terminating @code{'\0'} will be stored.
3697
3698The return value of @code{scm_to_locale_stringbuf} is the number of
3699bytes that are needed for all of @var{str}, regardless of whether
3700@var{buf} was large enough to hold them. Thus, when the return value
3701is larger than @var{max_len}, only @var{max_len} bytes have been
3702stored and you probably need to try again with a larger buffer.
3703@end deftypefn
07d83abe
MV
3704
3705@node Regular Expressions
3706@subsection Regular Expressions
3707@tpindex Regular expressions
3708
3709@cindex regular expressions
3710@cindex regex
3711@cindex emacs regexp
3712
3713A @dfn{regular expression} (or @dfn{regexp}) is a pattern that
3714describes a whole class of strings. A full description of regular
3715expressions and their syntax is beyond the scope of this manual;
3716an introduction can be found in the Emacs manual (@pxref{Regexps,
3717, Syntax of Regular Expressions, emacs, The GNU Emacs Manual}), or
3718in many general Unix reference books.
3719
3720If your system does not include a POSIX regular expression library,
3721and you have not linked Guile with a third-party regexp library such
3722as Rx, these functions will not be available. You can tell whether
3723your Guile installation includes regular expression support by
3724checking whether @code{(provided? 'regex)} returns true.
3725
3726The following regexp and string matching features are provided by the
3727@code{(ice-9 regex)} module. Before using the described functions,
3728you should load this module by executing @code{(use-modules (ice-9
3729regex))}.
3730
3731@menu
3732* Regexp Functions:: Functions that create and match regexps.
3733* Match Structures:: Finding what was matched by a regexp.
3734* Backslash Escapes:: Removing the special meaning of regexp
3735 meta-characters.
3736@end menu
3737
3738
3739@node Regexp Functions
3740@subsubsection Regexp Functions
3741
3742By default, Guile supports POSIX extended regular expressions.
3743That means that the characters @samp{(}, @samp{)}, @samp{+} and
3744@samp{?} are special, and must be escaped if you wish to match the
3745literal characters.
3746
3747This regular expression interface was modeled after that
3748implemented by SCSH, the Scheme Shell. It is intended to be
3749upwardly compatible with SCSH regular expressions.
3750
3751@deffn {Scheme Procedure} string-match pattern str [start]
3752Compile the string @var{pattern} into a regular expression and compare
3753it with @var{str}. The optional numeric argument @var{start} specifies
3754the position of @var{str} at which to begin matching.
3755
3756@code{string-match} returns a @dfn{match structure} which
3757describes what, if anything, was matched by the regular
3758expression. @xref{Match Structures}. If @var{str} does not match
3759@var{pattern} at all, @code{string-match} returns @code{#f}.
3760@end deffn
3761
3762Two examples of a match follow. In the first example, the pattern
3763matches the four digits in the match string. In the second, the pattern
3764matches nothing.
3765
3766@example
3767(string-match "[0-9][0-9][0-9][0-9]" "blah2002")
3768@result{} #("blah2002" (4 . 8))
3769
3770(string-match "[A-Za-z]" "123456")
3771@result{} #f
3772@end example
3773
3774Each time @code{string-match} is called, it must compile its
3775@var{pattern} argument into a regular expression structure. This
3776operation is expensive, which makes @code{string-match} inefficient if
3777the same regular expression is used several times (for example, in a
3778loop). For better performance, you can compile a regular expression in
3779advance and then match strings against the compiled regexp.
3780
3781@deffn {Scheme Procedure} make-regexp pat flag@dots{}
3782@deffnx {C Function} scm_make_regexp (pat, flaglst)
3783Compile the regular expression described by @var{pat}, and
3784return the compiled regexp structure. If @var{pat} does not
3785describe a legal regular expression, @code{make-regexp} throws
3786a @code{regular-expression-syntax} error.
3787
3788The @var{flag} arguments change the behavior of the compiled
3789regular expression. The following values may be supplied:
3790
3791@defvar regexp/icase
3792Consider uppercase and lowercase letters to be the same when
3793matching.
3794@end defvar
3795
3796@defvar regexp/newline
3797If a newline appears in the target string, then permit the
3798@samp{^} and @samp{$} operators to match immediately after or
3799immediately before the newline, respectively. Also, the
3800@samp{.} and @samp{[^...]} operators will never match a newline
3801character. The intent of this flag is to treat the target
3802string as a buffer containing many lines of text, and the
3803regular expression as a pattern that may match a single one of
3804those lines.
3805@end defvar
3806
3807@defvar regexp/basic
3808Compile a basic (``obsolete'') regexp instead of the extended
3809(``modern'') regexps that are the default. Basic regexps do
3810not consider @samp{|}, @samp{+} or @samp{?} to be special
3811characters, and require the @samp{@{...@}} and @samp{(...)}
3812metacharacters to be backslash-escaped (@pxref{Backslash
3813Escapes}). There are several other differences between basic
3814and extended regular expressions, but these are the most
3815significant.
3816@end defvar
3817
3818@defvar regexp/extended
3819Compile an extended regular expression rather than a basic
3820regexp. This is the default behavior; this flag will not
3821usually be needed. If a call to @code{make-regexp} includes
3822both @code{regexp/basic} and @code{regexp/extended} flags, the
3823one which comes last will override the earlier one.
3824@end defvar
3825@end deffn
3826
3827@deffn {Scheme Procedure} regexp-exec rx str [start [flags]]
3828@deffnx {C Function} scm_regexp_exec (rx, str, start, flags)
3829Match the compiled regular expression @var{rx} against
3830@code{str}. If the optional integer @var{start} argument is
3831provided, begin matching from that position in the string.
3832Return a match structure describing the results of the match,
3833or @code{#f} if no match could be found.
3834
36c7474e
KR
3835The @var{flags} argument changes the matching behavior. The following
3836flag values may be supplied, use @code{logior} (@pxref{Bitwise
3837Operations}) to combine them,
07d83abe
MV
3838
3839@defvar regexp/notbol
36c7474e
KR
3840Consider that the @var{start} offset into @var{str} is not the
3841beginning of a line and should not match operator @samp{^}.
3842
3843If @var{rx} was created with the @code{regexp/newline} option above,
3844@samp{^} will still match after a newline in @var{str}.
07d83abe
MV
3845@end defvar
3846
3847@defvar regexp/noteol
36c7474e
KR
3848Consider that the end of @var{str} is not the end of a line and should
3849not match operator @samp{$}.
3850
3851If @var{rx} was created with the @code{regexp/newline} option above,
3852@samp{$} will still match before a newline in @var{str}.
07d83abe
MV
3853@end defvar
3854@end deffn
3855
3856@lisp
3857;; Regexp to match uppercase letters
3858(define r (make-regexp "[A-Z]*"))
3859
3860;; Regexp to match letters, ignoring case
3861(define ri (make-regexp "[A-Z]*" regexp/icase))
3862
3863;; Search for bob using regexp r
3864(match:substring (regexp-exec r "bob"))
3865@result{} "" ; no match
3866
3867;; Search for bob using regexp ri
3868(match:substring (regexp-exec ri "Bob"))
3869@result{} "Bob" ; matched case insensitive
3870@end lisp
3871
3872@deffn {Scheme Procedure} regexp? obj
3873@deffnx {C Function} scm_regexp_p (obj)
3874Return @code{#t} if @var{obj} is a compiled regular expression,
3875or @code{#f} otherwise.
3876@end deffn
3877
a285fb86
KR
3878@sp 1
3879@deffn {Scheme Procedure} list-matches regexp str [flags]
3880Return a list of match structures which are the non-overlapping
3881matches of @var{regexp} in @var{str}. @var{regexp} can be either a
3882pattern string or a compiled regexp. The @var{flags} argument is as
3883per @code{regexp-exec} above.
3884
3885@example
3886(map match:substring (list-matches "[a-z]+" "abc 42 def 78"))
3887@result{} ("abc" "def")
3888@end example
3889@end deffn
3890
3891@deffn {Scheme Procedure} fold-matches regexp str init proc [flags]
3892Apply @var{proc} to the non-overlapping matches of @var{regexp} in
3893@var{str}, to build a result. @var{regexp} can be either a pattern
3894string or a compiled regexp. The @var{flags} argument is as per
3895@code{regexp-exec} above.
3896
3897@var{proc} is called as @code{(@var{proc} match prev)} where
3898@var{match} is a match structure and @var{prev} is the previous return
3899from @var{proc}. For the first call @var{prev} is the given
3900@var{init} parameter. @code{fold-matches} returns the final value
3901from @var{proc}.
3902
3903For example to count matches,
3904
3905@example
3906(fold-matches "[a-z][0-9]" "abc x1 def y2" 0
3907 (lambda (match count)
3908 (1+ count)))
3909@result{} 2
3910@end example
3911@end deffn
3912
a13befdc
KR
3913@sp 1
3914Regular expressions are commonly used to find patterns in one string
3915and replace them with the contents of another string. The following
3916functions are convenient ways to do this.
07d83abe
MV
3917
3918@c begin (scm-doc-string "regex.scm" "regexp-substitute")
3919@deffn {Scheme Procedure} regexp-substitute port match [item@dots{}]
a13befdc
KR
3920Write to @var{port} selected parts of the match structure @var{match}.
3921Or if @var{port} is @code{#f} then form a string from those parts and
3922return that.
3923
3924Each @var{item} specifies a part to be written, and may be one of the
3925following,
07d83abe
MV
3926
3927@itemize @bullet
3928@item
3929A string. String arguments are written out verbatim.
3930
3931@item
a13befdc
KR
3932An integer. The submatch with that number is written
3933(@code{match:substring}). Zero is the entire match.
07d83abe
MV
3934
3935@item
3936The symbol @samp{pre}. The portion of the matched string preceding
a13befdc 3937the regexp match is written (@code{match:prefix}).
07d83abe
MV
3938
3939@item
3940The symbol @samp{post}. The portion of the matched string following
a13befdc 3941the regexp match is written (@code{match:suffix}).
07d83abe
MV
3942@end itemize
3943
a13befdc
KR
3944For example, changing a match and retaining the text before and after,
3945
3946@example
3947(regexp-substitute #f (string-match "[0-9]+" "number 25 is good")
3948 'pre "37" 'post)
3949@result{} "number 37 is good"
3950@end example
07d83abe 3951
a13befdc
KR
3952Or matching a @sc{yyyymmdd} format date such as @samp{20020828} and
3953re-ordering and hyphenating the fields.
07d83abe
MV
3954
3955@lisp
3956(define date-regex "([0-9][0-9][0-9][0-9])([0-9][0-9])([0-9][0-9])")
3957(define s "Date 20020429 12am.")
a13befdc
KR
3958(regexp-substitute #f (string-match date-regex s)
3959 'pre 2 "-" 3 "-" 1 'post " (" 0 ")")
07d83abe
MV
3960@result{} "Date 04-29-2002 12am. (20020429)"
3961@end lisp
a13befdc
KR
3962@end deffn
3963
07d83abe
MV
3964
3965@c begin (scm-doc-string "regex.scm" "regexp-substitute")
3966@deffn {Scheme Procedure} regexp-substitute/global port regexp target [item@dots{}]
a13befdc
KR
3967@cindex search and replace
3968Write to @var{port} selected parts of matches of @var{regexp} in
3969@var{target}. If @var{port} is @code{#f} then form a string from
3970those parts and return that. @var{regexp} can be a string or a
3971compiled regex.
07d83abe 3972
a13befdc
KR
3973This is similar to @code{regexp-substitute}, but allows global
3974substitutions on @var{target}. Each @var{item} behaves as per
3975@code{regexp-substitute}, with the following differences,
07d83abe
MV
3976
3977@itemize @bullet
3978@item
a13befdc
KR
3979A function. Called as @code{(@var{item} match)} with the match
3980structure for the @var{regexp} match, it should return a string to be
3981written to @var{port}.
07d83abe
MV
3982
3983@item
a13befdc
KR
3984The symbol @samp{post}. This doesn't output anything, but instead
3985causes @code{regexp-substitute/global} to recurse on the unmatched
3986portion of @var{target}.
3987
3988This @emph{must} be supplied to perform a global search and replace on
3989@var{target}; without it @code{regexp-substitute/global} returns after
3990a single match and output.
07d83abe 3991@end itemize
07d83abe 3992
a13befdc
KR
3993For example, to collapse runs of tabs and spaces to a single hyphen
3994each,
3995
3996@example
3997(regexp-substitute/global #f "[ \t]+" "this is the text"
3998 'pre "-" 'post)
3999@result{} "this-is-the-text"
4000@end example
4001
4002Or using a function to reverse the letters in each word,
4003
4004@example
4005(regexp-substitute/global #f "[a-z]+" "to do and not-do"
4006 'pre (lambda (m) (string-reverse (match:substring m))) 'post)
4007@result{} "ot od dna ton-od"
4008@end example
4009
4010Without the @code{post} symbol, just one regexp match is made. For
4011example the following is the date example from
4012@code{regexp-substitute} above, without the need for the separate
4013@code{string-match} call.
07d83abe
MV
4014
4015@lisp
4016(define date-regex "([0-9][0-9][0-9][0-9])([0-9][0-9])([0-9][0-9])")
4017(define s "Date 20020429 12am.")
4018(regexp-substitute/global #f date-regex s
a13befdc
KR
4019 'pre 2 "-" 3 "-" 1 'post " (" 0 ")")
4020
07d83abe
MV
4021@result{} "Date 04-29-2002 12am. (20020429)"
4022@end lisp
a13befdc 4023@end deffn
07d83abe
MV
4024
4025
4026@node Match Structures
4027@subsubsection Match Structures
4028
4029@cindex match structures
4030
4031A @dfn{match structure} is the object returned by @code{string-match} and
4032@code{regexp-exec}. It describes which portion of a string, if any,
4033matched the given regular expression. Match structures include: a
4034reference to the string that was checked for matches; the starting and
4035ending positions of the regexp match; and, if the regexp included any
4036parenthesized subexpressions, the starting and ending positions of each
4037submatch.
4038
4039In each of the regexp match functions described below, the @code{match}
4040argument must be a match structure returned by a previous call to
4041@code{string-match} or @code{regexp-exec}. Most of these functions
4042return some information about the original target string that was
4043matched against a regular expression; we will call that string
4044@var{target} for easy reference.
4045
4046@c begin (scm-doc-string "regex.scm" "regexp-match?")
4047@deffn {Scheme Procedure} regexp-match? obj
4048Return @code{#t} if @var{obj} is a match structure returned by a
4049previous call to @code{regexp-exec}, or @code{#f} otherwise.
4050@end deffn
4051
4052@c begin (scm-doc-string "regex.scm" "match:substring")
4053@deffn {Scheme Procedure} match:substring match [n]
4054Return the portion of @var{target} matched by subexpression number
4055@var{n}. Submatch 0 (the default) represents the entire regexp match.
4056If the regular expression as a whole matched, but the subexpression
4057number @var{n} did not match, return @code{#f}.
4058@end deffn
4059
4060@lisp
4061(define s (string-match "[0-9][0-9][0-9][0-9]" "blah2002foo"))
4062(match:substring s)
4063@result{} "2002"
4064
4065;; match starting at offset 6 in the string
4066(match:substring
4067 (string-match "[0-9][0-9][0-9][0-9]" "blah987654" 6))
4068@result{} "7654"
4069@end lisp
4070
4071@c begin (scm-doc-string "regex.scm" "match:start")
4072@deffn {Scheme Procedure} match:start match [n]
4073Return the starting position of submatch number @var{n}.
4074@end deffn
4075
4076In the following example, the result is 4, since the match starts at
4077character index 4:
4078
4079@lisp
4080(define s (string-match "[0-9][0-9][0-9][0-9]" "blah2002foo"))
4081(match:start s)
4082@result{} 4
4083@end lisp
4084
4085@c begin (scm-doc-string "regex.scm" "match:end")
4086@deffn {Scheme Procedure} match:end match [n]
4087Return the ending position of submatch number @var{n}.
4088@end deffn
4089
4090In the following example, the result is 8, since the match runs between
4091characters 4 and 8 (i.e. the ``2002'').
4092
4093@lisp
4094(define s (string-match "[0-9][0-9][0-9][0-9]" "blah2002foo"))
4095(match:end s)
4096@result{} 8
4097@end lisp
4098
4099@c begin (scm-doc-string "regex.scm" "match:prefix")
4100@deffn {Scheme Procedure} match:prefix match
4101Return the unmatched portion of @var{target} preceding the regexp match.
4102
4103@lisp
4104(define s (string-match "[0-9][0-9][0-9][0-9]" "blah2002foo"))
4105(match:prefix s)
4106@result{} "blah"
4107@end lisp
4108@end deffn
4109
4110@c begin (scm-doc-string "regex.scm" "match:suffix")
4111@deffn {Scheme Procedure} match:suffix match
4112Return the unmatched portion of @var{target} following the regexp match.
4113@end deffn
4114
4115@lisp
4116(define s (string-match "[0-9][0-9][0-9][0-9]" "blah2002foo"))
4117(match:suffix s)
4118@result{} "foo"
4119@end lisp
4120
4121@c begin (scm-doc-string "regex.scm" "match:count")
4122@deffn {Scheme Procedure} match:count match
4123Return the number of parenthesized subexpressions from @var{match}.
4124Note that the entire regular expression match itself counts as a
4125subexpression, and failed submatches are included in the count.
4126@end deffn
4127
4128@c begin (scm-doc-string "regex.scm" "match:string")
4129@deffn {Scheme Procedure} match:string match
4130Return the original @var{target} string.
4131@end deffn
4132
4133@lisp
4134(define s (string-match "[0-9][0-9][0-9][0-9]" "blah2002foo"))
4135(match:string s)
4136@result{} "blah2002foo"
4137@end lisp
4138
4139
4140@node Backslash Escapes
4141@subsubsection Backslash Escapes
4142
4143Sometimes you will want a regexp to match characters like @samp{*} or
4144@samp{$} exactly. For example, to check whether a particular string
4145represents a menu entry from an Info node, it would be useful to match
4146it against a regexp like @samp{^* [^:]*::}. However, this won't work;
4147because the asterisk is a metacharacter, it won't match the @samp{*} at
4148the beginning of the string. In this case, we want to make the first
4149asterisk un-magic.
4150
4151You can do this by preceding the metacharacter with a backslash
4152character @samp{\}. (This is also called @dfn{quoting} the
4153metacharacter, and is known as a @dfn{backslash escape}.) When Guile
4154sees a backslash in a regular expression, it considers the following
4155glyph to be an ordinary character, no matter what special meaning it
4156would ordinarily have. Therefore, we can make the above example work by
4157changing the regexp to @samp{^\* [^:]*::}. The @samp{\*} sequence tells
4158the regular expression engine to match only a single asterisk in the
4159target string.
4160
4161Since the backslash is itself a metacharacter, you may force a regexp to
4162match a backslash in the target string by preceding the backslash with
4163itself. For example, to find variable references in a @TeX{} program,
4164you might want to find occurrences of the string @samp{\let\} followed
4165by any number of alphabetic characters. The regular expression
4166@samp{\\let\\[A-Za-z]*} would do this: the double backslashes in the
4167regexp each match a single backslash in the target string.
4168
4169@c begin (scm-doc-string "regex.scm" "regexp-quote")
4170@deffn {Scheme Procedure} regexp-quote str
4171Quote each special character found in @var{str} with a backslash, and
4172return the resulting string.
4173@end deffn
4174
4175@strong{Very important:} Using backslash escapes in Guile source code
4176(as in Emacs Lisp or C) can be tricky, because the backslash character
4177has special meaning for the Guile reader. For example, if Guile
4178encounters the character sequence @samp{\n} in the middle of a string
4179while processing Scheme code, it replaces those characters with a
4180newline character. Similarly, the character sequence @samp{\t} is
4181replaced by a horizontal tab. Several of these @dfn{escape sequences}
4182are processed by the Guile reader before your code is executed.
4183Unrecognized escape sequences are ignored: if the characters @samp{\*}
4184appear in a string, they will be translated to the single character
4185@samp{*}.
4186
4187This translation is obviously undesirable for regular expressions, since
4188we want to be able to include backslashes in a string in order to
4189escape regexp metacharacters. Therefore, to make sure that a backslash
4190is preserved in a string in your Guile program, you must use @emph{two}
4191consecutive backslashes:
4192
4193@lisp
4194(define Info-menu-entry-pattern (make-regexp "^\\* [^:]*"))
4195@end lisp
4196
4197The string in this example is preprocessed by the Guile reader before
4198any code is executed. The resulting argument to @code{make-regexp} is
4199the string @samp{^\* [^:]*}, which is what we really want.
4200
4201This also means that in order to write a regular expression that matches
4202a single backslash character, the regular expression string in the
4203source code must include @emph{four} backslashes. Each consecutive pair
4204of backslashes gets translated by the Guile reader to a single
4205backslash, and the resulting double-backslash is interpreted by the
4206regexp engine as matching a single backslash character. Hence:
4207
4208@lisp
4209(define tex-variable-pattern (make-regexp "\\\\let\\\\=[A-Za-z]*"))
4210@end lisp
4211
4212The reason for the unwieldiness of this syntax is historical. Both
4213regular expression pattern matchers and Unix string processing systems
4214have traditionally used backslashes with the special meanings
4215described above. The POSIX regular expression specification and ANSI C
4216standard both require these semantics. Attempting to abandon either
4217convention would cause other kinds of compatibility problems, possibly
4218more severe ones. Therefore, without extending the Scheme reader to
4219support strings with different quoting conventions (an ungainly and
4220confusing extension when implemented in other languages), we must adhere
4221to this cumbersome escape syntax.
4222
4223
4224@node Symbols
4225@subsection Symbols
4226@tpindex Symbols
4227
4228Symbols in Scheme are widely used in three ways: as items of discrete
4229data, as lookup keys for alists and hash tables, and to denote variable
4230references.
4231
4232A @dfn{symbol} is similar to a string in that it is defined by a
4233sequence of characters. The sequence of characters is known as the
4234symbol's @dfn{name}. In the usual case --- that is, where the symbol's
4235name doesn't include any characters that could be confused with other
4236elements of Scheme syntax --- a symbol is written in a Scheme program by
4237writing the sequence of characters that make up the name, @emph{without}
4238any quotation marks or other special syntax. For example, the symbol
4239whose name is ``multiply-by-2'' is written, simply:
4240
4241@lisp
4242multiply-by-2
4243@end lisp
4244
4245Notice how this differs from a @emph{string} with contents
4246``multiply-by-2'', which is written with double quotation marks, like
4247this:
4248
4249@lisp
4250"multiply-by-2"
4251@end lisp
4252
4253Looking beyond how they are written, symbols are different from strings
4254in two important respects.
4255
4256The first important difference is uniqueness. If the same-looking
4257string is read twice from two different places in a program, the result
4258is two @emph{different} string objects whose contents just happen to be
4259the same. If, on the other hand, the same-looking symbol is read twice
4260from two different places in a program, the result is the @emph{same}
4261symbol object both times.
4262
4263Given two read symbols, you can use @code{eq?} to test whether they are
4264the same (that is, have the same name). @code{eq?} is the most
4265efficient comparison operator in Scheme, and comparing two symbols like
4266this is as fast as comparing, for example, two numbers. Given two
4267strings, on the other hand, you must use @code{equal?} or
4268@code{string=?}, which are much slower comparison operators, to
4269determine whether the strings have the same contents.
4270
4271@lisp
4272(define sym1 (quote hello))
4273(define sym2 (quote hello))
4274(eq? sym1 sym2) @result{} #t
4275
4276(define str1 "hello")
4277(define str2 "hello")
4278(eq? str1 str2) @result{} #f
4279(equal? str1 str2) @result{} #t
4280@end lisp
4281
4282The second important difference is that symbols, unlike strings, are not
4283self-evaluating. This is why we need the @code{(quote @dots{})}s in the
4284example above: @code{(quote hello)} evaluates to the symbol named
4285"hello" itself, whereas an unquoted @code{hello} is @emph{read} as the
4286symbol named "hello" and evaluated as a variable reference @dots{} about
4287which more below (@pxref{Symbol Variables}).
4288
4289@menu
4290* Symbol Data:: Symbols as discrete data.
4291* Symbol Keys:: Symbols as lookup keys.
4292* Symbol Variables:: Symbols as denoting variables.
4293* Symbol Primitives:: Operations related to symbols.
4294* Symbol Props:: Function slots and property lists.
4295* Symbol Read Syntax:: Extended read syntax for symbols.
4296* Symbol Uninterned:: Uninterned symbols.
4297@end menu
4298
4299
4300@node Symbol Data
4301@subsubsection Symbols as Discrete Data
4302
4303Numbers and symbols are similar to the extent that they both lend
4304themselves to @code{eq?} comparison. But symbols are more descriptive
4305than numbers, because a symbol's name can be used directly to describe
4306the concept for which that symbol stands.
4307
4308For example, imagine that you need to represent some colours in a
4309computer program. Using numbers, you would have to choose arbitrarily
4310some mapping between numbers and colours, and then take care to use that
4311mapping consistently:
4312
4313@lisp
4314;; 1=red, 2=green, 3=purple
4315
4316(if (eq? (colour-of car) 1)
4317 ...)
4318@end lisp
4319
4320@noindent
4321You can make the mapping more explicit and the code more readable by
4322defining constants:
4323
4324@lisp
4325(define red 1)
4326(define green 2)
4327(define purple 3)
4328
4329(if (eq? (colour-of car) red)
4330 ...)
4331@end lisp
4332
4333@noindent
4334But the simplest and clearest approach is not to use numbers at all, but
4335symbols whose names specify the colours that they refer to:
4336
4337@lisp
4338(if (eq? (colour-of car) 'red)
4339 ...)
4340@end lisp
4341
4342The descriptive advantages of symbols over numbers increase as the set
4343of concepts that you want to describe grows. Suppose that a car object
4344can have other properties as well, such as whether it has or uses:
4345
4346@itemize @bullet
4347@item
4348automatic or manual transmission
4349@item
4350leaded or unleaded fuel
4351@item
4352power steering (or not).
4353@end itemize
4354
4355@noindent
4356Then a car's combined property set could be naturally represented and
4357manipulated as a list of symbols:
4358
4359@lisp
4360(properties-of car1)
4361@result{}
4362(red manual unleaded power-steering)
4363
4364(if (memq 'power-steering (properties-of car1))
4365 (display "Unfit people can drive this car.\n")
4366 (display "You'll need strong arms to drive this car!\n"))
4367@print{}
4368Unfit people can drive this car.
4369@end lisp
4370
4371Remember, the fundamental property of symbols that we are relying on
4372here is that an occurrence of @code{'red} in one part of a program is an
4373@emph{indistinguishable} symbol from an occurrence of @code{'red} in
4374another part of a program; this means that symbols can usefully be
4375compared using @code{eq?}. At the same time, symbols have naturally
4376descriptive names. This combination of efficiency and descriptive power
4377makes them ideal for use as discrete data.
4378
4379
4380@node Symbol Keys
4381@subsubsection Symbols as Lookup Keys
4382
4383Given their efficiency and descriptive power, it is natural to use
4384symbols as the keys in an association list or hash table.
4385
4386To illustrate this, consider a more structured representation of the car
4387properties example from the preceding subsection. Rather than
4388mixing all the properties up together in a flat list, we could use an
4389association list like this:
4390
4391@lisp
4392(define car1-properties '((colour . red)
4393 (transmission . manual)
4394 (fuel . unleaded)
4395 (steering . power-assisted)))
4396@end lisp
4397
4398Notice how this structure is more explicit and extensible than the flat
4399list. For example it makes clear that @code{manual} refers to the
4400transmission rather than, say, the windows or the locking of the car.
4401It also allows further properties to use the same symbols among their
4402possible values without becoming ambiguous:
4403
4404@lisp
4405(define car1-properties '((colour . red)
4406 (transmission . manual)
4407 (fuel . unleaded)
4408 (steering . power-assisted)
4409 (seat-colour . red)
4410 (locking . manual)))
4411@end lisp
4412
4413With a representation like this, it is easy to use the efficient
4414@code{assq-XXX} family of procedures (@pxref{Association Lists}) to
4415extract or change individual pieces of information:
4416
4417@lisp
4418(assq-ref car1-properties 'fuel) @result{} unleaded
4419(assq-ref car1-properties 'transmission) @result{} manual
4420
4421(assq-set! car1-properties 'seat-colour 'black)
4422@result{}
4423((colour . red)
4424 (transmission . manual)
4425 (fuel . unleaded)
4426 (steering . power-assisted)
4427 (seat-colour . black)
4428 (locking . manual)))
4429@end lisp
4430
4431Hash tables also have keys, and exactly the same arguments apply to the
4432use of symbols in hash tables as in association lists. The hash value
4433that Guile uses to decide where to add a symbol-keyed entry to a hash
4434table can be obtained by calling the @code{symbol-hash} procedure:
4435
4436@deffn {Scheme Procedure} symbol-hash symbol
4437@deffnx {C Function} scm_symbol_hash (symbol)
4438Return a hash value for @var{symbol}.
4439@end deffn
4440
4441See @ref{Hash Tables} for information about hash tables in general, and
4442for why you might choose to use a hash table rather than an association
4443list.
4444
4445
4446@node Symbol Variables
4447@subsubsection Symbols as Denoting Variables
4448
4449When an unquoted symbol in a Scheme program is evaluated, it is
4450interpreted as a variable reference, and the result of the evaluation is
4451the appropriate variable's value.
4452
4453For example, when the expression @code{(string-length "abcd")} is read
4454and evaluated, the sequence of characters @code{string-length} is read
4455as the symbol whose name is "string-length". This symbol is associated
4456with a variable whose value is the procedure that implements string
4457length calculation. Therefore evaluation of the @code{string-length}
4458symbol results in that procedure.
4459
4460The details of the connection between an unquoted symbol and the
4461variable to which it refers are explained elsewhere. See @ref{Binding
4462Constructs}, for how associations between symbols and variables are
4463created, and @ref{Modules}, for how those associations are affected by
4464Guile's module system.
4465
4466
4467@node Symbol Primitives
4468@subsubsection Operations Related to Symbols
4469
4470Given any Scheme value, you can determine whether it is a symbol using
4471the @code{symbol?} primitive:
4472
4473@rnindex symbol?
4474@deffn {Scheme Procedure} symbol? obj
4475@deffnx {C Function} scm_symbol_p (obj)
4476Return @code{#t} if @var{obj} is a symbol, otherwise return
4477@code{#f}.
4478@end deffn
4479
c9dc8c6c
MV
4480@deftypefn {C Function} int scm_is_symbol (SCM val)
4481Equivalent to @code{scm_is_true (scm_symbol_p (val))}.
4482@end deftypefn
4483
07d83abe
MV
4484Once you know that you have a symbol, you can obtain its name as a
4485string by calling @code{symbol->string}. Note that Guile differs by
4486default from R5RS on the details of @code{symbol->string} as regards
4487case-sensitivity:
4488
4489@rnindex symbol->string
4490@deffn {Scheme Procedure} symbol->string s
4491@deffnx {C Function} scm_symbol_to_string (s)
4492Return the name of symbol @var{s} as a string. By default, Guile reads
4493symbols case-sensitively, so the string returned will have the same case
4494variation as the sequence of characters that caused @var{s} to be
4495created.
4496
4497If Guile is set to read symbols case-insensitively (as specified by
4498R5RS), and @var{s} comes into being as part of a literal expression
4499(@pxref{Literal expressions,,,r5rs, The Revised^5 Report on Scheme}) or
4500by a call to the @code{read} or @code{string-ci->symbol} procedures,
4501Guile converts any alphabetic characters in the symbol's name to
4502lower case before creating the symbol object, so the string returned
4503here will be in lower case.
4504
4505If @var{s} was created by @code{string->symbol}, the case of characters
4506in the string returned will be the same as that in the string that was
4507passed to @code{string->symbol}, regardless of Guile's case-sensitivity
4508setting at the time @var{s} was created.
4509
4510It is an error to apply mutation procedures like @code{string-set!} to
4511strings returned by this procedure.
4512@end deffn
4513
4514Most symbols are created by writing them literally in code. However it
4515is also possible to create symbols programmatically using the following
4516@code{string->symbol} and @code{string-ci->symbol} procedures:
4517
4518@rnindex string->symbol
4519@deffn {Scheme Procedure} string->symbol string
4520@deffnx {C Function} scm_string_to_symbol (string)
4521Return the symbol whose name is @var{string}. This procedure can create
4522symbols with names containing special characters or letters in the
4523non-standard case, but it is usually a bad idea to create such symbols
4524because in some implementations of Scheme they cannot be read as
4525themselves.
4526@end deffn
4527
4528@deffn {Scheme Procedure} string-ci->symbol str
4529@deffnx {C Function} scm_string_ci_to_symbol (str)
4530Return the symbol whose name is @var{str}. If Guile is currently
4531reading symbols case-insensitively, @var{str} is converted to lowercase
4532before the returned symbol is looked up or created.
4533@end deffn
4534
4535The following examples illustrate Guile's detailed behaviour as regards
4536the case-sensitivity of symbols:
4537
4538@lisp
4539(read-enable 'case-insensitive) ; R5RS compliant behaviour
4540
4541(symbol->string 'flying-fish) @result{} "flying-fish"
4542(symbol->string 'Martin) @result{} "martin"
4543(symbol->string
4544 (string->symbol "Malvina")) @result{} "Malvina"
4545
4546(eq? 'mISSISSIppi 'mississippi) @result{} #t
4547(string->symbol "mISSISSIppi") @result{} mISSISSIppi
4548(eq? 'bitBlt (string->symbol "bitBlt")) @result{} #f
4549(eq? 'LolliPop
4550 (string->symbol (symbol->string 'LolliPop))) @result{} #t
4551(string=? "K. Harper, M.D."
4552 (symbol->string
4553 (string->symbol "K. Harper, M.D."))) @result{} #t
4554
4555(read-disable 'case-insensitive) ; Guile default behaviour
4556
4557(symbol->string 'flying-fish) @result{} "flying-fish"
4558(symbol->string 'Martin) @result{} "Martin"
4559(symbol->string
4560 (string->symbol "Malvina")) @result{} "Malvina"
4561
4562(eq? 'mISSISSIppi 'mississippi) @result{} #f
4563(string->symbol "mISSISSIppi") @result{} mISSISSIppi
4564(eq? 'bitBlt (string->symbol "bitBlt")) @result{} #t
4565(eq? 'LolliPop
4566 (string->symbol (symbol->string 'LolliPop))) @result{} #t
4567(string=? "K. Harper, M.D."
4568 (symbol->string
4569 (string->symbol "K. Harper, M.D."))) @result{} #t
4570@end lisp
4571
4572From C, there are lower level functions that construct a Scheme symbol
c48c62d0
MV
4573from a C string in the current locale encoding.
4574
4575When you want to do more from C, you should convert between symbols
4576and strings using @code{scm_symbol_to_string} and
4577@code{scm_string_to_symbol} and work with the strings.
07d83abe 4578
c48c62d0
MV
4579@deffn {C Function} scm_from_locale_symbol (const char *name)
4580@deffnx {C Function} scm_from_locale_symboln (const char *name, size_t len)
07d83abe 4581Construct and return a Scheme symbol whose name is specified by
c48c62d0
MV
4582@var{name}. For @code{scm_from_locale_symbol}, @var{name} must be null
4583terminated; for @code{scm_from_locale_symboln} the length of @var{name} is
07d83abe
MV
4584specified explicitly by @var{len}.
4585@end deffn
4586
4587Finally, some applications, especially those that generate new Scheme
4588code dynamically, need to generate symbols for use in the generated
4589code. The @code{gensym} primitive meets this need:
4590
4591@deffn {Scheme Procedure} gensym [prefix]
4592@deffnx {C Function} scm_gensym (prefix)
4593Create a new symbol with a name constructed from a prefix and a counter
4594value. The string @var{prefix} can be specified as an optional
4595argument. Default prefix is @samp{@w{ g}}. The counter is increased by 1
4596at each call. There is no provision for resetting the counter.
4597@end deffn
4598
4599The symbols generated by @code{gensym} are @emph{likely} to be unique,
4600since their names begin with a space and it is only otherwise possible
4601to generate such symbols if a programmer goes out of their way to do
4602so. Uniqueness can be guaranteed by instead using uninterned symbols
4603(@pxref{Symbol Uninterned}), though they can't be usefully written out
4604and read back in.
4605
4606
4607@node Symbol Props
4608@subsubsection Function Slots and Property Lists
4609
4610In traditional Lisp dialects, symbols are often understood as having
4611three kinds of value at once:
4612
4613@itemize @bullet
4614@item
4615a @dfn{variable} value, which is used when the symbol appears in
4616code in a variable reference context
4617
4618@item
4619a @dfn{function} value, which is used when the symbol appears in
4620code in a function name position (i.e. as the first element in an
4621unquoted list)
4622
4623@item
4624a @dfn{property list} value, which is used when the symbol is given as
4625the first argument to Lisp's @code{put} or @code{get} functions.
4626@end itemize
4627
4628Although Scheme (as one of its simplifications with respect to Lisp)
4629does away with the distinction between variable and function namespaces,
4630Guile currently retains some elements of the traditional structure in
4631case they turn out to be useful when implementing translators for other
4632languages, in particular Emacs Lisp.
4633
4634Specifically, Guile symbols have two extra slots. for a symbol's
4635property list, and for its ``function value.'' The following procedures
4636are provided to access these slots.
4637
4638@deffn {Scheme Procedure} symbol-fref symbol
4639@deffnx {C Function} scm_symbol_fref (symbol)
4640Return the contents of @var{symbol}'s @dfn{function slot}.
4641@end deffn
4642
4643@deffn {Scheme Procedure} symbol-fset! symbol value
4644@deffnx {C Function} scm_symbol_fset_x (symbol, value)
4645Set the contents of @var{symbol}'s function slot to @var{value}.
4646@end deffn
4647
4648@deffn {Scheme Procedure} symbol-pref symbol
4649@deffnx {C Function} scm_symbol_pref (symbol)
4650Return the @dfn{property list} currently associated with @var{symbol}.
4651@end deffn
4652
4653@deffn {Scheme Procedure} symbol-pset! symbol value
4654@deffnx {C Function} scm_symbol_pset_x (symbol, value)
4655Set @var{symbol}'s property list to @var{value}.
4656@end deffn
4657
4658@deffn {Scheme Procedure} symbol-property sym prop
4659From @var{sym}'s property list, return the value for property
4660@var{prop}. The assumption is that @var{sym}'s property list is an
4661association list whose keys are distinguished from each other using
4662@code{equal?}; @var{prop} should be one of the keys in that list. If
4663the property list has no entry for @var{prop}, @code{symbol-property}
4664returns @code{#f}.
4665@end deffn
4666
4667@deffn {Scheme Procedure} set-symbol-property! sym prop val
4668In @var{sym}'s property list, set the value for property @var{prop} to
4669@var{val}, or add a new entry for @var{prop}, with value @var{val}, if
4670none already exists. For the structure of the property list, see
4671@code{symbol-property}.
4672@end deffn
4673
4674@deffn {Scheme Procedure} symbol-property-remove! sym prop
4675From @var{sym}'s property list, remove the entry for property
4676@var{prop}, if there is one. For the structure of the property list,
4677see @code{symbol-property}.
4678@end deffn
4679
4680Support for these extra slots may be removed in a future release, and it
4681is probably better to avoid using them. (In release 1.6, Guile itself
4682uses the property list slot sparingly, and the function slot not at
4683all.) For a more modern and Schemely approach to properties, see
4684@ref{Object Properties}.
4685
4686
4687@node Symbol Read Syntax
4688@subsubsection Extended Read Syntax for Symbols
4689
4690The read syntax for a symbol is a sequence of letters, digits, and
4691@dfn{extended alphabetic characters}, beginning with a character that
4692cannot begin a number. In addition, the special cases of @code{+},
4693@code{-}, and @code{...} are read as symbols even though numbers can
4694begin with @code{+}, @code{-} or @code{.}.
4695
4696Extended alphabetic characters may be used within identifiers as if
4697they were letters. The set of extended alphabetic characters is:
4698
4699@example
4700! $ % & * + - . / : < = > ? @@ ^ _ ~
4701@end example
4702
4703In addition to the standard read syntax defined above (which is taken
4704from R5RS (@pxref{Formal syntax,,,r5rs,The Revised^5 Report on
4705Scheme})), Guile provides an extended symbol read syntax that allows the
4706inclusion of unusual characters such as space characters, newlines and
4707parentheses. If (for whatever reason) you need to write a symbol
4708containing characters not mentioned above, you can do so as follows.
4709
4710@itemize @bullet
4711@item
4712Begin the symbol with the characters @code{#@{},
4713
4714@item
4715write the characters of the symbol and
4716
4717@item
4718finish the symbol with the characters @code{@}#}.
4719@end itemize
4720
4721Here are a few examples of this form of read syntax. The first symbol
4722needs to use extended syntax because it contains a space character, the
4723second because it contains a line break, and the last because it looks
4724like a number.
4725
4726@lisp
4727#@{foo bar@}#
4728
4729#@{what
4730ever@}#
4731
4732#@{4242@}#
4733@end lisp
4734
4735Although Guile provides this extended read syntax for symbols,
4736widespread usage of it is discouraged because it is not portable and not
4737very readable.
4738
4739
4740@node Symbol Uninterned
4741@subsubsection Uninterned Symbols
4742
4743What makes symbols useful is that they are automatically kept unique.
4744There are no two symbols that are distinct objects but have the same
4745name. But of course, there is no rule without exception. In addition
4746to the normal symbols that have been discussed up to now, you can also
4747create special @dfn{uninterned} symbols that behave slightly
4748differently.
4749
4750To understand what is different about them and why they might be useful,
4751we look at how normal symbols are actually kept unique.
4752
4753Whenever Guile wants to find the symbol with a specific name, for
4754example during @code{read} or when executing @code{string->symbol}, it
4755first looks into a table of all existing symbols to find out whether a
4756symbol with the given name already exists. When this is the case, Guile
4757just returns that symbol. When not, a new symbol with the name is
4758created and entered into the table so that it can be found later.
4759
4760Sometimes you might want to create a symbol that is guaranteed `fresh',
4761i.e. a symbol that did not exist previously. You might also want to
4762somehow guarantee that no one else will ever unintentionally stumble
4763across your symbol in the future. These properties of a symbol are
4764often needed when generating code during macro expansion. When
4765introducing new temporary variables, you want to guarantee that they
4766don't conflict with variables in other people's code.
4767
4768The simplest way to arrange for this is to create a new symbol but
4769not enter it into the global table of all symbols. That way, no one
4770will ever get access to your symbol by chance. Symbols that are not in
4771the table are called @dfn{uninterned}. Of course, symbols that
4772@emph{are} in the table are called @dfn{interned}.
4773
4774You create new uninterned symbols with the function @code{make-symbol}.
4775You can test whether a symbol is interned or not with
4776@code{symbol-interned?}.
4777
4778Uninterned symbols break the rule that the name of a symbol uniquely
4779identifies the symbol object. Because of this, they can not be written
4780out and read back in like interned symbols. Currently, Guile has no
4781support for reading uninterned symbols. Note that the function
4782@code{gensym} does not return uninterned symbols for this reason.
4783
4784@deffn {Scheme Procedure} make-symbol name
4785@deffnx {C Function} scm_make_symbol (name)
4786Return a new uninterned symbol with the name @var{name}. The returned
4787symbol is guaranteed to be unique and future calls to
4788@code{string->symbol} will not return it.
4789@end deffn
4790
4791@deffn {Scheme Procedure} symbol-interned? symbol
4792@deffnx {C Function} scm_symbol_interned_p (symbol)
4793Return @code{#t} if @var{symbol} is interned, otherwise return
4794@code{#f}.
4795@end deffn
4796
4797For example:
4798
4799@lisp
4800(define foo-1 (string->symbol "foo"))
4801(define foo-2 (string->symbol "foo"))
4802(define foo-3 (make-symbol "foo"))
4803(define foo-4 (make-symbol "foo"))
4804
4805(eq? foo-1 foo-2)
4806@result{} #t
4807; Two interned symbols with the same name are the same object,
4808
4809(eq? foo-1 foo-3)
4810@result{} #f
4811; but a call to make-symbol with the same name returns a
4812; distinct object.
4813
4814(eq? foo-3 foo-4)
4815@result{} #f
4816; A call to make-symbol always returns a new object, even for
4817; the same name.
4818
4819foo-3
4820@result{} #<uninterned-symbol foo 8085290>
4821; Uninterned symbols print differently from interned symbols,
4822
4823(symbol? foo-3)
4824@result{} #t
4825; but they are still symbols,
4826
4827(symbol-interned? foo-3)
4828@result{} #f
4829; just not interned.
4830@end lisp
4831
4832
4833@node Keywords
4834@subsection Keywords
4835@tpindex Keywords
4836
4837Keywords are self-evaluating objects with a convenient read syntax that
4838makes them easy to type.
4839
4840Guile's keyword support conforms to R5RS, and adds a (switchable) read
4841syntax extension to permit keywords to begin with @code{:} as well as
4842@code{#:}.
4843
4844@menu
4845* Why Use Keywords?:: Motivation for keyword usage.
4846* Coding With Keywords:: How to use keywords.
4847* Keyword Read Syntax:: Read syntax for keywords.
4848* Keyword Procedures:: Procedures for dealing with keywords.
07d83abe
MV
4849@end menu
4850
4851@node Why Use Keywords?
4852@subsubsection Why Use Keywords?
4853
4854Keywords are useful in contexts where a program or procedure wants to be
4855able to accept a large number of optional arguments without making its
4856interface unmanageable.
4857
4858To illustrate this, consider a hypothetical @code{make-window}
4859procedure, which creates a new window on the screen for drawing into
4860using some graphical toolkit. There are many parameters that the caller
4861might like to specify, but which could also be sensibly defaulted, for
4862example:
4863
4864@itemize @bullet
4865@item
4866color depth -- Default: the color depth for the screen
4867
4868@item
4869background color -- Default: white
4870
4871@item
4872width -- Default: 600
4873
4874@item
4875height -- Default: 400
4876@end itemize
4877
4878If @code{make-window} did not use keywords, the caller would have to
4879pass in a value for each possible argument, remembering the correct
4880argument order and using a special value to indicate the default value
4881for that argument:
4882
4883@lisp
4884(make-window 'default ;; Color depth
4885 'default ;; Background color
4886 800 ;; Width
4887 100 ;; Height
4888 @dots{}) ;; More make-window arguments
4889@end lisp
4890
4891With keywords, on the other hand, defaulted arguments are omitted, and
4892non-default arguments are clearly tagged by the appropriate keyword. As
4893a result, the invocation becomes much clearer:
4894
4895@lisp
4896(make-window #:width 800 #:height 100)
4897@end lisp
4898
4899On the other hand, for a simpler procedure with few arguments, the use
4900of keywords would be a hindrance rather than a help. The primitive
4901procedure @code{cons}, for example, would not be improved if it had to
4902be invoked as
4903
4904@lisp
4905(cons #:car x #:cdr y)
4906@end lisp
4907
4908So the decision whether to use keywords or not is purely pragmatic: use
4909them if they will clarify the procedure invocation at point of call.
4910
4911@node Coding With Keywords
4912@subsubsection Coding With Keywords
4913
4914If a procedure wants to support keywords, it should take a rest argument
4915and then use whatever means is convenient to extract keywords and their
4916corresponding arguments from the contents of that rest argument.
4917
4918The following example illustrates the principle: the code for
4919@code{make-window} uses a helper procedure called
4920@code{get-keyword-value} to extract individual keyword arguments from
4921the rest argument.
4922
4923@lisp
4924(define (get-keyword-value args keyword default)
4925 (let ((kv (memq keyword args)))
4926 (if (and kv (>= (length kv) 2))
4927 (cadr kv)
4928 default)))
4929
4930(define (make-window . args)
4931 (let ((depth (get-keyword-value args #:depth screen-depth))
4932 (bg (get-keyword-value args #:bg "white"))
4933 (width (get-keyword-value args #:width 800))
4934 (height (get-keyword-value args #:height 100))
4935 @dots{})
4936 @dots{}))
4937@end lisp
4938
4939But you don't need to write @code{get-keyword-value}. The @code{(ice-9
4940optargs)} module provides a set of powerful macros that you can use to
4941implement keyword-supporting procedures like this:
4942
4943@lisp
4944(use-modules (ice-9 optargs))
4945
4946(define (make-window . args)
4947 (let-keywords args #f ((depth screen-depth)
4948 (bg "white")
4949 (width 800)
4950 (height 100))
4951 ...))
4952@end lisp
4953
4954@noindent
4955Or, even more economically, like this:
4956
4957@lisp
4958(use-modules (ice-9 optargs))
4959
4960(define* (make-window #:key (depth screen-depth)
4961 (bg "white")
4962 (width 800)
4963 (height 100))
4964 ...)
4965@end lisp
4966
4967For further details on @code{let-keywords}, @code{define*} and other
4968facilities provided by the @code{(ice-9 optargs)} module, see
4969@ref{Optional Arguments}.
4970
4971
4972@node Keyword Read Syntax
4973@subsubsection Keyword Read Syntax
4974
7719ef22
MV
4975Guile, by default, only recognizes a keyword syntax that is compatible
4976with R5RS. A token of the form @code{#:NAME}, where @code{NAME} has the
4977same syntax as a Scheme symbol (@pxref{Symbol Read Syntax}), is the
4978external representation of the keyword named @code{NAME}. Keyword
4979objects print using this syntax as well, so values containing keyword
4980objects can be read back into Guile. When used in an expression,
4981keywords are self-quoting objects.
07d83abe
MV
4982
4983If the @code{keyword} read option is set to @code{'prefix}, Guile also
4984recognizes the alternative read syntax @code{:NAME}. Otherwise, tokens
4985of the form @code{:NAME} are read as symbols, as required by R5RS.
4986
4987To enable and disable the alternative non-R5RS keyword syntax, you use
4988the @code{read-set!} procedure documented in @ref{User level options
4989interfaces} and @ref{Reader options}.
4990
4991@smalllisp
4992(read-set! keywords 'prefix)
4993
4994#:type
4995@result{}
4996#:type
4997
4998:type
4999@result{}
5000#:type
5001
5002(read-set! keywords #f)
5003
5004#:type
5005@result{}
5006#:type
5007
5008:type
5009@print{}
5010ERROR: In expression :type:
5011ERROR: Unbound variable: :type
5012ABORT: (unbound-variable)
5013@end smalllisp
5014
5015@node Keyword Procedures
5016@subsubsection Keyword Procedures
5017
07d83abe
MV
5018@deffn {Scheme Procedure} keyword? obj
5019@deffnx {C Function} scm_keyword_p (obj)
5020Return @code{#t} if the argument @var{obj} is a keyword, else
5021@code{#f}.
5022@end deffn
5023
7719ef22
MV
5024@deffn {Scheme Procedure} keyword->symbol keyword
5025@deffnx {C Function} scm_keyword_to_symbol (keyword)
5026Return the symbol with the same name as @var{keyword}.
07d83abe
MV
5027@end deffn
5028
7719ef22
MV
5029@deffn {Scheme Procedure} symbol->keyword symbol
5030@deffnx {C Function} scm_symbol_to_keyword (symbol)
5031Return the keyword with the same name as @var{symbol}.
5032@end deffn
07d83abe 5033
7719ef22
MV
5034@deftypefn {C Function} int scm_is_keyword (SCM obj)
5035Equivalent to @code{scm_is_true (scm_keyword_p (@var{obj}))}.
07d83abe
MV
5036@end deftypefn
5037
7719ef22
MV
5038@deftypefn {C Function} SCM scm_from_locale_keyword (const char *str)
5039@deftypefnx {C Function} SCM scm_from_locale_keywordn (const char *str, size_t len)
5040Equivalent to @code{scm_symbol_to_keyword (scm_from_locale_symbol
5041(@var{str}))} and @code{scm_symbol_to_keyword (scm_from_locale_symboln
5042(@var{str}, @var{len}))}, respectively.
5043@end deftypefn
07d83abe
MV
5044
5045@node Other Types
5046@subsection ``Functionality-Centric'' Data Types
5047
5048Procedures and macros are documented in their own chapter: see
5049@ref{Procedures and Macros}.
5050
5051Variable objects are documented as part of the description of Guile's
5052module system: see @ref{Variables}.
5053
5054Asyncs, dynamic roots and fluids are described in the chapter on
5055scheduling: see @ref{Scheduling}.
5056
5057Hooks are documented in the chapter on general utility functions: see
5058@ref{Hooks}.
5059
5060Ports are described in the chapter on I/O: see @ref{Input and Output}.
5061
5062
5063@c Local Variables:
5064@c TeX-master: "guile.texi"
5065@c End: