Two very small edits
[bpt/guile.git] / doc / ref / api-data.texi
CommitLineData
07d83abe
MV
1@c -*-texinfo-*-
2@c This is part of the GNU Guile Reference Manual.
27219b32 3@c Copyright (C) 1996, 1997, 2000, 2001, 2002, 2003, 2004, 2006, 2007, 2008, 2009, 2010
07d83abe
MV
4@c Free Software Foundation, Inc.
5@c See the file guile.texi for copying conditions.
6
07d83abe
MV
7@node Simple Data Types
8@section Simple Generic Data Types
9
10This chapter describes those of Guile's simple data types which are
11primarily used for their role as items of generic data. By
12@dfn{simple} we mean data types that are not primarily used as
13containers to hold other data --- i.e.@: pairs, lists, vectors and so on.
14For the documentation of such @dfn{compound} data types, see
15@ref{Compound Data Types}.
16
17@c One of the great strengths of Scheme is that there is no straightforward
18@c distinction between ``data'' and ``functionality''. For example,
19@c Guile's support for dynamic linking could be described:
20
21@c @itemize @bullet
22@c @item
23@c either in a ``data-centric'' way, as the behaviour and properties of the
24@c ``dynamically linked object'' data type, and the operations that may be
25@c applied to instances of this type
26
27@c @item
28@c or in a ``functionality-centric'' way, as the set of procedures that
29@c constitute Guile's support for dynamic linking, in the context of the
30@c module system.
31@c @end itemize
32
33@c The contents of this chapter are, therefore, a matter of judgment. By
34@c @dfn{generic}, we mean to select those data types whose typical use as
35@c @emph{data} in a wide variety of programming contexts is more important
36@c than their use in the implementation of a particular piece of
37@c @emph{functionality}. The last section of this chapter provides
38@c references for all the data types that are documented not here but in a
39@c ``functionality-centric'' way elsewhere in the manual.
40
41@menu
42* Booleans:: True/false values.
43* Numbers:: Numerical data types.
050ab45f
MV
44* Characters:: Single characters.
45* Character Sets:: Sets of characters.
46* Strings:: Sequences of characters.
b242715b 47* Bytevectors:: Sequences of bytes.
07d83abe
MV
48* Regular Expressions:: Pattern matching and substitution.
49* Symbols:: Symbols.
50* Keywords:: Self-quoting, customizable display keywords.
51* Other Types:: "Functionality-centric" data types.
52@end menu
53
54
55@node Booleans
56@subsection Booleans
57@tpindex Booleans
58
59The two boolean values are @code{#t} for true and @code{#f} for false.
60
61Boolean values are returned by predicate procedures, such as the general
62equality predicates @code{eq?}, @code{eqv?} and @code{equal?}
63(@pxref{Equality}) and numerical and string comparison operators like
64@code{string=?} (@pxref{String Comparison}) and @code{<=}
65(@pxref{Comparison}).
66
67@lisp
68(<= 3 8)
69@result{} #t
70
71(<= 3 -3)
72@result{} #f
73
74(equal? "house" "houses")
75@result{} #f
76
77(eq? #f #f)
78@result{}
79#t
80@end lisp
81
82In test condition contexts like @code{if} and @code{cond} (@pxref{if
83cond case}), where a group of subexpressions will be evaluated only if a
84@var{condition} expression evaluates to ``true'', ``true'' means any
85value at all except @code{#f}.
86
87@lisp
88(if #t "yes" "no")
89@result{} "yes"
90
91(if 0 "yes" "no")
92@result{} "yes"
93
94(if #f "yes" "no")
95@result{} "no"
96@end lisp
97
98A result of this asymmetry is that typical Scheme source code more often
99uses @code{#f} explicitly than @code{#t}: @code{#f} is necessary to
100represent an @code{if} or @code{cond} false value, whereas @code{#t} is
101not necessary to represent an @code{if} or @code{cond} true value.
102
103It is important to note that @code{#f} is @strong{not} equivalent to any
104other Scheme value. In particular, @code{#f} is not the same as the
105number 0 (like in C and C++), and not the same as the ``empty list''
106(like in some Lisp dialects).
107
108In C, the two Scheme boolean values are available as the two constants
109@code{SCM_BOOL_T} for @code{#t} and @code{SCM_BOOL_F} for @code{#f}.
110Care must be taken with the false value @code{SCM_BOOL_F}: it is not
111false when used in C conditionals. In order to test for it, use
112@code{scm_is_false} or @code{scm_is_true}.
113
114@rnindex not
115@deffn {Scheme Procedure} not x
116@deffnx {C Function} scm_not (x)
117Return @code{#t} if @var{x} is @code{#f}, else return @code{#f}.
118@end deffn
119
120@rnindex boolean?
121@deffn {Scheme Procedure} boolean? obj
122@deffnx {C Function} scm_boolean_p (obj)
123Return @code{#t} if @var{obj} is either @code{#t} or @code{#f}, else
124return @code{#f}.
125@end deffn
126
127@deftypevr {C Macro} SCM SCM_BOOL_T
128The @code{SCM} representation of the Scheme object @code{#t}.
129@end deftypevr
130
131@deftypevr {C Macro} SCM SCM_BOOL_F
132The @code{SCM} representation of the Scheme object @code{#f}.
133@end deftypevr
134
135@deftypefn {C Function} int scm_is_true (SCM obj)
136Return @code{0} if @var{obj} is @code{#f}, else return @code{1}.
137@end deftypefn
138
139@deftypefn {C Function} int scm_is_false (SCM obj)
140Return @code{1} if @var{obj} is @code{#f}, else return @code{0}.
141@end deftypefn
142
143@deftypefn {C Function} int scm_is_bool (SCM obj)
144Return @code{1} if @var{obj} is either @code{#t} or @code{#f}, else
145return @code{0}.
146@end deftypefn
147
148@deftypefn {C Function} SCM scm_from_bool (int val)
149Return @code{#f} if @var{val} is @code{0}, else return @code{#t}.
150@end deftypefn
151
152@deftypefn {C Function} int scm_to_bool (SCM val)
153Return @code{1} if @var{val} is @code{SCM_BOOL_T}, return @code{0}
154when @var{val} is @code{SCM_BOOL_F}, else signal a `wrong type' error.
155
156You should probably use @code{scm_is_true} instead of this function
157when you just want to test a @code{SCM} value for trueness.
158@end deftypefn
159
160@node Numbers
161@subsection Numerical data types
162@tpindex Numbers
163
164Guile supports a rich ``tower'' of numerical types --- integer,
165rational, real and complex --- and provides an extensive set of
166mathematical and scientific functions for operating on numerical
167data. This section of the manual documents those types and functions.
168
169You may also find it illuminating to read R5RS's presentation of numbers
170in Scheme, which is particularly clear and accessible: see
171@ref{Numbers,,,r5rs,R5RS}.
172
173@menu
174* Numerical Tower:: Scheme's numerical "tower".
175* Integers:: Whole numbers.
176* Reals and Rationals:: Real and rational numbers.
177* Complex Numbers:: Complex numbers.
178* Exactness:: Exactness and inexactness.
179* Number Syntax:: Read syntax for numerical data.
180* Integer Operations:: Operations on integer values.
181* Comparison:: Comparison predicates.
182* Conversion:: Converting numbers to and from strings.
183* Complex:: Complex number operations.
184* Arithmetic:: Arithmetic functions.
185* Scientific:: Scientific functions.
07d83abe
MV
186* Bitwise Operations:: Logical AND, OR, NOT, and so on.
187* Random:: Random number generation.
188@end menu
189
190
191@node Numerical Tower
192@subsubsection Scheme's Numerical ``Tower''
193@rnindex number?
194
195Scheme's numerical ``tower'' consists of the following categories of
196numbers:
197
198@table @dfn
199@item integers
200Whole numbers, positive or negative; e.g.@: --5, 0, 18.
201
202@item rationals
203The set of numbers that can be expressed as @math{@var{p}/@var{q}}
204where @var{p} and @var{q} are integers; e.g.@: @math{9/16} works, but
205pi (an irrational number) doesn't. These include integers
206(@math{@var{n}/1}).
207
208@item real numbers
209The set of numbers that describes all possible positions along a
210one-dimensional line. This includes rationals as well as irrational
211numbers.
212
213@item complex numbers
214The set of numbers that describes all possible positions in a two
215dimensional space. This includes real as well as imaginary numbers
216(@math{@var{a}+@var{b}i}, where @var{a} is the @dfn{real part},
217@var{b} is the @dfn{imaginary part}, and @math{i} is the square root of
218@minus{}1.)
219@end table
220
221It is called a tower because each category ``sits on'' the one that
222follows it, in the sense that every integer is also a rational, every
223rational is also real, and every real number is also a complex number
224(but with zero imaginary part).
225
226In addition to the classification into integers, rationals, reals and
227complex numbers, Scheme also distinguishes between whether a number is
228represented exactly or not. For example, the result of
9f1ba6a9
NJ
229@m{2\sin(\pi/4),2*sin(pi/4)} is exactly @m{\sqrt{2},2^(1/2)}, but Guile
230can represent neither @m{\pi/4,pi/4} nor @m{\sqrt{2},2^(1/2)} exactly.
07d83abe
MV
231Instead, it stores an inexact approximation, using the C type
232@code{double}.
233
234Guile can represent exact rationals of any magnitude, inexact
235rationals that fit into a C @code{double}, and inexact complex numbers
236with @code{double} real and imaginary parts.
237
238The @code{number?} predicate may be applied to any Scheme value to
239discover whether the value is any of the supported numerical types.
240
241@deffn {Scheme Procedure} number? obj
242@deffnx {C Function} scm_number_p (obj)
243Return @code{#t} if @var{obj} is any kind of number, else @code{#f}.
244@end deffn
245
246For example:
247
248@lisp
249(number? 3)
250@result{} #t
251
252(number? "hello there!")
253@result{} #f
254
255(define pi 3.141592654)
256(number? pi)
257@result{} #t
258@end lisp
259
5615f696
MV
260@deftypefn {C Function} int scm_is_number (SCM obj)
261This is equivalent to @code{scm_is_true (scm_number_p (obj))}.
262@end deftypefn
263
07d83abe
MV
264The next few subsections document each of Guile's numerical data types
265in detail.
266
267@node Integers
268@subsubsection Integers
269
270@tpindex Integer numbers
271
272@rnindex integer?
273
274Integers are whole numbers, that is numbers with no fractional part,
275such as 2, 83, and @minus{}3789.
276
277Integers in Guile can be arbitrarily big, as shown by the following
278example.
279
280@lisp
281(define (factorial n)
282 (let loop ((n n) (product 1))
283 (if (= n 0)
284 product
285 (loop (- n 1) (* product n)))))
286
287(factorial 3)
288@result{} 6
289
290(factorial 20)
291@result{} 2432902008176640000
292
293(- (factorial 45))
294@result{} -119622220865480194561963161495657715064383733760000000000
295@end lisp
296
297Readers whose background is in programming languages where integers are
298limited by the need to fit into just 4 or 8 bytes of memory may find
299this surprising, or suspect that Guile's representation of integers is
300inefficient. In fact, Guile achieves a near optimal balance of
301convenience and efficiency by using the host computer's native
302representation of integers where possible, and a more general
303representation where the required number does not fit in the native
304form. Conversion between these two representations is automatic and
305completely invisible to the Scheme level programmer.
306
307The infinities @samp{+inf.0} and @samp{-inf.0} are considered to be
308inexact integers. They are explained in detail in the next section,
309together with reals and rationals.
310
311C has a host of different integer types, and Guile offers a host of
312functions to convert between them and the @code{SCM} representation.
313For example, a C @code{int} can be handled with @code{scm_to_int} and
314@code{scm_from_int}. Guile also defines a few C integer types of its
315own, to help with differences between systems.
316
317C integer types that are not covered can be handled with the generic
318@code{scm_to_signed_integer} and @code{scm_from_signed_integer} for
319signed types, or with @code{scm_to_unsigned_integer} and
320@code{scm_from_unsigned_integer} for unsigned types.
321
322Scheme integers can be exact and inexact. For example, a number
323written as @code{3.0} with an explicit decimal-point is inexact, but
324it is also an integer. The functions @code{integer?} and
325@code{scm_is_integer} report true for such a number, but the functions
326@code{scm_is_signed_integer} and @code{scm_is_unsigned_integer} only
327allow exact integers and thus report false. Likewise, the conversion
328functions like @code{scm_to_signed_integer} only accept exact
329integers.
330
331The motivation for this behavior is that the inexactness of a number
332should not be lost silently. If you want to allow inexact integers,
877f06c3 333you can explicitly insert a call to @code{inexact->exact} or to its C
07d83abe
MV
334equivalent @code{scm_inexact_to_exact}. (Only inexact integers will
335be converted by this call into exact integers; inexact non-integers
336will become exact fractions.)
337
338@deffn {Scheme Procedure} integer? x
339@deffnx {C Function} scm_integer_p (x)
909fcc97 340Return @code{#t} if @var{x} is an exact or inexact integer number, else
07d83abe
MV
341@code{#f}.
342
343@lisp
344(integer? 487)
345@result{} #t
346
347(integer? 3.0)
348@result{} #t
349
350(integer? -3.4)
351@result{} #f
352
353(integer? +inf.0)
354@result{} #t
355@end lisp
356@end deffn
357
358@deftypefn {C Function} int scm_is_integer (SCM x)
359This is equivalent to @code{scm_is_true (scm_integer_p (x))}.
360@end deftypefn
361
362@defvr {C Type} scm_t_int8
363@defvrx {C Type} scm_t_uint8
364@defvrx {C Type} scm_t_int16
365@defvrx {C Type} scm_t_uint16
366@defvrx {C Type} scm_t_int32
367@defvrx {C Type} scm_t_uint32
368@defvrx {C Type} scm_t_int64
369@defvrx {C Type} scm_t_uint64
370@defvrx {C Type} scm_t_intmax
371@defvrx {C Type} scm_t_uintmax
372The C types are equivalent to the corresponding ISO C types but are
373defined on all platforms, with the exception of @code{scm_t_int64} and
374@code{scm_t_uint64}, which are only defined when a 64-bit type is
375available. For example, @code{scm_t_int8} is equivalent to
376@code{int8_t}.
377
378You can regard these definitions as a stop-gap measure until all
379platforms provide these types. If you know that all the platforms
380that you are interested in already provide these types, it is better
381to use them directly instead of the types provided by Guile.
382@end defvr
383
384@deftypefn {C Function} int scm_is_signed_integer (SCM x, scm_t_intmax min, scm_t_intmax max)
385@deftypefnx {C Function} int scm_is_unsigned_integer (SCM x, scm_t_uintmax min, scm_t_uintmax max)
386Return @code{1} when @var{x} represents an exact integer that is
387between @var{min} and @var{max}, inclusive.
388
389These functions can be used to check whether a @code{SCM} value will
390fit into a given range, such as the range of a given C integer type.
391If you just want to convert a @code{SCM} value to a given C integer
392type, use one of the conversion functions directly.
393@end deftypefn
394
395@deftypefn {C Function} scm_t_intmax scm_to_signed_integer (SCM x, scm_t_intmax min, scm_t_intmax max)
396@deftypefnx {C Function} scm_t_uintmax scm_to_unsigned_integer (SCM x, scm_t_uintmax min, scm_t_uintmax max)
397When @var{x} represents an exact integer that is between @var{min} and
398@var{max} inclusive, return that integer. Else signal an error,
399either a `wrong-type' error when @var{x} is not an exact integer, or
400an `out-of-range' error when it doesn't fit the given range.
401@end deftypefn
402
403@deftypefn {C Function} SCM scm_from_signed_integer (scm_t_intmax x)
404@deftypefnx {C Function} SCM scm_from_unsigned_integer (scm_t_uintmax x)
405Return the @code{SCM} value that represents the integer @var{x}. This
406function will always succeed and will always return an exact number.
407@end deftypefn
408
409@deftypefn {C Function} char scm_to_char (SCM x)
410@deftypefnx {C Function} {signed char} scm_to_schar (SCM x)
411@deftypefnx {C Function} {unsigned char} scm_to_uchar (SCM x)
412@deftypefnx {C Function} short scm_to_short (SCM x)
413@deftypefnx {C Function} {unsigned short} scm_to_ushort (SCM x)
414@deftypefnx {C Function} int scm_to_int (SCM x)
415@deftypefnx {C Function} {unsigned int} scm_to_uint (SCM x)
416@deftypefnx {C Function} long scm_to_long (SCM x)
417@deftypefnx {C Function} {unsigned long} scm_to_ulong (SCM x)
418@deftypefnx {C Function} {long long} scm_to_long_long (SCM x)
419@deftypefnx {C Function} {unsigned long long} scm_to_ulong_long (SCM x)
420@deftypefnx {C Function} size_t scm_to_size_t (SCM x)
421@deftypefnx {C Function} ssize_t scm_to_ssize_t (SCM x)
422@deftypefnx {C Function} scm_t_int8 scm_to_int8 (SCM x)
423@deftypefnx {C Function} scm_t_uint8 scm_to_uint8 (SCM x)
424@deftypefnx {C Function} scm_t_int16 scm_to_int16 (SCM x)
425@deftypefnx {C Function} scm_t_uint16 scm_to_uint16 (SCM x)
426@deftypefnx {C Function} scm_t_int32 scm_to_int32 (SCM x)
427@deftypefnx {C Function} scm_t_uint32 scm_to_uint32 (SCM x)
428@deftypefnx {C Function} scm_t_int64 scm_to_int64 (SCM x)
429@deftypefnx {C Function} scm_t_uint64 scm_to_uint64 (SCM x)
430@deftypefnx {C Function} scm_t_intmax scm_to_intmax (SCM x)
431@deftypefnx {C Function} scm_t_uintmax scm_to_uintmax (SCM x)
432When @var{x} represents an exact integer that fits into the indicated
433C type, return that integer. Else signal an error, either a
434`wrong-type' error when @var{x} is not an exact integer, or an
435`out-of-range' error when it doesn't fit the given range.
436
437The functions @code{scm_to_long_long}, @code{scm_to_ulong_long},
438@code{scm_to_int64}, and @code{scm_to_uint64} are only available when
439the corresponding types are.
440@end deftypefn
441
442@deftypefn {C Function} SCM scm_from_char (char x)
443@deftypefnx {C Function} SCM scm_from_schar (signed char x)
444@deftypefnx {C Function} SCM scm_from_uchar (unsigned char x)
445@deftypefnx {C Function} SCM scm_from_short (short x)
446@deftypefnx {C Function} SCM scm_from_ushort (unsigned short x)
447@deftypefnx {C Function} SCM scm_from_int (int x)
448@deftypefnx {C Function} SCM scm_from_uint (unsigned int x)
449@deftypefnx {C Function} SCM scm_from_long (long x)
450@deftypefnx {C Function} SCM scm_from_ulong (unsigned long x)
451@deftypefnx {C Function} SCM scm_from_long_long (long long x)
452@deftypefnx {C Function} SCM scm_from_ulong_long (unsigned long long x)
453@deftypefnx {C Function} SCM scm_from_size_t (size_t x)
454@deftypefnx {C Function} SCM scm_from_ssize_t (ssize_t x)
455@deftypefnx {C Function} SCM scm_from_int8 (scm_t_int8 x)
456@deftypefnx {C Function} SCM scm_from_uint8 (scm_t_uint8 x)
457@deftypefnx {C Function} SCM scm_from_int16 (scm_t_int16 x)
458@deftypefnx {C Function} SCM scm_from_uint16 (scm_t_uint16 x)
459@deftypefnx {C Function} SCM scm_from_int32 (scm_t_int32 x)
460@deftypefnx {C Function} SCM scm_from_uint32 (scm_t_uint32 x)
461@deftypefnx {C Function} SCM scm_from_int64 (scm_t_int64 x)
462@deftypefnx {C Function} SCM scm_from_uint64 (scm_t_uint64 x)
463@deftypefnx {C Function} SCM scm_from_intmax (scm_t_intmax x)
464@deftypefnx {C Function} SCM scm_from_uintmax (scm_t_uintmax x)
465Return the @code{SCM} value that represents the integer @var{x}.
466These functions will always succeed and will always return an exact
467number.
468@end deftypefn
469
08962922
MV
470@deftypefn {C Function} void scm_to_mpz (SCM val, mpz_t rop)
471Assign @var{val} to the multiple precision integer @var{rop}.
472@var{val} must be an exact integer, otherwise an error will be
473signalled. @var{rop} must have been initialized with @code{mpz_init}
474before this function is called. When @var{rop} is no longer needed
475the occupied space must be freed with @code{mpz_clear}.
476@xref{Initializing Integers,,, gmp, GNU MP Manual}, for details.
477@end deftypefn
478
9f1ba6a9 479@deftypefn {C Function} SCM scm_from_mpz (mpz_t val)
08962922
MV
480Return the @code{SCM} value that represents @var{val}.
481@end deftypefn
482
07d83abe
MV
483@node Reals and Rationals
484@subsubsection Real and Rational Numbers
485@tpindex Real numbers
486@tpindex Rational numbers
487
488@rnindex real?
489@rnindex rational?
490
491Mathematically, the real numbers are the set of numbers that describe
492all possible points along a continuous, infinite, one-dimensional line.
493The rational numbers are the set of all numbers that can be written as
494fractions @var{p}/@var{q}, where @var{p} and @var{q} are integers.
495All rational numbers are also real, but there are real numbers that
34942993
KR
496are not rational, for example @m{\sqrt2, the square root of 2}, and
497@m{\pi,pi}.
07d83abe
MV
498
499Guile can represent both exact and inexact rational numbers, but it
500can not represent irrational numbers. Exact rationals are represented
501by storing the numerator and denominator as two exact integers.
502Inexact rationals are stored as floating point numbers using the C
503type @code{double}.
504
505Exact rationals are written as a fraction of integers. There must be
506no whitespace around the slash:
507
508@lisp
5091/2
510-22/7
511@end lisp
512
513Even though the actual encoding of inexact rationals is in binary, it
514may be helpful to think of it as a decimal number with a limited
515number of significant figures and a decimal point somewhere, since
516this corresponds to the standard notation for non-whole numbers. For
517example:
518
519@lisp
5200.34
521-0.00000142857931198
522-5648394822220000000000.0
5234.0
524@end lisp
525
526The limited precision of Guile's encoding means that any ``real'' number
527in Guile can be written in a rational form, by multiplying and then dividing
528by sufficient powers of 10 (or in fact, 2). For example,
529@samp{-0.00000142857931198} is the same as @minus{}142857931198 divided by
530100000000000000000. In Guile's current incarnation, therefore, the
531@code{rational?} and @code{real?} predicates are equivalent.
532
533
534Dividing by an exact zero leads to a error message, as one might
535expect. However, dividing by an inexact zero does not produce an
536error. Instead, the result of the division is either plus or minus
537infinity, depending on the sign of the divided number.
538
539The infinities are written @samp{+inf.0} and @samp{-inf.0},
be3eb25c 540respectively. This syntax is also recognized by @code{read} as an
07d83abe
MV
541extension to the usual Scheme syntax.
542
543Dividing zero by zero yields something that is not a number at all:
544@samp{+nan.0}. This is the special `not a number' value.
545
546On platforms that follow @acronym{IEEE} 754 for their floating point
547arithmetic, the @samp{+inf.0}, @samp{-inf.0}, and @samp{+nan.0} values
548are implemented using the corresponding @acronym{IEEE} 754 values.
549They behave in arithmetic operations like @acronym{IEEE} 754 describes
550it, i.e., @code{(= +nan.0 +nan.0)} @result{} @code{#f}.
551
552The infinities are inexact integers and are considered to be both even
553and odd. While @samp{+nan.0} is not @code{=} to itself, it is
554@code{eqv?} to itself.
555
556To test for the special values, use the functions @code{inf?} and
557@code{nan?}.
558
559@deffn {Scheme Procedure} real? obj
560@deffnx {C Function} scm_real_p (obj)
561Return @code{#t} if @var{obj} is a real number, else @code{#f}. Note
562that the sets of integer and rational values form subsets of the set
563of real numbers, so the predicate will also be fulfilled if @var{obj}
564is an integer number or a rational number.
565@end deffn
566
567@deffn {Scheme Procedure} rational? x
568@deffnx {C Function} scm_rational_p (x)
569Return @code{#t} if @var{x} is a rational number, @code{#f} otherwise.
570Note that the set of integer values forms a subset of the set of
571rational numbers, i. e. the predicate will also be fulfilled if
572@var{x} is an integer number.
573
574Since Guile can not represent irrational numbers, every number
575satisfying @code{real?} also satisfies @code{rational?} in Guile.
576@end deffn
577
578@deffn {Scheme Procedure} rationalize x eps
579@deffnx {C Function} scm_rationalize (x, eps)
580Returns the @emph{simplest} rational number differing
581from @var{x} by no more than @var{eps}.
582
583As required by @acronym{R5RS}, @code{rationalize} only returns an
584exact result when both its arguments are exact. Thus, you might need
585to use @code{inexact->exact} on the arguments.
586
587@lisp
588(rationalize (inexact->exact 1.2) 1/100)
589@result{} 6/5
590@end lisp
591
592@end deffn
593
d3df9759
MV
594@deffn {Scheme Procedure} inf? x
595@deffnx {C Function} scm_inf_p (x)
07d83abe
MV
596Return @code{#t} if @var{x} is either @samp{+inf.0} or @samp{-inf.0},
597@code{#f} otherwise.
598@end deffn
599
600@deffn {Scheme Procedure} nan? x
d3df9759 601@deffnx {C Function} scm_nan_p (x)
07d83abe
MV
602Return @code{#t} if @var{x} is @samp{+nan.0}, @code{#f} otherwise.
603@end deffn
604
cdf1ad3b
MV
605@deffn {Scheme Procedure} nan
606@deffnx {C Function} scm_nan ()
607Return NaN.
608@end deffn
609
610@deffn {Scheme Procedure} inf
611@deffnx {C Function} scm_inf ()
612Return Inf.
613@end deffn
614
d3df9759
MV
615@deffn {Scheme Procedure} numerator x
616@deffnx {C Function} scm_numerator (x)
617Return the numerator of the rational number @var{x}.
618@end deffn
619
620@deffn {Scheme Procedure} denominator x
621@deffnx {C Function} scm_denominator (x)
622Return the denominator of the rational number @var{x}.
623@end deffn
624
625@deftypefn {C Function} int scm_is_real (SCM val)
626@deftypefnx {C Function} int scm_is_rational (SCM val)
627Equivalent to @code{scm_is_true (scm_real_p (val))} and
628@code{scm_is_true (scm_rational_p (val))}, respectively.
629@end deftypefn
630
631@deftypefn {C Function} double scm_to_double (SCM val)
632Returns the number closest to @var{val} that is representable as a
633@code{double}. Returns infinity for a @var{val} that is too large in
634magnitude. The argument @var{val} must be a real number.
635@end deftypefn
636
637@deftypefn {C Function} SCM scm_from_double (double val)
be3eb25c 638Return the @code{SCM} value that represents @var{val}. The returned
d3df9759
MV
639value is inexact according to the predicate @code{inexact?}, but it
640will be exactly equal to @var{val}.
641@end deftypefn
642
07d83abe
MV
643@node Complex Numbers
644@subsubsection Complex Numbers
645@tpindex Complex numbers
646
647@rnindex complex?
648
649Complex numbers are the set of numbers that describe all possible points
650in a two-dimensional space. The two coordinates of a particular point
651in this space are known as the @dfn{real} and @dfn{imaginary} parts of
652the complex number that describes that point.
653
654In Guile, complex numbers are written in rectangular form as the sum of
655their real and imaginary parts, using the symbol @code{i} to indicate
656the imaginary part.
657
658@lisp
6593+4i
660@result{}
6613.0+4.0i
662
663(* 3-8i 2.3+0.3i)
664@result{}
6659.3-17.5i
666@end lisp
667
34942993
KR
668@cindex polar form
669@noindent
670Polar form can also be used, with an @samp{@@} between magnitude and
671angle,
672
673@lisp
6741@@3.141592 @result{} -1.0 (approx)
675-1@@1.57079 @result{} 0.0-1.0i (approx)
676@end lisp
677
07d83abe
MV
678Guile represents a complex number with a non-zero imaginary part as a
679pair of inexact rationals, so the real and imaginary parts of a
680complex number have the same properties of inexactness and limited
681precision as single inexact rational numbers. Guile can not represent
682exact complex numbers with non-zero imaginary parts.
683
5615f696
MV
684@deffn {Scheme Procedure} complex? z
685@deffnx {C Function} scm_complex_p (z)
07d83abe
MV
686Return @code{#t} if @var{x} is a complex number, @code{#f}
687otherwise. Note that the sets of real, rational and integer
688values form subsets of the set of complex numbers, i. e. the
689predicate will also be fulfilled if @var{x} is a real,
690rational or integer number.
691@end deffn
692
c9dc8c6c
MV
693@deftypefn {C Function} int scm_is_complex (SCM val)
694Equivalent to @code{scm_is_true (scm_complex_p (val))}.
695@end deftypefn
696
07d83abe
MV
697@node Exactness
698@subsubsection Exact and Inexact Numbers
699@tpindex Exact numbers
700@tpindex Inexact numbers
701
702@rnindex exact?
703@rnindex inexact?
704@rnindex exact->inexact
705@rnindex inexact->exact
706
707R5RS requires that a calculation involving inexact numbers always
708produces an inexact result. To meet this requirement, Guile
709distinguishes between an exact integer value such as @samp{5} and the
710corresponding inexact real value which, to the limited precision
711available, has no fractional part, and is printed as @samp{5.0}. Guile
712will only convert the latter value to the former when forced to do so by
713an invocation of the @code{inexact->exact} procedure.
714
715@deffn {Scheme Procedure} exact? z
716@deffnx {C Function} scm_exact_p (z)
717Return @code{#t} if the number @var{z} is exact, @code{#f}
718otherwise.
719
720@lisp
721(exact? 2)
722@result{} #t
723
724(exact? 0.5)
725@result{} #f
726
727(exact? (/ 2))
728@result{} #t
729@end lisp
730
731@end deffn
732
733@deffn {Scheme Procedure} inexact? z
734@deffnx {C Function} scm_inexact_p (z)
735Return @code{#t} if the number @var{z} is inexact, @code{#f}
736else.
737@end deffn
738
739@deffn {Scheme Procedure} inexact->exact z
740@deffnx {C Function} scm_inexact_to_exact (z)
741Return an exact number that is numerically closest to @var{z}, when
742there is one. For inexact rationals, Guile returns the exact rational
743that is numerically equal to the inexact rational. Inexact complex
744numbers with a non-zero imaginary part can not be made exact.
745
746@lisp
747(inexact->exact 0.5)
748@result{} 1/2
749@end lisp
750
751The following happens because 12/10 is not exactly representable as a
752@code{double} (on most platforms). However, when reading a decimal
753number that has been marked exact with the ``#e'' prefix, Guile is
754able to represent it correctly.
755
756@lisp
757(inexact->exact 1.2)
758@result{} 5404319552844595/4503599627370496
759
760#e1.2
761@result{} 6/5
762@end lisp
763
764@end deffn
765
766@c begin (texi-doc-string "guile" "exact->inexact")
767@deffn {Scheme Procedure} exact->inexact z
768@deffnx {C Function} scm_exact_to_inexact (z)
769Convert the number @var{z} to its inexact representation.
770@end deffn
771
772
773@node Number Syntax
774@subsubsection Read Syntax for Numerical Data
775
776The read syntax for integers is a string of digits, optionally
777preceded by a minus or plus character, a code indicating the
778base in which the integer is encoded, and a code indicating whether
779the number is exact or inexact. The supported base codes are:
780
781@table @code
782@item #b
783@itemx #B
784the integer is written in binary (base 2)
785
786@item #o
787@itemx #O
788the integer is written in octal (base 8)
789
790@item #d
791@itemx #D
792the integer is written in decimal (base 10)
793
794@item #x
795@itemx #X
796the integer is written in hexadecimal (base 16)
797@end table
798
799If the base code is omitted, the integer is assumed to be decimal. The
800following examples show how these base codes are used.
801
802@lisp
803-13
804@result{} -13
805
806#d-13
807@result{} -13
808
809#x-13
810@result{} -19
811
812#b+1101
813@result{} 13
814
815#o377
816@result{} 255
817@end lisp
818
819The codes for indicating exactness (which can, incidentally, be applied
820to all numerical values) are:
821
822@table @code
823@item #e
824@itemx #E
825the number is exact
826
827@item #i
828@itemx #I
829the number is inexact.
830@end table
831
832If the exactness indicator is omitted, the number is exact unless it
833contains a radix point. Since Guile can not represent exact complex
834numbers, an error is signalled when asking for them.
835
836@lisp
837(exact? 1.2)
838@result{} #f
839
840(exact? #e1.2)
841@result{} #t
842
843(exact? #e+1i)
844ERROR: Wrong type argument
845@end lisp
846
847Guile also understands the syntax @samp{+inf.0} and @samp{-inf.0} for
848plus and minus infinity, respectively. The value must be written
849exactly as shown, that is, they always must have a sign and exactly
850one zero digit after the decimal point. It also understands
851@samp{+nan.0} and @samp{-nan.0} for the special `not-a-number' value.
852The sign is ignored for `not-a-number' and the value is always printed
853as @samp{+nan.0}.
854
855@node Integer Operations
856@subsubsection Operations on Integer Values
857@rnindex odd?
858@rnindex even?
859@rnindex quotient
860@rnindex remainder
861@rnindex modulo
862@rnindex gcd
863@rnindex lcm
864
865@deffn {Scheme Procedure} odd? n
866@deffnx {C Function} scm_odd_p (n)
867Return @code{#t} if @var{n} is an odd number, @code{#f}
868otherwise.
869@end deffn
870
871@deffn {Scheme Procedure} even? n
872@deffnx {C Function} scm_even_p (n)
873Return @code{#t} if @var{n} is an even number, @code{#f}
874otherwise.
875@end deffn
876
877@c begin (texi-doc-string "guile" "quotient")
878@c begin (texi-doc-string "guile" "remainder")
879@deffn {Scheme Procedure} quotient n d
880@deffnx {Scheme Procedure} remainder n d
881@deffnx {C Function} scm_quotient (n, d)
882@deffnx {C Function} scm_remainder (n, d)
883Return the quotient or remainder from @var{n} divided by @var{d}. The
884quotient is rounded towards zero, and the remainder will have the same
885sign as @var{n}. In all cases quotient and remainder satisfy
886@math{@var{n} = @var{q}*@var{d} + @var{r}}.
887
888@lisp
889(remainder 13 4) @result{} 1
890(remainder -13 4) @result{} -1
891@end lisp
892@end deffn
893
894@c begin (texi-doc-string "guile" "modulo")
895@deffn {Scheme Procedure} modulo n d
896@deffnx {C Function} scm_modulo (n, d)
897Return the remainder from @var{n} divided by @var{d}, with the same
898sign as @var{d}.
899
900@lisp
901(modulo 13 4) @result{} 1
902(modulo -13 4) @result{} 3
903(modulo 13 -4) @result{} -3
904(modulo -13 -4) @result{} -1
905@end lisp
906@end deffn
907
908@c begin (texi-doc-string "guile" "gcd")
fd8a1df5 909@deffn {Scheme Procedure} gcd x@dots{}
07d83abe
MV
910@deffnx {C Function} scm_gcd (x, y)
911Return the greatest common divisor of all arguments.
912If called without arguments, 0 is returned.
913
914The C function @code{scm_gcd} always takes two arguments, while the
915Scheme function can take an arbitrary number.
916@end deffn
917
918@c begin (texi-doc-string "guile" "lcm")
fd8a1df5 919@deffn {Scheme Procedure} lcm x@dots{}
07d83abe
MV
920@deffnx {C Function} scm_lcm (x, y)
921Return the least common multiple of the arguments.
922If called without arguments, 1 is returned.
923
924The C function @code{scm_lcm} always takes two arguments, while the
925Scheme function can take an arbitrary number.
926@end deffn
927
cdf1ad3b
MV
928@deffn {Scheme Procedure} modulo-expt n k m
929@deffnx {C Function} scm_modulo_expt (n, k, m)
930Return @var{n} raised to the integer exponent
931@var{k}, modulo @var{m}.
932
933@lisp
934(modulo-expt 2 3 5)
935 @result{} 3
936@end lisp
937@end deffn
07d83abe
MV
938
939@node Comparison
940@subsubsection Comparison Predicates
941@rnindex zero?
942@rnindex positive?
943@rnindex negative?
944
945The C comparison functions below always takes two arguments, while the
946Scheme functions can take an arbitrary number. Also keep in mind that
947the C functions return one of the Scheme boolean values
948@code{SCM_BOOL_T} or @code{SCM_BOOL_F} which are both true as far as C
949is concerned. Thus, always write @code{scm_is_true (scm_num_eq_p (x,
950y))} when testing the two Scheme numbers @code{x} and @code{y} for
951equality, for example.
952
953@c begin (texi-doc-string "guile" "=")
954@deffn {Scheme Procedure} =
955@deffnx {C Function} scm_num_eq_p (x, y)
956Return @code{#t} if all parameters are numerically equal.
957@end deffn
958
959@c begin (texi-doc-string "guile" "<")
960@deffn {Scheme Procedure} <
961@deffnx {C Function} scm_less_p (x, y)
962Return @code{#t} if the list of parameters is monotonically
963increasing.
964@end deffn
965
966@c begin (texi-doc-string "guile" ">")
967@deffn {Scheme Procedure} >
968@deffnx {C Function} scm_gr_p (x, y)
969Return @code{#t} if the list of parameters is monotonically
970decreasing.
971@end deffn
972
973@c begin (texi-doc-string "guile" "<=")
974@deffn {Scheme Procedure} <=
975@deffnx {C Function} scm_leq_p (x, y)
976Return @code{#t} if the list of parameters is monotonically
977non-decreasing.
978@end deffn
979
980@c begin (texi-doc-string "guile" ">=")
981@deffn {Scheme Procedure} >=
982@deffnx {C Function} scm_geq_p (x, y)
983Return @code{#t} if the list of parameters is monotonically
984non-increasing.
985@end deffn
986
987@c begin (texi-doc-string "guile" "zero?")
988@deffn {Scheme Procedure} zero? z
989@deffnx {C Function} scm_zero_p (z)
990Return @code{#t} if @var{z} is an exact or inexact number equal to
991zero.
992@end deffn
993
994@c begin (texi-doc-string "guile" "positive?")
995@deffn {Scheme Procedure} positive? x
996@deffnx {C Function} scm_positive_p (x)
997Return @code{#t} if @var{x} is an exact or inexact number greater than
998zero.
999@end deffn
1000
1001@c begin (texi-doc-string "guile" "negative?")
1002@deffn {Scheme Procedure} negative? x
1003@deffnx {C Function} scm_negative_p (x)
1004Return @code{#t} if @var{x} is an exact or inexact number less than
1005zero.
1006@end deffn
1007
1008
1009@node Conversion
1010@subsubsection Converting Numbers To and From Strings
1011@rnindex number->string
1012@rnindex string->number
1013
b89c4943
LC
1014The following procedures read and write numbers according to their
1015external representation as defined by R5RS (@pxref{Lexical structure,
1016R5RS Lexical Structure,, r5rs, The Revised^5 Report on the Algorithmic
a2f00b9b 1017Language Scheme}). @xref{Number Input and Output, the @code{(ice-9
b89c4943
LC
1018i18n)} module}, for locale-dependent number parsing.
1019
07d83abe
MV
1020@deffn {Scheme Procedure} number->string n [radix]
1021@deffnx {C Function} scm_number_to_string (n, radix)
1022Return a string holding the external representation of the
1023number @var{n} in the given @var{radix}. If @var{n} is
1024inexact, a radix of 10 will be used.
1025@end deffn
1026
1027@deffn {Scheme Procedure} string->number string [radix]
1028@deffnx {C Function} scm_string_to_number (string, radix)
1029Return a number of the maximally precise representation
1030expressed by the given @var{string}. @var{radix} must be an
1031exact integer, either 2, 8, 10, or 16. If supplied, @var{radix}
1032is a default radix that may be overridden by an explicit radix
1033prefix in @var{string} (e.g. "#o177"). If @var{radix} is not
1034supplied, then the default radix is 10. If string is not a
1035syntactically valid notation for a number, then
1036@code{string->number} returns @code{#f}.
1037@end deffn
1038
1b09b607
KR
1039@deftypefn {C Function} SCM scm_c_locale_stringn_to_number (const char *string, size_t len, unsigned radix)
1040As per @code{string->number} above, but taking a C string, as pointer
1041and length. The string characters should be in the current locale
1042encoding (@code{locale} in the name refers only to that, there's no
1043locale-dependent parsing).
1044@end deftypefn
1045
07d83abe
MV
1046
1047@node Complex
1048@subsubsection Complex Number Operations
1049@rnindex make-rectangular
1050@rnindex make-polar
1051@rnindex real-part
1052@rnindex imag-part
1053@rnindex magnitude
1054@rnindex angle
1055
3323ec06
NJ
1056@deffn {Scheme Procedure} make-rectangular real_part imaginary_part
1057@deffnx {C Function} scm_make_rectangular (real_part, imaginary_part)
1058Return a complex number constructed of the given @var{real-part} and @var{imaginary-part} parts.
07d83abe
MV
1059@end deffn
1060
1061@deffn {Scheme Procedure} make-polar x y
1062@deffnx {C Function} scm_make_polar (x, y)
34942993 1063@cindex polar form
07d83abe
MV
1064Return the complex number @var{x} * e^(i * @var{y}).
1065@end deffn
1066
1067@c begin (texi-doc-string "guile" "real-part")
1068@deffn {Scheme Procedure} real-part z
1069@deffnx {C Function} scm_real_part (z)
1070Return the real part of the number @var{z}.
1071@end deffn
1072
1073@c begin (texi-doc-string "guile" "imag-part")
1074@deffn {Scheme Procedure} imag-part z
1075@deffnx {C Function} scm_imag_part (z)
1076Return the imaginary part of the number @var{z}.
1077@end deffn
1078
1079@c begin (texi-doc-string "guile" "magnitude")
1080@deffn {Scheme Procedure} magnitude z
1081@deffnx {C Function} scm_magnitude (z)
1082Return the magnitude of the number @var{z}. This is the same as
1083@code{abs} for real arguments, but also allows complex numbers.
1084@end deffn
1085
1086@c begin (texi-doc-string "guile" "angle")
1087@deffn {Scheme Procedure} angle z
1088@deffnx {C Function} scm_angle (z)
1089Return the angle of the complex number @var{z}.
1090@end deffn
1091
5615f696
MV
1092@deftypefn {C Function} SCM scm_c_make_rectangular (double re, double im)
1093@deftypefnx {C Function} SCM scm_c_make_polar (double x, double y)
1094Like @code{scm_make_rectangular} or @code{scm_make_polar},
1095respectively, but these functions take @code{double}s as their
1096arguments.
1097@end deftypefn
1098
1099@deftypefn {C Function} double scm_c_real_part (z)
1100@deftypefnx {C Function} double scm_c_imag_part (z)
1101Returns the real or imaginary part of @var{z} as a @code{double}.
1102@end deftypefn
1103
1104@deftypefn {C Function} double scm_c_magnitude (z)
1105@deftypefnx {C Function} double scm_c_angle (z)
1106Returns the magnitude or angle of @var{z} as a @code{double}.
1107@end deftypefn
1108
07d83abe
MV
1109
1110@node Arithmetic
1111@subsubsection Arithmetic Functions
1112@rnindex max
1113@rnindex min
1114@rnindex +
1115@rnindex *
1116@rnindex -
1117@rnindex /
b1f57ea4
LC
1118@findex 1+
1119@findex 1-
07d83abe
MV
1120@rnindex abs
1121@rnindex floor
1122@rnindex ceiling
1123@rnindex truncate
1124@rnindex round
1125
1126The C arithmetic functions below always takes two arguments, while the
1127Scheme functions can take an arbitrary number. When you need to
1128invoke them with just one argument, for example to compute the
1129equivalent od @code{(- x)}, pass @code{SCM_UNDEFINED} as the second
1130one: @code{scm_difference (x, SCM_UNDEFINED)}.
1131
1132@c begin (texi-doc-string "guile" "+")
1133@deffn {Scheme Procedure} + z1 @dots{}
1134@deffnx {C Function} scm_sum (z1, z2)
1135Return the sum of all parameter values. Return 0 if called without any
1136parameters.
1137@end deffn
1138
1139@c begin (texi-doc-string "guile" "-")
1140@deffn {Scheme Procedure} - z1 z2 @dots{}
1141@deffnx {C Function} scm_difference (z1, z2)
1142If called with one argument @var{z1}, -@var{z1} is returned. Otherwise
1143the sum of all but the first argument are subtracted from the first
1144argument.
1145@end deffn
1146
1147@c begin (texi-doc-string "guile" "*")
1148@deffn {Scheme Procedure} * z1 @dots{}
1149@deffnx {C Function} scm_product (z1, z2)
1150Return the product of all arguments. If called without arguments, 1 is
1151returned.
1152@end deffn
1153
1154@c begin (texi-doc-string "guile" "/")
1155@deffn {Scheme Procedure} / z1 z2 @dots{}
1156@deffnx {C Function} scm_divide (z1, z2)
1157Divide the first argument by the product of the remaining arguments. If
1158called with one argument @var{z1}, 1/@var{z1} is returned.
1159@end deffn
1160
b1f57ea4
LC
1161@deffn {Scheme Procedure} 1+ z
1162@deffnx {C Function} scm_oneplus (z)
1163Return @math{@var{z} + 1}.
1164@end deffn
1165
1166@deffn {Scheme Procedure} 1- z
1167@deffnx {C function} scm_oneminus (z)
1168Return @math{@var{z} - 1}.
1169@end deffn
1170
07d83abe
MV
1171@c begin (texi-doc-string "guile" "abs")
1172@deffn {Scheme Procedure} abs x
1173@deffnx {C Function} scm_abs (x)
1174Return the absolute value of @var{x}.
1175
1176@var{x} must be a number with zero imaginary part. To calculate the
1177magnitude of a complex number, use @code{magnitude} instead.
1178@end deffn
1179
1180@c begin (texi-doc-string "guile" "max")
1181@deffn {Scheme Procedure} max x1 x2 @dots{}
1182@deffnx {C Function} scm_max (x1, x2)
1183Return the maximum of all parameter values.
1184@end deffn
1185
1186@c begin (texi-doc-string "guile" "min")
1187@deffn {Scheme Procedure} min x1 x2 @dots{}
1188@deffnx {C Function} scm_min (x1, x2)
1189Return the minimum of all parameter values.
1190@end deffn
1191
1192@c begin (texi-doc-string "guile" "truncate")
fd8a1df5 1193@deffn {Scheme Procedure} truncate x
07d83abe
MV
1194@deffnx {C Function} scm_truncate_number (x)
1195Round the inexact number @var{x} towards zero.
1196@end deffn
1197
1198@c begin (texi-doc-string "guile" "round")
1199@deffn {Scheme Procedure} round x
1200@deffnx {C Function} scm_round_number (x)
1201Round the inexact number @var{x} to the nearest integer. When exactly
1202halfway between two integers, round to the even one.
1203@end deffn
1204
1205@c begin (texi-doc-string "guile" "floor")
1206@deffn {Scheme Procedure} floor x
1207@deffnx {C Function} scm_floor (x)
1208Round the number @var{x} towards minus infinity.
1209@end deffn
1210
1211@c begin (texi-doc-string "guile" "ceiling")
1212@deffn {Scheme Procedure} ceiling x
1213@deffnx {C Function} scm_ceiling (x)
1214Round the number @var{x} towards infinity.
1215@end deffn
1216
35da08ee
MV
1217@deftypefn {C Function} double scm_c_truncate (double x)
1218@deftypefnx {C Function} double scm_c_round (double x)
1219Like @code{scm_truncate_number} or @code{scm_round_number},
1220respectively, but these functions take and return @code{double}
1221values.
1222@end deftypefn
07d83abe
MV
1223
1224@node Scientific
1225@subsubsection Scientific Functions
1226
1227The following procedures accept any kind of number as arguments,
1228including complex numbers.
1229
1230@rnindex sqrt
1231@c begin (texi-doc-string "guile" "sqrt")
1232@deffn {Scheme Procedure} sqrt z
40296bab
KR
1233Return the square root of @var{z}. Of the two possible roots
1234(positive and negative), the one with the a positive real part is
1235returned, or if that's zero then a positive imaginary part. Thus,
1236
1237@example
1238(sqrt 9.0) @result{} 3.0
1239(sqrt -9.0) @result{} 0.0+3.0i
1240(sqrt 1.0+1.0i) @result{} 1.09868411346781+0.455089860562227i
1241(sqrt -1.0-1.0i) @result{} 0.455089860562227-1.09868411346781i
1242@end example
07d83abe
MV
1243@end deffn
1244
1245@rnindex expt
1246@c begin (texi-doc-string "guile" "expt")
1247@deffn {Scheme Procedure} expt z1 z2
1248Return @var{z1} raised to the power of @var{z2}.
1249@end deffn
1250
1251@rnindex sin
1252@c begin (texi-doc-string "guile" "sin")
1253@deffn {Scheme Procedure} sin z
1254Return the sine of @var{z}.
1255@end deffn
1256
1257@rnindex cos
1258@c begin (texi-doc-string "guile" "cos")
1259@deffn {Scheme Procedure} cos z
1260Return the cosine of @var{z}.
1261@end deffn
1262
1263@rnindex tan
1264@c begin (texi-doc-string "guile" "tan")
1265@deffn {Scheme Procedure} tan z
1266Return the tangent of @var{z}.
1267@end deffn
1268
1269@rnindex asin
1270@c begin (texi-doc-string "guile" "asin")
1271@deffn {Scheme Procedure} asin z
1272Return the arcsine of @var{z}.
1273@end deffn
1274
1275@rnindex acos
1276@c begin (texi-doc-string "guile" "acos")
1277@deffn {Scheme Procedure} acos z
1278Return the arccosine of @var{z}.
1279@end deffn
1280
1281@rnindex atan
1282@c begin (texi-doc-string "guile" "atan")
1283@deffn {Scheme Procedure} atan z
1284@deffnx {Scheme Procedure} atan y x
1285Return the arctangent of @var{z}, or of @math{@var{y}/@var{x}}.
1286@end deffn
1287
1288@rnindex exp
1289@c begin (texi-doc-string "guile" "exp")
1290@deffn {Scheme Procedure} exp z
1291Return e to the power of @var{z}, where e is the base of natural
1292logarithms (2.71828@dots{}).
1293@end deffn
1294
1295@rnindex log
1296@c begin (texi-doc-string "guile" "log")
1297@deffn {Scheme Procedure} log z
1298Return the natural logarithm of @var{z}.
1299@end deffn
1300
1301@c begin (texi-doc-string "guile" "log10")
1302@deffn {Scheme Procedure} log10 z
1303Return the base 10 logarithm of @var{z}.
1304@end deffn
1305
1306@c begin (texi-doc-string "guile" "sinh")
1307@deffn {Scheme Procedure} sinh z
1308Return the hyperbolic sine of @var{z}.
1309@end deffn
1310
1311@c begin (texi-doc-string "guile" "cosh")
1312@deffn {Scheme Procedure} cosh z
1313Return the hyperbolic cosine of @var{z}.
1314@end deffn
1315
1316@c begin (texi-doc-string "guile" "tanh")
1317@deffn {Scheme Procedure} tanh z
1318Return the hyperbolic tangent of @var{z}.
1319@end deffn
1320
1321@c begin (texi-doc-string "guile" "asinh")
1322@deffn {Scheme Procedure} asinh z
1323Return the hyperbolic arcsine of @var{z}.
1324@end deffn
1325
1326@c begin (texi-doc-string "guile" "acosh")
1327@deffn {Scheme Procedure} acosh z
1328Return the hyperbolic arccosine of @var{z}.
1329@end deffn
1330
1331@c begin (texi-doc-string "guile" "atanh")
1332@deffn {Scheme Procedure} atanh z
1333Return the hyperbolic arctangent of @var{z}.
1334@end deffn
1335
1336
07d83abe
MV
1337@node Bitwise Operations
1338@subsubsection Bitwise Operations
1339
1340For the following bitwise functions, negative numbers are treated as
1341infinite precision twos-complements. For instance @math{-6} is bits
1342@math{@dots{}111010}, with infinitely many ones on the left. It can
1343be seen that adding 6 (binary 110) to such a bit pattern gives all
1344zeros.
1345
1346@deffn {Scheme Procedure} logand n1 n2 @dots{}
1347@deffnx {C Function} scm_logand (n1, n2)
1348Return the bitwise @sc{and} of the integer arguments.
1349
1350@lisp
1351(logand) @result{} -1
1352(logand 7) @result{} 7
1353(logand #b111 #b011 #b001) @result{} 1
1354@end lisp
1355@end deffn
1356
1357@deffn {Scheme Procedure} logior n1 n2 @dots{}
1358@deffnx {C Function} scm_logior (n1, n2)
1359Return the bitwise @sc{or} of the integer arguments.
1360
1361@lisp
1362(logior) @result{} 0
1363(logior 7) @result{} 7
1364(logior #b000 #b001 #b011) @result{} 3
1365@end lisp
1366@end deffn
1367
1368@deffn {Scheme Procedure} logxor n1 n2 @dots{}
1369@deffnx {C Function} scm_loxor (n1, n2)
1370Return the bitwise @sc{xor} of the integer arguments. A bit is
1371set in the result if it is set in an odd number of arguments.
1372
1373@lisp
1374(logxor) @result{} 0
1375(logxor 7) @result{} 7
1376(logxor #b000 #b001 #b011) @result{} 2
1377(logxor #b000 #b001 #b011 #b011) @result{} 1
1378@end lisp
1379@end deffn
1380
1381@deffn {Scheme Procedure} lognot n
1382@deffnx {C Function} scm_lognot (n)
1383Return the integer which is the ones-complement of the integer
1384argument, ie.@: each 0 bit is changed to 1 and each 1 bit to 0.
1385
1386@lisp
1387(number->string (lognot #b10000000) 2)
1388 @result{} "-10000001"
1389(number->string (lognot #b0) 2)
1390 @result{} "-1"
1391@end lisp
1392@end deffn
1393
1394@deffn {Scheme Procedure} logtest j k
1395@deffnx {C Function} scm_logtest (j, k)
a46648ac
KR
1396Test whether @var{j} and @var{k} have any 1 bits in common. This is
1397equivalent to @code{(not (zero? (logand j k)))}, but without actually
1398calculating the @code{logand}, just testing for non-zero.
07d83abe 1399
a46648ac 1400@lisp
07d83abe
MV
1401(logtest #b0100 #b1011) @result{} #f
1402(logtest #b0100 #b0111) @result{} #t
1403@end lisp
1404@end deffn
1405
1406@deffn {Scheme Procedure} logbit? index j
1407@deffnx {C Function} scm_logbit_p (index, j)
a46648ac
KR
1408Test whether bit number @var{index} in @var{j} is set. @var{index}
1409starts from 0 for the least significant bit.
07d83abe 1410
a46648ac 1411@lisp
07d83abe
MV
1412(logbit? 0 #b1101) @result{} #t
1413(logbit? 1 #b1101) @result{} #f
1414(logbit? 2 #b1101) @result{} #t
1415(logbit? 3 #b1101) @result{} #t
1416(logbit? 4 #b1101) @result{} #f
1417@end lisp
1418@end deffn
1419
1420@deffn {Scheme Procedure} ash n cnt
1421@deffnx {C Function} scm_ash (n, cnt)
1422Return @var{n} shifted left by @var{cnt} bits, or shifted right if
1423@var{cnt} is negative. This is an ``arithmetic'' shift.
1424
1425This is effectively a multiplication by @m{2^{cnt}, 2^@var{cnt}}, and
1426when @var{cnt} is negative it's a division, rounded towards negative
1427infinity. (Note that this is not the same rounding as @code{quotient}
1428does.)
1429
1430With @var{n} viewed as an infinite precision twos complement,
1431@code{ash} means a left shift introducing zero bits, or a right shift
1432dropping bits.
1433
1434@lisp
1435(number->string (ash #b1 3) 2) @result{} "1000"
1436(number->string (ash #b1010 -1) 2) @result{} "101"
1437
1438;; -23 is bits ...11101001, -6 is bits ...111010
1439(ash -23 -2) @result{} -6
1440@end lisp
1441@end deffn
1442
1443@deffn {Scheme Procedure} logcount n
1444@deffnx {C Function} scm_logcount (n)
a46648ac 1445Return the number of bits in integer @var{n}. If @var{n} is
07d83abe
MV
1446positive, the 1-bits in its binary representation are counted.
1447If negative, the 0-bits in its two's-complement binary
a46648ac 1448representation are counted. If zero, 0 is returned.
07d83abe
MV
1449
1450@lisp
1451(logcount #b10101010)
1452 @result{} 4
1453(logcount 0)
1454 @result{} 0
1455(logcount -2)
1456 @result{} 1
1457@end lisp
1458@end deffn
1459
1460@deffn {Scheme Procedure} integer-length n
1461@deffnx {C Function} scm_integer_length (n)
1462Return the number of bits necessary to represent @var{n}.
1463
1464For positive @var{n} this is how many bits to the most significant one
1465bit. For negative @var{n} it's how many bits to the most significant
1466zero bit in twos complement form.
1467
1468@lisp
1469(integer-length #b10101010) @result{} 8
1470(integer-length #b1111) @result{} 4
1471(integer-length 0) @result{} 0
1472(integer-length -1) @result{} 0
1473(integer-length -256) @result{} 8
1474(integer-length -257) @result{} 9
1475@end lisp
1476@end deffn
1477
1478@deffn {Scheme Procedure} integer-expt n k
1479@deffnx {C Function} scm_integer_expt (n, k)
a46648ac
KR
1480Return @var{n} raised to the power @var{k}. @var{k} must be an exact
1481integer, @var{n} can be any number.
1482
1483Negative @var{k} is supported, and results in @m{1/n^|k|, 1/n^abs(k)}
1484in the usual way. @math{@var{n}^0} is 1, as usual, and that includes
1485@math{0^0} is 1.
07d83abe
MV
1486
1487@lisp
a46648ac
KR
1488(integer-expt 2 5) @result{} 32
1489(integer-expt -3 3) @result{} -27
1490(integer-expt 5 -3) @result{} 1/125
1491(integer-expt 0 0) @result{} 1
07d83abe
MV
1492@end lisp
1493@end deffn
1494
1495@deffn {Scheme Procedure} bit-extract n start end
1496@deffnx {C Function} scm_bit_extract (n, start, end)
1497Return the integer composed of the @var{start} (inclusive)
1498through @var{end} (exclusive) bits of @var{n}. The
1499@var{start}th bit becomes the 0-th bit in the result.
1500
1501@lisp
1502(number->string (bit-extract #b1101101010 0 4) 2)
1503 @result{} "1010"
1504(number->string (bit-extract #b1101101010 4 9) 2)
1505 @result{} "10110"
1506@end lisp
1507@end deffn
1508
1509
1510@node Random
1511@subsubsection Random Number Generation
1512
1513Pseudo-random numbers are generated from a random state object, which
77b13912 1514can be created with @code{seed->random-state} or
1d454874 1515@code{datum->random-state}. An external representation (i.e. one
77b13912
AR
1516which can written with @code{write} and read with @code{read}) of a
1517random state object can be obtained via
1d454874 1518@code{random-state->datum}. The @var{state} parameter to the
77b13912
AR
1519various functions below is optional, it defaults to the state object
1520in the @code{*random-state*} variable.
07d83abe
MV
1521
1522@deffn {Scheme Procedure} copy-random-state [state]
1523@deffnx {C Function} scm_copy_random_state (state)
1524Return a copy of the random state @var{state}.
1525@end deffn
1526
1527@deffn {Scheme Procedure} random n [state]
1528@deffnx {C Function} scm_random (n, state)
1529Return a number in [0, @var{n}).
1530
1531Accepts a positive integer or real n and returns a
1532number of the same type between zero (inclusive) and
1533@var{n} (exclusive). The values returned have a uniform
1534distribution.
1535@end deffn
1536
1537@deffn {Scheme Procedure} random:exp [state]
1538@deffnx {C Function} scm_random_exp (state)
1539Return an inexact real in an exponential distribution with mean
15401. For an exponential distribution with mean @var{u} use @code{(*
1541@var{u} (random:exp))}.
1542@end deffn
1543
1544@deffn {Scheme Procedure} random:hollow-sphere! vect [state]
1545@deffnx {C Function} scm_random_hollow_sphere_x (vect, state)
1546Fills @var{vect} with inexact real random numbers the sum of whose
1547squares is equal to 1.0. Thinking of @var{vect} as coordinates in
1548space of dimension @var{n} @math{=} @code{(vector-length @var{vect})},
1549the coordinates are uniformly distributed over the surface of the unit
1550n-sphere.
1551@end deffn
1552
1553@deffn {Scheme Procedure} random:normal [state]
1554@deffnx {C Function} scm_random_normal (state)
1555Return an inexact real in a normal distribution. The distribution
1556used has mean 0 and standard deviation 1. For a normal distribution
1557with mean @var{m} and standard deviation @var{d} use @code{(+ @var{m}
1558(* @var{d} (random:normal)))}.
1559@end deffn
1560
1561@deffn {Scheme Procedure} random:normal-vector! vect [state]
1562@deffnx {C Function} scm_random_normal_vector_x (vect, state)
1563Fills @var{vect} with inexact real random numbers that are
1564independent and standard normally distributed
1565(i.e., with mean 0 and variance 1).
1566@end deffn
1567
1568@deffn {Scheme Procedure} random:solid-sphere! vect [state]
1569@deffnx {C Function} scm_random_solid_sphere_x (vect, state)
1570Fills @var{vect} with inexact real random numbers the sum of whose
1571squares is less than 1.0. Thinking of @var{vect} as coordinates in
1572space of dimension @var{n} @math{=} @code{(vector-length @var{vect})},
1573the coordinates are uniformly distributed within the unit
4497bd2f 1574@var{n}-sphere.
07d83abe
MV
1575@c FIXME: What does this mean, particularly the n-sphere part?
1576@end deffn
1577
1578@deffn {Scheme Procedure} random:uniform [state]
1579@deffnx {C Function} scm_random_uniform (state)
1580Return a uniformly distributed inexact real random number in
1581[0,1).
1582@end deffn
1583
1584@deffn {Scheme Procedure} seed->random-state seed
1585@deffnx {C Function} scm_seed_to_random_state (seed)
1586Return a new random state using @var{seed}.
1587@end deffn
1588
1d454874
AW
1589@deffn {Scheme Procedure} datum->random-state datum
1590@deffnx {C Function} scm_datum_to_random_state (datum)
1591Return a new random state from @var{datum}, which should have been
1592obtained by @code{random-state->datum}.
77b13912
AR
1593@end deffn
1594
1d454874
AW
1595@deffn {Scheme Procedure} random-state->datum state
1596@deffnx {C Function} scm_random_state_to_datum (state)
1597Return a datum representation of @var{state} that may be written out and
1598read back with the Scheme reader.
77b13912
AR
1599@end deffn
1600
07d83abe
MV
1601@defvar *random-state*
1602The global random state used by the above functions when the
1603@var{state} parameter is not given.
1604@end defvar
1605
8c726cf0
NJ
1606Note that the initial value of @code{*random-state*} is the same every
1607time Guile starts up. Therefore, if you don't pass a @var{state}
1608parameter to the above procedures, and you don't set
1609@code{*random-state*} to @code{(seed->random-state your-seed)}, where
1610@code{your-seed} is something that @emph{isn't} the same every time,
1611you'll get the same sequence of ``random'' numbers on every run.
1612
1613For example, unless the relevant source code has changed, @code{(map
1614random (cdr (iota 30)))}, if the first use of random numbers since
1615Guile started up, will always give:
1616
1617@lisp
1618(map random (cdr (iota 19)))
1619@result{}
1620(0 1 1 2 2 2 1 2 6 7 10 0 5 3 12 5 5 12)
1621@end lisp
1622
1623To use the time of day as the random seed, you can use code like this:
1624
1625@lisp
1626(let ((time (gettimeofday)))
1627 (set! *random-state*
1628 (seed->random-state (+ (car time)
1629 (cdr time)))))
1630@end lisp
1631
1632@noindent
1633And then (depending on the time of day, of course):
1634
1635@lisp
1636(map random (cdr (iota 19)))
1637@result{}
1638(0 0 1 0 2 4 5 4 5 5 9 3 10 1 8 3 14 17)
1639@end lisp
1640
1641For security applications, such as password generation, you should use
1642more bits of seed. Otherwise an open source password generator could
1643be attacked by guessing the seed@dots{} but that's a subject for
1644another manual.
1645
07d83abe
MV
1646
1647@node Characters
1648@subsection Characters
1649@tpindex Characters
1650
3f12aedb
MG
1651In Scheme, there is a data type to describe a single character.
1652
1653Defining what exactly a character @emph{is} can be more complicated
bb15a36c
MG
1654than it seems. Guile follows the advice of R6RS and uses The Unicode
1655Standard to help define what a character is. So, for Guile, a
1656character is anything in the Unicode Character Database.
1657
1658@cindex code point
1659@cindex Unicode code point
1660
1661The Unicode Character Database is basically a table of characters
1662indexed using integers called 'code points'. Valid code points are in
1663the ranges 0 to @code{#xD7FF} inclusive or @code{#xE000} to
1664@code{#x10FFFF} inclusive, which is about 1.1 million code points.
1665
1666@cindex designated code point
1667@cindex code point, designated
1668
1669Any code point that has been assigned to a character or that has
1670otherwise been given a meaning by Unicode is called a 'designated code
1671point'. Most of the designated code points, about 200,000 of them,
1672indicate characters, accents or other combining marks that modify
1673other characters, symbols, whitespace, and control characters. Some
1674are not characters but indicators that suggest how to format or
1675display neighboring characters.
1676
1677@cindex reserved code point
1678@cindex code point, reserved
1679
1680If a code point is not a designated code point -- if it has not been
1681assigned to a character by The Unicode Standard -- it is a 'reserved
1682code point', meaning that they are reserved for future use. Most of
1683the code points, about 800,000, are 'reserved code points'.
1684
1685By convention, a Unicode code point is written as
1686``U+XXXX'' where ``XXXX'' is a hexadecimal number. Please note that
1687this convenient notation is not valid code. Guile does not interpret
1688``U+XXXX'' as a character.
3f12aedb 1689
050ab45f
MV
1690In Scheme, a character literal is written as @code{#\@var{name}} where
1691@var{name} is the name of the character that you want. Printable
1692characters have their usual single character name; for example,
bb15a36c
MG
1693@code{#\a} is a lower case @code{a}.
1694
1695Some of the code points are 'combining characters' that are not meant
1696to be printed by themselves but are instead meant to modify the
1697appearance of the previous character. For combining characters, an
1698alternate form of the character literal is @code{#\} followed by
1699U+25CC (a small, dotted circle), followed by the combining character.
1700This allows the combining character to be drawn on the circle, not on
1701the backslash of @code{#\}.
1702
1703Many of the non-printing characters, such as whitespace characters and
1704control characters, also have names.
07d83abe 1705
15b6a6b2
MG
1706The most commonly used non-printing characters have long character
1707names, described in the table below.
1708
1709@multitable {@code{#\backspace}} {Preferred}
1710@item Character Name @tab Codepoint
1711@item @code{#\nul} @tab U+0000
1712@item @code{#\alarm} @tab u+0007
1713@item @code{#\backspace} @tab U+0008
1714@item @code{#\tab} @tab U+0009
1715@item @code{#\linefeed} @tab U+000A
1716@item @code{#\newline} @tab U+000A
1717@item @code{#\vtab} @tab U+000B
1718@item @code{#\page} @tab U+000C
1719@item @code{#\return} @tab U+000D
1720@item @code{#\esc} @tab U+001B
1721@item @code{#\space} @tab U+0020
1722@item @code{#\delete} @tab U+007F
1723@end multitable
1724
1725There are also short names for all of the ``C0 control characters''
1726(those with code points below 32). The following table lists the short
1727name for each character.
07d83abe
MV
1728
1729@multitable @columnfractions .25 .25 .25 .25
1730@item 0 = @code{#\nul}
1731 @tab 1 = @code{#\soh}
1732 @tab 2 = @code{#\stx}
1733 @tab 3 = @code{#\etx}
1734@item 4 = @code{#\eot}
1735 @tab 5 = @code{#\enq}
1736 @tab 6 = @code{#\ack}
1737 @tab 7 = @code{#\bel}
1738@item 8 = @code{#\bs}
1739 @tab 9 = @code{#\ht}
6ea30487 1740 @tab 10 = @code{#\lf}
07d83abe 1741 @tab 11 = @code{#\vt}
3f12aedb 1742@item 12 = @code{#\ff}
07d83abe
MV
1743 @tab 13 = @code{#\cr}
1744 @tab 14 = @code{#\so}
1745 @tab 15 = @code{#\si}
1746@item 16 = @code{#\dle}
1747 @tab 17 = @code{#\dc1}
1748 @tab 18 = @code{#\dc2}
1749 @tab 19 = @code{#\dc3}
1750@item 20 = @code{#\dc4}
1751 @tab 21 = @code{#\nak}
1752 @tab 22 = @code{#\syn}
1753 @tab 23 = @code{#\etb}
1754@item 24 = @code{#\can}
1755 @tab 25 = @code{#\em}
1756 @tab 26 = @code{#\sub}
1757 @tab 27 = @code{#\esc}
1758@item 28 = @code{#\fs}
1759 @tab 29 = @code{#\gs}
1760 @tab 30 = @code{#\rs}
1761 @tab 31 = @code{#\us}
1762@item 32 = @code{#\sp}
1763@end multitable
1764
15b6a6b2
MG
1765The short name for the ``delete'' character (code point U+007F) is
1766@code{#\del}.
07d83abe 1767
15b6a6b2
MG
1768There are also a few alternative names left over for compatibility with
1769previous versions of Guile.
07d83abe 1770
3f12aedb
MG
1771@multitable {@code{#\backspace}} {Preferred}
1772@item Alternate @tab Standard
3f12aedb 1773@item @code{#\nl} @tab @code{#\newline}
15b6a6b2 1774@item @code{#\np} @tab @code{#\page}
07d83abe
MV
1775@item @code{#\null} @tab @code{#\nul}
1776@end multitable
1777
bb15a36c
MG
1778Characters may also be written using their code point values. They can
1779be written with as an octal number, such as @code{#\10} for
1780@code{#\bs} or @code{#\177} for @code{#\del}.
3f12aedb 1781
0f3a70cf
MG
1782If one prefers hex to octal, there is an additional syntax for character
1783escapes: @code{#\xHHHH} -- the letter 'x' followed by a hexadecimal
1784number of one to eight digits.
6ea30487 1785
07d83abe
MV
1786@rnindex char?
1787@deffn {Scheme Procedure} char? x
1788@deffnx {C Function} scm_char_p (x)
1789Return @code{#t} iff @var{x} is a character, else @code{#f}.
1790@end deffn
1791
bb15a36c 1792Fundamentally, the character comparison operations below are
3f12aedb
MG
1793numeric comparisons of the character's code points.
1794
07d83abe
MV
1795@rnindex char=?
1796@deffn {Scheme Procedure} char=? x y
3f12aedb
MG
1797Return @code{#t} iff code point of @var{x} is equal to the code point
1798of @var{y}, else @code{#f}.
07d83abe
MV
1799@end deffn
1800
1801@rnindex char<?
1802@deffn {Scheme Procedure} char<? x y
3f12aedb
MG
1803Return @code{#t} iff the code point of @var{x} is less than the code
1804point of @var{y}, else @code{#f}.
07d83abe
MV
1805@end deffn
1806
1807@rnindex char<=?
1808@deffn {Scheme Procedure} char<=? x y
3f12aedb
MG
1809Return @code{#t} iff the code point of @var{x} is less than or equal
1810to the code point of @var{y}, else @code{#f}.
07d83abe
MV
1811@end deffn
1812
1813@rnindex char>?
1814@deffn {Scheme Procedure} char>? x y
3f12aedb
MG
1815Return @code{#t} iff the code point of @var{x} is greater than the
1816code point of @var{y}, else @code{#f}.
07d83abe
MV
1817@end deffn
1818
1819@rnindex char>=?
1820@deffn {Scheme Procedure} char>=? x y
3f12aedb
MG
1821Return @code{#t} iff the code point of @var{x} is greater than or
1822equal to the code point of @var{y}, else @code{#f}.
07d83abe
MV
1823@end deffn
1824
bb15a36c
MG
1825@cindex case folding
1826
1827Case-insensitive character comparisons use @emph{Unicode case
1828folding}. In case folding comparisons, if a character is lowercase
1829and has an uppercase form that can be expressed as a single character,
1830it is converted to uppercase before comparison. All other characters
1831undergo no conversion before the comparison occurs. This includes the
1832German sharp S (Eszett) which is not uppercased before conversion
1833because its uppercase form has two characters. Unicode case folding
1834is language independent: it uses rules that are generally true, but,
1835it cannot cover all cases for all languages.
3f12aedb 1836
07d83abe
MV
1837@rnindex char-ci=?
1838@deffn {Scheme Procedure} char-ci=? x y
3f12aedb
MG
1839Return @code{#t} iff the case-folded code point of @var{x} is the same
1840as the case-folded code point of @var{y}, else @code{#f}.
07d83abe
MV
1841@end deffn
1842
1843@rnindex char-ci<?
1844@deffn {Scheme Procedure} char-ci<? x y
3f12aedb
MG
1845Return @code{#t} iff the case-folded code point of @var{x} is less
1846than the case-folded code point of @var{y}, else @code{#f}.
07d83abe
MV
1847@end deffn
1848
1849@rnindex char-ci<=?
1850@deffn {Scheme Procedure} char-ci<=? x y
3f12aedb
MG
1851Return @code{#t} iff the case-folded code point of @var{x} is less
1852than or equal to the case-folded code point of @var{y}, else
1853@code{#f}.
07d83abe
MV
1854@end deffn
1855
1856@rnindex char-ci>?
1857@deffn {Scheme Procedure} char-ci>? x y
3f12aedb
MG
1858Return @code{#t} iff the case-folded code point of @var{x} is greater
1859than the case-folded code point of @var{y}, else @code{#f}.
07d83abe
MV
1860@end deffn
1861
1862@rnindex char-ci>=?
1863@deffn {Scheme Procedure} char-ci>=? x y
3f12aedb
MG
1864Return @code{#t} iff the case-folded code point of @var{x} is greater
1865than or equal to the case-folded code point of @var{y}, else
1866@code{#f}.
07d83abe
MV
1867@end deffn
1868
1869@rnindex char-alphabetic?
1870@deffn {Scheme Procedure} char-alphabetic? chr
1871@deffnx {C Function} scm_char_alphabetic_p (chr)
1872Return @code{#t} iff @var{chr} is alphabetic, else @code{#f}.
07d83abe
MV
1873@end deffn
1874
1875@rnindex char-numeric?
1876@deffn {Scheme Procedure} char-numeric? chr
1877@deffnx {C Function} scm_char_numeric_p (chr)
1878Return @code{#t} iff @var{chr} is numeric, else @code{#f}.
07d83abe
MV
1879@end deffn
1880
1881@rnindex char-whitespace?
1882@deffn {Scheme Procedure} char-whitespace? chr
1883@deffnx {C Function} scm_char_whitespace_p (chr)
1884Return @code{#t} iff @var{chr} is whitespace, else @code{#f}.
07d83abe
MV
1885@end deffn
1886
1887@rnindex char-upper-case?
1888@deffn {Scheme Procedure} char-upper-case? chr
1889@deffnx {C Function} scm_char_upper_case_p (chr)
1890Return @code{#t} iff @var{chr} is uppercase, else @code{#f}.
07d83abe
MV
1891@end deffn
1892
1893@rnindex char-lower-case?
1894@deffn {Scheme Procedure} char-lower-case? chr
1895@deffnx {C Function} scm_char_lower_case_p (chr)
1896Return @code{#t} iff @var{chr} is lowercase, else @code{#f}.
07d83abe
MV
1897@end deffn
1898
1899@deffn {Scheme Procedure} char-is-both? chr
1900@deffnx {C Function} scm_char_is_both_p (chr)
1901Return @code{#t} iff @var{chr} is either uppercase or lowercase, else
5676b4fa 1902@code{#f}.
07d83abe
MV
1903@end deffn
1904
0ca3a342
JG
1905@deffn {Scheme Procedure} char-general-category chr
1906@deffnx {C Function} scm_char_general_category (chr)
1907Return a symbol giving the two-letter name of the Unicode general
1908category assigned to @var{chr} or @code{#f} if no named category is
1909assigned. The following table provides a list of category names along
1910with their meanings.
1911
1912@multitable @columnfractions .1 .4 .1 .4
1913@item Lu
1914 @tab Uppercase letter
1915 @tab Pf
1916 @tab Final quote punctuation
1917@item Ll
1918 @tab Lowercase letter
1919 @tab Po
1920 @tab Other punctuation
1921@item Lt
1922 @tab Titlecase letter
1923 @tab Sm
1924 @tab Math symbol
1925@item Lm
1926 @tab Modifier letter
1927 @tab Sc
1928 @tab Currency symbol
1929@item Lo
1930 @tab Other letter
1931 @tab Sk
1932 @tab Modifier symbol
1933@item Mn
1934 @tab Non-spacing mark
1935 @tab So
1936 @tab Other symbol
1937@item Mc
1938 @tab Combining spacing mark
1939 @tab Zs
1940 @tab Space separator
1941@item Me
1942 @tab Enclosing mark
1943 @tab Zl
1944 @tab Line separator
1945@item Nd
1946 @tab Decimal digit number
1947 @tab Zp
1948 @tab Paragraph separator
1949@item Nl
1950 @tab Letter number
1951 @tab Cc
1952 @tab Control
1953@item No
1954 @tab Other number
1955 @tab Cf
1956 @tab Format
1957@item Pc
1958 @tab Connector punctuation
1959 @tab Cs
1960 @tab Surrogate
1961@item Pd
1962 @tab Dash punctuation
1963 @tab Co
1964 @tab Private use
1965@item Ps
1966 @tab Open punctuation
1967 @tab Cn
1968 @tab Unassigned
1969@item Pe
1970 @tab Close punctuation
1971 @tab
1972 @tab
1973@item Pi
1974 @tab Initial quote punctuation
1975 @tab
1976 @tab
1977@end multitable
1978@end deffn
1979
07d83abe
MV
1980@rnindex char->integer
1981@deffn {Scheme Procedure} char->integer chr
1982@deffnx {C Function} scm_char_to_integer (chr)
3f12aedb 1983Return the code point of @var{chr}.
07d83abe
MV
1984@end deffn
1985
1986@rnindex integer->char
1987@deffn {Scheme Procedure} integer->char n
1988@deffnx {C Function} scm_integer_to_char (n)
3f12aedb
MG
1989Return the character that has code point @var{n}. The integer @var{n}
1990must be a valid code point. Valid code points are in the ranges 0 to
1991@code{#xD7FF} inclusive or @code{#xE000} to @code{#x10FFFF} inclusive.
07d83abe
MV
1992@end deffn
1993
1994@rnindex char-upcase
1995@deffn {Scheme Procedure} char-upcase chr
1996@deffnx {C Function} scm_char_upcase (chr)
1997Return the uppercase character version of @var{chr}.
1998@end deffn
1999
2000@rnindex char-downcase
2001@deffn {Scheme Procedure} char-downcase chr
2002@deffnx {C Function} scm_char_downcase (chr)
2003Return the lowercase character version of @var{chr}.
2004@end deffn
2005
820f33aa
JG
2006@rnindex char-titlecase
2007@deffn {Scheme Procedure} char-titlecase chr
2008@deffnx {C Function} scm_char_titlecase (chr)
2009Return the titlecase character version of @var{chr} if one exists;
2010otherwise return the uppercase version.
2011
2012For most characters these will be the same, but the Unicode Standard
2013includes certain digraph compatibility characters, such as @code{U+01F3}
2014``dz'', for which the uppercase and titlecase characters are different
2015(@code{U+01F1} ``DZ'' and @code{U+01F2} ``Dz'' in this case,
2016respectively).
2017@end deffn
2018
a1dcb961
MG
2019@tindex scm_t_wchar
2020@deftypefn {C Function} scm_t_wchar scm_c_upcase (scm_t_wchar @var{c})
2021@deftypefnx {C Function} scm_t_wchar scm_c_downcase (scm_t_wchar @var{c})
2022@deftypefnx {C Function} scm_t_wchar scm_c_titlecase (scm_t_wchar @var{c})
2023
2024These C functions take an integer representation of a Unicode
2025codepoint and return the codepoint corresponding to its uppercase,
2026lowercase, and titlecase forms respectively. The type
2027@code{scm_t_wchar} is a signed, 32-bit integer.
2028@end deftypefn
2029
050ab45f
MV
2030@node Character Sets
2031@subsection Character Sets
07d83abe 2032
050ab45f
MV
2033The features described in this section correspond directly to SRFI-14.
2034
2035The data type @dfn{charset} implements sets of characters
2036(@pxref{Characters}). Because the internal representation of
2037character sets is not visible to the user, a lot of procedures for
2038handling them are provided.
2039
2040Character sets can be created, extended, tested for the membership of a
2041characters and be compared to other character sets.
2042
050ab45f
MV
2043@menu
2044* Character Set Predicates/Comparison::
2045* Iterating Over Character Sets:: Enumerate charset elements.
2046* Creating Character Sets:: Making new charsets.
2047* Querying Character Sets:: Test charsets for membership etc.
2048* Character-Set Algebra:: Calculating new charsets.
2049* Standard Character Sets:: Variables containing predefined charsets.
2050@end menu
2051
2052@node Character Set Predicates/Comparison
2053@subsubsection Character Set Predicates/Comparison
2054
2055Use these procedures for testing whether an object is a character set,
2056or whether several character sets are equal or subsets of each other.
2057@code{char-set-hash} can be used for calculating a hash value, maybe for
2058usage in fast lookup procedures.
2059
2060@deffn {Scheme Procedure} char-set? obj
2061@deffnx {C Function} scm_char_set_p (obj)
2062Return @code{#t} if @var{obj} is a character set, @code{#f}
2063otherwise.
2064@end deffn
2065
2066@deffn {Scheme Procedure} char-set= . char_sets
2067@deffnx {C Function} scm_char_set_eq (char_sets)
2068Return @code{#t} if all given character sets are equal.
2069@end deffn
2070
2071@deffn {Scheme Procedure} char-set<= . char_sets
2072@deffnx {C Function} scm_char_set_leq (char_sets)
2073Return @code{#t} if every character set @var{cs}i is a subset
2074of character set @var{cs}i+1.
2075@end deffn
2076
2077@deffn {Scheme Procedure} char-set-hash cs [bound]
2078@deffnx {C Function} scm_char_set_hash (cs, bound)
2079Compute a hash value for the character set @var{cs}. If
2080@var{bound} is given and non-zero, it restricts the
2081returned value to the range 0 @dots{} @var{bound - 1}.
2082@end deffn
2083
2084@c ===================================================================
2085
2086@node Iterating Over Character Sets
2087@subsubsection Iterating Over Character Sets
2088
2089Character set cursors are a means for iterating over the members of a
2090character sets. After creating a character set cursor with
2091@code{char-set-cursor}, a cursor can be dereferenced with
2092@code{char-set-ref}, advanced to the next member with
2093@code{char-set-cursor-next}. Whether a cursor has passed past the last
2094element of the set can be checked with @code{end-of-char-set?}.
2095
2096Additionally, mapping and (un-)folding procedures for character sets are
2097provided.
2098
2099@deffn {Scheme Procedure} char-set-cursor cs
2100@deffnx {C Function} scm_char_set_cursor (cs)
2101Return a cursor into the character set @var{cs}.
2102@end deffn
2103
2104@deffn {Scheme Procedure} char-set-ref cs cursor
2105@deffnx {C Function} scm_char_set_ref (cs, cursor)
2106Return the character at the current cursor position
2107@var{cursor} in the character set @var{cs}. It is an error to
2108pass a cursor for which @code{end-of-char-set?} returns true.
2109@end deffn
2110
2111@deffn {Scheme Procedure} char-set-cursor-next cs cursor
2112@deffnx {C Function} scm_char_set_cursor_next (cs, cursor)
2113Advance the character set cursor @var{cursor} to the next
2114character in the character set @var{cs}. It is an error if the
2115cursor given satisfies @code{end-of-char-set?}.
2116@end deffn
2117
2118@deffn {Scheme Procedure} end-of-char-set? cursor
2119@deffnx {C Function} scm_end_of_char_set_p (cursor)
2120Return @code{#t} if @var{cursor} has reached the end of a
2121character set, @code{#f} otherwise.
2122@end deffn
2123
2124@deffn {Scheme Procedure} char-set-fold kons knil cs
2125@deffnx {C Function} scm_char_set_fold (kons, knil, cs)
2126Fold the procedure @var{kons} over the character set @var{cs},
2127initializing it with @var{knil}.
2128@end deffn
2129
2130@deffn {Scheme Procedure} char-set-unfold p f g seed [base_cs]
2131@deffnx {C Function} scm_char_set_unfold (p, f, g, seed, base_cs)
2132This is a fundamental constructor for character sets.
2133@itemize @bullet
2134@item @var{g} is used to generate a series of ``seed'' values
2135from the initial seed: @var{seed}, (@var{g} @var{seed}),
2136(@var{g}^2 @var{seed}), (@var{g}^3 @var{seed}), @dots{}
2137@item @var{p} tells us when to stop -- when it returns true
2138when applied to one of the seed values.
2139@item @var{f} maps each seed value to a character. These
2140characters are added to the base character set @var{base_cs} to
2141form the result; @var{base_cs} defaults to the empty set.
2142@end itemize
2143@end deffn
2144
2145@deffn {Scheme Procedure} char-set-unfold! p f g seed base_cs
2146@deffnx {C Function} scm_char_set_unfold_x (p, f, g, seed, base_cs)
2147This is a fundamental constructor for character sets.
2148@itemize @bullet
2149@item @var{g} is used to generate a series of ``seed'' values
2150from the initial seed: @var{seed}, (@var{g} @var{seed}),
2151(@var{g}^2 @var{seed}), (@var{g}^3 @var{seed}), @dots{}
2152@item @var{p} tells us when to stop -- when it returns true
2153when applied to one of the seed values.
2154@item @var{f} maps each seed value to a character. These
2155characters are added to the base character set @var{base_cs} to
2156form the result; @var{base_cs} defaults to the empty set.
2157@end itemize
2158@end deffn
2159
2160@deffn {Scheme Procedure} char-set-for-each proc cs
2161@deffnx {C Function} scm_char_set_for_each (proc, cs)
2162Apply @var{proc} to every character in the character set
2163@var{cs}. The return value is not specified.
2164@end deffn
2165
2166@deffn {Scheme Procedure} char-set-map proc cs
2167@deffnx {C Function} scm_char_set_map (proc, cs)
2168Map the procedure @var{proc} over every character in @var{cs}.
2169@var{proc} must be a character -> character procedure.
2170@end deffn
2171
2172@c ===================================================================
2173
2174@node Creating Character Sets
2175@subsubsection Creating Character Sets
2176
2177New character sets are produced with these procedures.
2178
2179@deffn {Scheme Procedure} char-set-copy cs
2180@deffnx {C Function} scm_char_set_copy (cs)
2181Return a newly allocated character set containing all
2182characters in @var{cs}.
2183@end deffn
2184
2185@deffn {Scheme Procedure} char-set . rest
2186@deffnx {C Function} scm_char_set (rest)
2187Return a character set containing all given characters.
2188@end deffn
2189
2190@deffn {Scheme Procedure} list->char-set list [base_cs]
2191@deffnx {C Function} scm_list_to_char_set (list, base_cs)
2192Convert the character list @var{list} to a character set. If
2193the character set @var{base_cs} is given, the character in this
2194set are also included in the result.
2195@end deffn
2196
2197@deffn {Scheme Procedure} list->char-set! list base_cs
2198@deffnx {C Function} scm_list_to_char_set_x (list, base_cs)
2199Convert the character list @var{list} to a character set. The
2200characters are added to @var{base_cs} and @var{base_cs} is
2201returned.
2202@end deffn
2203
2204@deffn {Scheme Procedure} string->char-set str [base_cs]
2205@deffnx {C Function} scm_string_to_char_set (str, base_cs)
2206Convert the string @var{str} to a character set. If the
2207character set @var{base_cs} is given, the characters in this
2208set are also included in the result.
2209@end deffn
2210
2211@deffn {Scheme Procedure} string->char-set! str base_cs
2212@deffnx {C Function} scm_string_to_char_set_x (str, base_cs)
2213Convert the string @var{str} to a character set. The
2214characters from the string are added to @var{base_cs}, and
2215@var{base_cs} is returned.
2216@end deffn
2217
2218@deffn {Scheme Procedure} char-set-filter pred cs [base_cs]
2219@deffnx {C Function} scm_char_set_filter (pred, cs, base_cs)
2220Return a character set containing every character from @var{cs}
2221so that it satisfies @var{pred}. If provided, the characters
2222from @var{base_cs} are added to the result.
2223@end deffn
2224
2225@deffn {Scheme Procedure} char-set-filter! pred cs base_cs
2226@deffnx {C Function} scm_char_set_filter_x (pred, cs, base_cs)
2227Return a character set containing every character from @var{cs}
2228so that it satisfies @var{pred}. The characters are added to
2229@var{base_cs} and @var{base_cs} is returned.
2230@end deffn
2231
2232@deffn {Scheme Procedure} ucs-range->char-set lower upper [error [base_cs]]
2233@deffnx {C Function} scm_ucs_range_to_char_set (lower, upper, error, base_cs)
2234Return a character set containing all characters whose
2235character codes lie in the half-open range
2236[@var{lower},@var{upper}).
2237
2238If @var{error} is a true value, an error is signalled if the
2239specified range contains characters which are not contained in
2240the implemented character range. If @var{error} is @code{#f},
be3eb25c 2241these characters are silently left out of the resulting
050ab45f
MV
2242character set.
2243
2244The characters in @var{base_cs} are added to the result, if
2245given.
2246@end deffn
2247
2248@deffn {Scheme Procedure} ucs-range->char-set! lower upper error base_cs
2249@deffnx {C Function} scm_ucs_range_to_char_set_x (lower, upper, error, base_cs)
2250Return a character set containing all characters whose
2251character codes lie in the half-open range
2252[@var{lower},@var{upper}).
2253
2254If @var{error} is a true value, an error is signalled if the
2255specified range contains characters which are not contained in
2256the implemented character range. If @var{error} is @code{#f},
be3eb25c 2257these characters are silently left out of the resulting
050ab45f
MV
2258character set.
2259
2260The characters are added to @var{base_cs} and @var{base_cs} is
2261returned.
2262@end deffn
2263
2264@deffn {Scheme Procedure} ->char-set x
2265@deffnx {C Function} scm_to_char_set (x)
be3eb25c
MG
2266Coerces x into a char-set. @var{x} may be a string, character or
2267char-set. A string is converted to the set of its constituent
2268characters; a character is converted to a singleton set; a char-set is
2269returned as-is.
050ab45f
MV
2270@end deffn
2271
2272@c ===================================================================
2273
2274@node Querying Character Sets
2275@subsubsection Querying Character Sets
2276
2277Access the elements and other information of a character set with these
2278procedures.
2279
be3eb25c
MG
2280@deffn {Scheme Procedure} %char-set-dump cs
2281Returns an association list containing debugging information
2282for @var{cs}. The association list has the following entries.
2283@table @code
2284@item char-set
2285The char-set itself
2286@item len
2287The number of groups of contiguous code points the char-set
2288contains
2289@item ranges
2290A list of lists where each sublist is a range of code points
2291and their associated characters
2292@end table
2293The return value of this function cannot be relied upon to be
2294consistent between versions of Guile and should not be used in code.
2295@end deffn
2296
050ab45f
MV
2297@deffn {Scheme Procedure} char-set-size cs
2298@deffnx {C Function} scm_char_set_size (cs)
2299Return the number of elements in character set @var{cs}.
2300@end deffn
2301
2302@deffn {Scheme Procedure} char-set-count pred cs
2303@deffnx {C Function} scm_char_set_count (pred, cs)
2304Return the number of the elements int the character set
2305@var{cs} which satisfy the predicate @var{pred}.
2306@end deffn
2307
2308@deffn {Scheme Procedure} char-set->list cs
2309@deffnx {C Function} scm_char_set_to_list (cs)
2310Return a list containing the elements of the character set
2311@var{cs}.
2312@end deffn
2313
2314@deffn {Scheme Procedure} char-set->string cs
2315@deffnx {C Function} scm_char_set_to_string (cs)
2316Return a string containing the elements of the character set
2317@var{cs}. The order in which the characters are placed in the
2318string is not defined.
2319@end deffn
2320
2321@deffn {Scheme Procedure} char-set-contains? cs ch
2322@deffnx {C Function} scm_char_set_contains_p (cs, ch)
2323Return @code{#t} iff the character @var{ch} is contained in the
2324character set @var{cs}.
2325@end deffn
2326
2327@deffn {Scheme Procedure} char-set-every pred cs
2328@deffnx {C Function} scm_char_set_every (pred, cs)
2329Return a true value if every character in the character set
2330@var{cs} satisfies the predicate @var{pred}.
2331@end deffn
2332
2333@deffn {Scheme Procedure} char-set-any pred cs
2334@deffnx {C Function} scm_char_set_any (pred, cs)
2335Return a true value if any character in the character set
2336@var{cs} satisfies the predicate @var{pred}.
2337@end deffn
2338
2339@c ===================================================================
2340
2341@node Character-Set Algebra
2342@subsubsection Character-Set Algebra
2343
2344Character sets can be manipulated with the common set algebra operation,
2345such as union, complement, intersection etc. All of these procedures
2346provide side-effecting variants, which modify their character set
2347argument(s).
2348
2349@deffn {Scheme Procedure} char-set-adjoin cs . rest
2350@deffnx {C Function} scm_char_set_adjoin (cs, rest)
2351Add all character arguments to the first argument, which must
2352be a character set.
2353@end deffn
2354
2355@deffn {Scheme Procedure} char-set-delete cs . rest
2356@deffnx {C Function} scm_char_set_delete (cs, rest)
2357Delete all character arguments from the first argument, which
2358must be a character set.
2359@end deffn
2360
2361@deffn {Scheme Procedure} char-set-adjoin! cs . rest
2362@deffnx {C Function} scm_char_set_adjoin_x (cs, rest)
2363Add all character arguments to the first argument, which must
2364be a character set.
2365@end deffn
2366
2367@deffn {Scheme Procedure} char-set-delete! cs . rest
2368@deffnx {C Function} scm_char_set_delete_x (cs, rest)
2369Delete all character arguments from the first argument, which
2370must be a character set.
2371@end deffn
2372
2373@deffn {Scheme Procedure} char-set-complement cs
2374@deffnx {C Function} scm_char_set_complement (cs)
2375Return the complement of the character set @var{cs}.
2376@end deffn
2377
be3eb25c
MG
2378Note that the complement of a character set is likely to contain many
2379reserved code points (code points that are not associated with
2380characters). It may be helpful to modify the output of
2381@code{char-set-complement} by computing its intersection with the set
2382of designated code points, @code{char-set:designated}.
2383
050ab45f
MV
2384@deffn {Scheme Procedure} char-set-union . rest
2385@deffnx {C Function} scm_char_set_union (rest)
2386Return the union of all argument character sets.
2387@end deffn
2388
2389@deffn {Scheme Procedure} char-set-intersection . rest
2390@deffnx {C Function} scm_char_set_intersection (rest)
2391Return the intersection of all argument character sets.
2392@end deffn
2393
2394@deffn {Scheme Procedure} char-set-difference cs1 . rest
2395@deffnx {C Function} scm_char_set_difference (cs1, rest)
2396Return the difference of all argument character sets.
2397@end deffn
2398
2399@deffn {Scheme Procedure} char-set-xor . rest
2400@deffnx {C Function} scm_char_set_xor (rest)
2401Return the exclusive-or of all argument character sets.
2402@end deffn
2403
2404@deffn {Scheme Procedure} char-set-diff+intersection cs1 . rest
2405@deffnx {C Function} scm_char_set_diff_plus_intersection (cs1, rest)
2406Return the difference and the intersection of all argument
2407character sets.
2408@end deffn
2409
2410@deffn {Scheme Procedure} char-set-complement! cs
2411@deffnx {C Function} scm_char_set_complement_x (cs)
2412Return the complement of the character set @var{cs}.
2413@end deffn
2414
2415@deffn {Scheme Procedure} char-set-union! cs1 . rest
2416@deffnx {C Function} scm_char_set_union_x (cs1, rest)
2417Return the union of all argument character sets.
2418@end deffn
2419
2420@deffn {Scheme Procedure} char-set-intersection! cs1 . rest
2421@deffnx {C Function} scm_char_set_intersection_x (cs1, rest)
2422Return the intersection of all argument character sets.
2423@end deffn
2424
2425@deffn {Scheme Procedure} char-set-difference! cs1 . rest
2426@deffnx {C Function} scm_char_set_difference_x (cs1, rest)
2427Return the difference of all argument character sets.
2428@end deffn
2429
2430@deffn {Scheme Procedure} char-set-xor! cs1 . rest
2431@deffnx {C Function} scm_char_set_xor_x (cs1, rest)
2432Return the exclusive-or of all argument character sets.
2433@end deffn
2434
2435@deffn {Scheme Procedure} char-set-diff+intersection! cs1 cs2 . rest
2436@deffnx {C Function} scm_char_set_diff_plus_intersection_x (cs1, cs2, rest)
2437Return the difference and the intersection of all argument
2438character sets.
2439@end deffn
2440
2441@c ===================================================================
2442
2443@node Standard Character Sets
2444@subsubsection Standard Character Sets
2445
2446In order to make the use of the character set data type and procedures
2447useful, several predefined character set variables exist.
2448
49dec04b
LC
2449@cindex codeset
2450@cindex charset
2451@cindex locale
2452
be3eb25c
MG
2453These character sets are locale independent and are not recomputed
2454upon a @code{setlocale} call. They contain characters from the whole
2455range of Unicode code points. For instance, @code{char-set:letter}
2456contains about 94,000 characters.
49dec04b 2457
c9dc8c6c
MV
2458@defvr {Scheme Variable} char-set:lower-case
2459@defvrx {C Variable} scm_char_set_lower_case
050ab45f 2460All lower-case characters.
c9dc8c6c 2461@end defvr
050ab45f 2462
c9dc8c6c
MV
2463@defvr {Scheme Variable} char-set:upper-case
2464@defvrx {C Variable} scm_char_set_upper_case
050ab45f 2465All upper-case characters.
c9dc8c6c 2466@end defvr
050ab45f 2467
c9dc8c6c
MV
2468@defvr {Scheme Variable} char-set:title-case
2469@defvrx {C Variable} scm_char_set_title_case
be3eb25c
MG
2470All single characters that function as if they were an upper-case
2471letter followed by a lower-case letter.
c9dc8c6c 2472@end defvr
050ab45f 2473
c9dc8c6c
MV
2474@defvr {Scheme Variable} char-set:letter
2475@defvrx {C Variable} scm_char_set_letter
be3eb25c
MG
2476All letters. This includes @code{char-set:lower-case},
2477@code{char-set:upper-case}, @code{char-set:title-case}, and many
2478letters that have no case at all. For example, Chinese and Japanese
2479characters typically have no concept of case.
c9dc8c6c 2480@end defvr
050ab45f 2481
c9dc8c6c
MV
2482@defvr {Scheme Variable} char-set:digit
2483@defvrx {C Variable} scm_char_set_digit
050ab45f 2484All digits.
c9dc8c6c 2485@end defvr
050ab45f 2486
c9dc8c6c
MV
2487@defvr {Scheme Variable} char-set:letter+digit
2488@defvrx {C Variable} scm_char_set_letter_and_digit
050ab45f 2489The union of @code{char-set:letter} and @code{char-set:digit}.
c9dc8c6c 2490@end defvr
050ab45f 2491
c9dc8c6c
MV
2492@defvr {Scheme Variable} char-set:graphic
2493@defvrx {C Variable} scm_char_set_graphic
050ab45f 2494All characters which would put ink on the paper.
c9dc8c6c 2495@end defvr
050ab45f 2496
c9dc8c6c
MV
2497@defvr {Scheme Variable} char-set:printing
2498@defvrx {C Variable} scm_char_set_printing
050ab45f 2499The union of @code{char-set:graphic} and @code{char-set:whitespace}.
c9dc8c6c 2500@end defvr
050ab45f 2501
c9dc8c6c
MV
2502@defvr {Scheme Variable} char-set:whitespace
2503@defvrx {C Variable} scm_char_set_whitespace
050ab45f 2504All whitespace characters.
c9dc8c6c 2505@end defvr
050ab45f 2506
c9dc8c6c
MV
2507@defvr {Scheme Variable} char-set:blank
2508@defvrx {C Variable} scm_char_set_blank
be3eb25c
MG
2509All horizontal whitespace characters, which notably includes
2510@code{#\space} and @code{#\tab}.
c9dc8c6c 2511@end defvr
050ab45f 2512
c9dc8c6c
MV
2513@defvr {Scheme Variable} char-set:iso-control
2514@defvrx {C Variable} scm_char_set_iso_control
be3eb25c
MG
2515The ISO control characters are the C0 control characters (U+0000 to
2516U+001F), delete (U+007F), and the C1 control characters (U+0080 to
2517U+009F).
c9dc8c6c 2518@end defvr
050ab45f 2519
c9dc8c6c
MV
2520@defvr {Scheme Variable} char-set:punctuation
2521@defvrx {C Variable} scm_char_set_punctuation
be3eb25c
MG
2522All punctuation characters, such as the characters
2523@code{!"#%&'()*,-./:;?@@[\\]_@{@}}
c9dc8c6c 2524@end defvr
050ab45f 2525
c9dc8c6c
MV
2526@defvr {Scheme Variable} char-set:symbol
2527@defvrx {C Variable} scm_char_set_symbol
be3eb25c 2528All symbol characters, such as the characters @code{$+<=>^`|~}.
c9dc8c6c 2529@end defvr
050ab45f 2530
c9dc8c6c
MV
2531@defvr {Scheme Variable} char-set:hex-digit
2532@defvrx {C Variable} scm_char_set_hex_digit
050ab45f 2533The hexadecimal digits @code{0123456789abcdefABCDEF}.
c9dc8c6c 2534@end defvr
050ab45f 2535
c9dc8c6c
MV
2536@defvr {Scheme Variable} char-set:ascii
2537@defvrx {C Variable} scm_char_set_ascii
050ab45f 2538All ASCII characters.
c9dc8c6c 2539@end defvr
050ab45f 2540
c9dc8c6c
MV
2541@defvr {Scheme Variable} char-set:empty
2542@defvrx {C Variable} scm_char_set_empty
050ab45f 2543The empty character set.
c9dc8c6c 2544@end defvr
050ab45f 2545
be3eb25c
MG
2546@defvr {Scheme Variable} char-set:designated
2547@defvrx {C Variable} scm_char_set_designated
2548This character set contains all designated code points. This includes
2549all the code points to which Unicode has assigned a character or other
2550meaning.
2551@end defvr
2552
c9dc8c6c
MV
2553@defvr {Scheme Variable} char-set:full
2554@defvrx {C Variable} scm_char_set_full
be3eb25c
MG
2555This character set contains all possible code points. This includes
2556both designated and reserved code points.
c9dc8c6c 2557@end defvr
07d83abe
MV
2558
2559@node Strings
2560@subsection Strings
2561@tpindex Strings
2562
2563Strings are fixed-length sequences of characters. They can be created
2564by calling constructor procedures, but they can also literally get
2565entered at the @acronym{REPL} or in Scheme source files.
2566
2567@c Guile provides a rich set of string processing procedures, because text
2568@c handling is very important when Guile is used as a scripting language.
2569
2570Strings always carry the information about how many characters they are
2571composed of with them, so there is no special end-of-string character,
2572like in C. That means that Scheme strings can contain any character,
c48c62d0
MV
2573even the @samp{#\nul} character @samp{\0}.
2574
2575To use strings efficiently, you need to know a bit about how Guile
2576implements them. In Guile, a string consists of two parts, a head and
2577the actual memory where the characters are stored. When a string (or
2578a substring of it) is copied, only a new head gets created, the memory
2579is usually not copied. The two heads start out pointing to the same
2580memory.
2581
2582When one of these two strings is modified, as with @code{string-set!},
2583their common memory does get copied so that each string has its own
be3eb25c 2584memory and modifying one does not accidentally modify the other as well.
c48c62d0
MV
2585Thus, Guile's strings are `copy on write'; the actual copying of their
2586memory is delayed until one string is written to.
2587
2588This implementation makes functions like @code{substring} very
2589efficient in the common case that no modifications are done to the
2590involved strings.
2591
2592If you do know that your strings are getting modified right away, you
2593can use @code{substring/copy} instead of @code{substring}. This
2594function performs the copy immediately at the time of creation. This
2595is more efficient, especially in a multi-threaded program. Also,
2596@code{substring/copy} can avoid the problem that a short substring
2597holds on to the memory of a very large original string that could
2598otherwise be recycled.
2599
2600If you want to avoid the copy altogether, so that modifications of one
2601string show up in the other, you can use @code{substring/shared}. The
2602strings created by this procedure are called @dfn{mutation sharing
2603substrings} since the substring and the original string share
2604modifications to each other.
07d83abe 2605
05256760
MV
2606If you want to prevent modifications, use @code{substring/read-only}.
2607
c9dc8c6c
MV
2608Guile provides all procedures of SRFI-13 and a few more.
2609
07d83abe 2610@menu
5676b4fa
MV
2611* String Syntax:: Read syntax for strings.
2612* String Predicates:: Testing strings for certain properties.
2613* String Constructors:: Creating new string objects.
2614* List/String Conversion:: Converting from/to lists of characters.
2615* String Selection:: Select portions from strings.
2616* String Modification:: Modify parts or whole strings.
2617* String Comparison:: Lexicographic ordering predicates.
2618* String Searching:: Searching in strings.
2619* Alphabetic Case Mapping:: Convert the alphabetic case of strings.
2620* Reversing and Appending Strings:: Appending strings to form a new string.
2621* Mapping Folding and Unfolding:: Iterating over strings.
2622* Miscellaneous String Operations:: Replicating, insertion, parsing, ...
67af975c 2623* Conversion to/from C::
5b6b22e8 2624* String Internals:: The storage strategy for strings.
07d83abe
MV
2625@end menu
2626
2627@node String Syntax
2628@subsubsection String Read Syntax
2629
2630@c In the following @code is used to get a good font in TeX etc, but
2631@c is omitted for Info format, so as not to risk any confusion over
2632@c whether surrounding ` ' quotes are part of the escape or are
2633@c special in a string (they're not).
2634
2635The read syntax for strings is an arbitrarily long sequence of
c48c62d0 2636characters enclosed in double quotes (@nicode{"}).
07d83abe 2637
67af975c
MG
2638Backslash is an escape character and can be used to insert the following
2639special characters. @nicode{\"} and @nicode{\\} are R5RS standard, the
2640next seven are R6RS standard --- notice they follow C syntax --- and the
2641remaining four are Guile extensions.
07d83abe
MV
2642
2643@table @asis
2644@item @nicode{\\}
2645Backslash character.
2646
2647@item @nicode{\"}
2648Double quote character (an unescaped @nicode{"} is otherwise the end
2649of the string).
2650
07d83abe
MV
2651@item @nicode{\a}
2652Bell character (ASCII 7).
2653
2654@item @nicode{\f}
2655Formfeed character (ASCII 12).
2656
2657@item @nicode{\n}
2658Newline character (ASCII 10).
2659
2660@item @nicode{\r}
2661Carriage return character (ASCII 13).
2662
2663@item @nicode{\t}
2664Tab character (ASCII 9).
2665
2666@item @nicode{\v}
2667Vertical tab character (ASCII 11).
2668
67a4a16d
MG
2669@item @nicode{\b}
2670Backspace character (ASCII 8).
2671
67af975c
MG
2672@item @nicode{\0}
2673NUL character (ASCII 0).
2674
07d83abe
MV
2675@item @nicode{\xHH}
2676Character code given by two hexadecimal digits. For example
2677@nicode{\x7f} for an ASCII DEL (127).
28cc8dac
MG
2678
2679@item @nicode{\uHHHH}
2680Character code given by four hexadecimal digits. For example
2681@nicode{\u0100} for a capital A with macron (U+0100).
2682
2683@item @nicode{\UHHHHHH}
2684Character code given by six hexadecimal digits. For example
2685@nicode{\U010402}.
07d83abe
MV
2686@end table
2687
2688@noindent
2689The following are examples of string literals:
2690
2691@lisp
2692"foo"
2693"bar plonk"
2694"Hello World"
2695"\"Hi\", he said."
2696@end lisp
2697
6ea30487
MG
2698The three escape sequences @code{\xHH}, @code{\uHHHH} and @code{\UHHHHHH} were
2699chosen to not break compatibility with code written for previous versions of
2700Guile. The R6RS specification suggests a different, incompatible syntax for hex
2701escapes: @code{\xHHHH;} -- a character code followed by one to eight hexadecimal
2702digits terminated with a semicolon. If this escape format is desired instead,
2703it can be enabled with the reader option @code{r6rs-hex-escapes}.
2704
2705@lisp
2706(read-enable 'r6rs-hex-escapes)
2707@end lisp
2708
1518f649 2709For more on reader options, @xref{Scheme Read}.
07d83abe
MV
2710
2711@node String Predicates
2712@subsubsection String Predicates
2713
2714The following procedures can be used to check whether a given string
2715fulfills some specified property.
2716
2717@rnindex string?
2718@deffn {Scheme Procedure} string? obj
2719@deffnx {C Function} scm_string_p (obj)
2720Return @code{#t} if @var{obj} is a string, else @code{#f}.
2721@end deffn
2722
91210d62
MV
2723@deftypefn {C Function} int scm_is_string (SCM obj)
2724Returns @code{1} if @var{obj} is a string, @code{0} otherwise.
2725@end deftypefn
2726
07d83abe
MV
2727@deffn {Scheme Procedure} string-null? str
2728@deffnx {C Function} scm_string_null_p (str)
2729Return @code{#t} if @var{str}'s length is zero, and
2730@code{#f} otherwise.
2731@lisp
2732(string-null? "") @result{} #t
2733y @result{} "foo"
2734(string-null? y) @result{} #f
2735@end lisp
2736@end deffn
2737
5676b4fa
MV
2738@deffn {Scheme Procedure} string-any char_pred s [start [end]]
2739@deffnx {C Function} scm_string_any (char_pred, s, start, end)
c100a12c 2740Check if @var{char_pred} is true for any character in string @var{s}.
5676b4fa 2741
c100a12c
KR
2742@var{char_pred} can be a character to check for any equal to that, or
2743a character set (@pxref{Character Sets}) to check for any in that set,
2744or a predicate procedure to call.
5676b4fa 2745
c100a12c
KR
2746For a procedure, calls @code{(@var{char_pred} c)} are made
2747successively on the characters from @var{start} to @var{end}. If
2748@var{char_pred} returns true (ie.@: non-@code{#f}), @code{string-any}
2749stops and that return value is the return from @code{string-any}. The
2750call on the last character (ie.@: at @math{@var{end}-1}), if that
2751point is reached, is a tail call.
2752
2753If there are no characters in @var{s} (ie.@: @var{start} equals
2754@var{end}) then the return is @code{#f}.
5676b4fa
MV
2755@end deffn
2756
2757@deffn {Scheme Procedure} string-every char_pred s [start [end]]
2758@deffnx {C Function} scm_string_every (char_pred, s, start, end)
c100a12c
KR
2759Check if @var{char_pred} is true for every character in string
2760@var{s}.
5676b4fa 2761
c100a12c
KR
2762@var{char_pred} can be a character to check for every character equal
2763to that, or a character set (@pxref{Character Sets}) to check for
2764every character being in that set, or a predicate procedure to call.
2765
2766For a procedure, calls @code{(@var{char_pred} c)} are made
2767successively on the characters from @var{start} to @var{end}. If
2768@var{char_pred} returns @code{#f}, @code{string-every} stops and
2769returns @code{#f}. The call on the last character (ie.@: at
2770@math{@var{end}-1}), if that point is reached, is a tail call and the
2771return from that call is the return from @code{string-every}.
5676b4fa
MV
2772
2773If there are no characters in @var{s} (ie.@: @var{start} equals
2774@var{end}) then the return is @code{#t}.
5676b4fa
MV
2775@end deffn
2776
07d83abe
MV
2777@node String Constructors
2778@subsubsection String Constructors
2779
2780The string constructor procedures create new string objects, possibly
c48c62d0
MV
2781initializing them with some specified character data. See also
2782@xref{String Selection}, for ways to create strings from existing
2783strings.
07d83abe
MV
2784
2785@c FIXME::martin: list->string belongs into `List/String Conversion'
2786
bba26c32 2787@deffn {Scheme Procedure} string char@dots{}
07d83abe 2788@rnindex string
bba26c32
KR
2789Return a newly allocated string made from the given character
2790arguments.
2791
2792@example
2793(string #\x #\y #\z) @result{} "xyz"
2794(string) @result{} ""
2795@end example
2796@end deffn
2797
2798@deffn {Scheme Procedure} list->string lst
2799@deffnx {C Function} scm_string (lst)
07d83abe 2800@rnindex list->string
bba26c32
KR
2801Return a newly allocated string made from a list of characters.
2802
2803@example
2804(list->string '(#\a #\b #\c)) @result{} "abc"
2805@end example
2806@end deffn
2807
2808@deffn {Scheme Procedure} reverse-list->string lst
2809@deffnx {C Function} scm_reverse_list_to_string (lst)
2810Return a newly allocated string made from a list of characters, in
2811reverse order.
2812
2813@example
2814(reverse-list->string '(#\a #\B #\c)) @result{} "cBa"
2815@end example
07d83abe
MV
2816@end deffn
2817
2818@rnindex make-string
2819@deffn {Scheme Procedure} make-string k [chr]
2820@deffnx {C Function} scm_make_string (k, chr)
2821Return a newly allocated string of
2822length @var{k}. If @var{chr} is given, then all elements of
2823the string are initialized to @var{chr}, otherwise the contents
2824of the @var{string} are unspecified.
2825@end deffn
2826
c48c62d0
MV
2827@deftypefn {C Function} SCM scm_c_make_string (size_t len, SCM chr)
2828Like @code{scm_make_string}, but expects the length as a
2829@code{size_t}.
2830@end deftypefn
2831
5676b4fa
MV
2832@deffn {Scheme Procedure} string-tabulate proc len
2833@deffnx {C Function} scm_string_tabulate (proc, len)
2834@var{proc} is an integer->char procedure. Construct a string
2835of size @var{len} by applying @var{proc} to each index to
2836produce the corresponding string element. The order in which
2837@var{proc} is applied to the indices is not specified.
2838@end deffn
2839
5676b4fa
MV
2840@deffn {Scheme Procedure} string-join ls [delimiter [grammar]]
2841@deffnx {C Function} scm_string_join (ls, delimiter, grammar)
2842Append the string in the string list @var{ls}, using the string
2843@var{delim} as a delimiter between the elements of @var{ls}.
2844@var{grammar} is a symbol which specifies how the delimiter is
2845placed between the strings, and defaults to the symbol
2846@code{infix}.
2847
2848@table @code
2849@item infix
2850Insert the separator between list elements. An empty string
2851will produce an empty list.
2852@item string-infix
2853Like @code{infix}, but will raise an error if given the empty
2854list.
2855@item suffix
2856Insert the separator after every list element.
2857@item prefix
2858Insert the separator before each list element.
2859@end table
2860@end deffn
2861
07d83abe
MV
2862@node List/String Conversion
2863@subsubsection List/String conversion
2864
2865When processing strings, it is often convenient to first convert them
2866into a list representation by using the procedure @code{string->list},
2867work with the resulting list, and then convert it back into a string.
2868These procedures are useful for similar tasks.
2869
2870@rnindex string->list
5676b4fa
MV
2871@deffn {Scheme Procedure} string->list str [start [end]]
2872@deffnx {C Function} scm_substring_to_list (str, start, end)
07d83abe 2873@deffnx {C Function} scm_string_to_list (str)
5676b4fa 2874Convert the string @var{str} into a list of characters.
07d83abe
MV
2875@end deffn
2876
2877@deffn {Scheme Procedure} string-split str chr
2878@deffnx {C Function} scm_string_split (str, chr)
2879Split the string @var{str} into the a list of the substrings delimited
2880by appearances of the character @var{chr}. Note that an empty substring
2881between separator characters will result in an empty string in the
2882result list.
2883
2884@lisp
2885(string-split "root:x:0:0:root:/root:/bin/bash" #\:)
2886@result{}
2887("root" "x" "0" "0" "root" "/root" "/bin/bash")
2888
2889(string-split "::" #\:)
2890@result{}
2891("" "" "")
2892
2893(string-split "" #\:)
2894@result{}
2895("")
2896@end lisp
2897@end deffn
2898
2899
2900@node String Selection
2901@subsubsection String Selection
2902
2903Portions of strings can be extracted by these procedures.
2904@code{string-ref} delivers individual characters whereas
2905@code{substring} can be used to extract substrings from longer strings.
2906
2907@rnindex string-length
2908@deffn {Scheme Procedure} string-length string
2909@deffnx {C Function} scm_string_length (string)
2910Return the number of characters in @var{string}.
2911@end deffn
2912
c48c62d0
MV
2913@deftypefn {C Function} size_t scm_c_string_length (SCM str)
2914Return the number of characters in @var{str} as a @code{size_t}.
2915@end deftypefn
2916
07d83abe
MV
2917@rnindex string-ref
2918@deffn {Scheme Procedure} string-ref str k
2919@deffnx {C Function} scm_string_ref (str, k)
2920Return character @var{k} of @var{str} using zero-origin
2921indexing. @var{k} must be a valid index of @var{str}.
2922@end deffn
2923
c48c62d0
MV
2924@deftypefn {C Function} SCM scm_c_string_ref (SCM str, size_t k)
2925Return character @var{k} of @var{str} using zero-origin
2926indexing. @var{k} must be a valid index of @var{str}.
2927@end deftypefn
2928
07d83abe 2929@rnindex string-copy
5676b4fa
MV
2930@deffn {Scheme Procedure} string-copy str [start [end]]
2931@deffnx {C Function} scm_substring_copy (str, start, end)
07d83abe 2932@deffnx {C Function} scm_string_copy (str)
5676b4fa 2933Return a copy of the given string @var{str}.
c48c62d0
MV
2934
2935The returned string shares storage with @var{str} initially, but it is
2936copied as soon as one of the two strings is modified.
07d83abe
MV
2937@end deffn
2938
2939@rnindex substring
2940@deffn {Scheme Procedure} substring str start [end]
2941@deffnx {C Function} scm_substring (str, start, end)
c48c62d0 2942Return a new string formed from the characters
07d83abe
MV
2943of @var{str} beginning with index @var{start} (inclusive) and
2944ending with index @var{end} (exclusive).
2945@var{str} must be a string, @var{start} and @var{end} must be
2946exact integers satisfying:
2947
29480 <= @var{start} <= @var{end} <= @code{(string-length @var{str})}.
c48c62d0
MV
2949
2950The returned string shares storage with @var{str} initially, but it is
2951copied as soon as one of the two strings is modified.
2952@end deffn
2953
2954@deffn {Scheme Procedure} substring/shared str start [end]
2955@deffnx {C Function} scm_substring_shared (str, start, end)
2956Like @code{substring}, but the strings continue to share their storage
2957even if they are modified. Thus, modifications to @var{str} show up
2958in the new string, and vice versa.
2959@end deffn
2960
2961@deffn {Scheme Procedure} substring/copy str start [end]
2962@deffnx {C Function} scm_substring_copy (str, start, end)
2963Like @code{substring}, but the storage for the new string is copied
2964immediately.
07d83abe
MV
2965@end deffn
2966
05256760
MV
2967@deffn {Scheme Procedure} substring/read-only str start [end]
2968@deffnx {C Function} scm_substring_read_only (str, start, end)
2969Like @code{substring}, but the resulting string can not be modified.
2970@end deffn
2971
c48c62d0
MV
2972@deftypefn {C Function} SCM scm_c_substring (SCM str, size_t start, size_t end)
2973@deftypefnx {C Function} SCM scm_c_substring_shared (SCM str, size_t start, size_t end)
2974@deftypefnx {C Function} SCM scm_c_substring_copy (SCM str, size_t start, size_t end)
05256760 2975@deftypefnx {C Function} SCM scm_c_substring_read_only (SCM str, size_t start, size_t end)
c48c62d0
MV
2976Like @code{scm_substring}, etc. but the bounds are given as a @code{size_t}.
2977@end deftypefn
2978
5676b4fa
MV
2979@deffn {Scheme Procedure} string-take s n
2980@deffnx {C Function} scm_string_take (s, n)
2981Return the @var{n} first characters of @var{s}.
2982@end deffn
2983
2984@deffn {Scheme Procedure} string-drop s n
2985@deffnx {C Function} scm_string_drop (s, n)
2986Return all but the first @var{n} characters of @var{s}.
2987@end deffn
2988
2989@deffn {Scheme Procedure} string-take-right s n
2990@deffnx {C Function} scm_string_take_right (s, n)
2991Return the @var{n} last characters of @var{s}.
2992@end deffn
2993
2994@deffn {Scheme Procedure} string-drop-right s n
2995@deffnx {C Function} scm_string_drop_right (s, n)
2996Return all but the last @var{n} characters of @var{s}.
2997@end deffn
2998
2999@deffn {Scheme Procedure} string-pad s len [chr [start [end]]]
6337e7fb 3000@deffnx {Scheme Procedure} string-pad-right s len [chr [start [end]]]
5676b4fa 3001@deffnx {C Function} scm_string_pad (s, len, chr, start, end)
5676b4fa 3002@deffnx {C Function} scm_string_pad_right (s, len, chr, start, end)
6337e7fb
KR
3003Take characters @var{start} to @var{end} from the string @var{s} and
3004either pad with @var{char} or truncate them to give @var{len}
3005characters.
3006
3007@code{string-pad} pads or truncates on the left, so for example
3008
3009@example
3010(string-pad "x" 3) @result{} " x"
3011(string-pad "abcde" 3) @result{} "cde"
3012@end example
3013
3014@code{string-pad-right} pads or truncates on the right, so for example
3015
3016@example
3017(string-pad-right "x" 3) @result{} "x "
3018(string-pad-right "abcde" 3) @result{} "abc"
3019@end example
5676b4fa
MV
3020@end deffn
3021
3022@deffn {Scheme Procedure} string-trim s [char_pred [start [end]]]
dc297bb7
KR
3023@deffnx {Scheme Procedure} string-trim-right s [char_pred [start [end]]]
3024@deffnx {Scheme Procedure} string-trim-both s [char_pred [start [end]]]
5676b4fa 3025@deffnx {C Function} scm_string_trim (s, char_pred, start, end)
5676b4fa 3026@deffnx {C Function} scm_string_trim_right (s, char_pred, start, end)
5676b4fa 3027@deffnx {C Function} scm_string_trim_both (s, char_pred, start, end)
be3eb25c 3028Trim occurrences of @var{char_pred} from the ends of @var{s}.
5676b4fa 3029
dc297bb7
KR
3030@code{string-trim} trims @var{char_pred} characters from the left
3031(start) of the string, @code{string-trim-right} trims them from the
3032right (end) of the string, @code{string-trim-both} trims from both
3033ends.
5676b4fa 3034
dc297bb7
KR
3035@var{char_pred} can be a character, a character set, or a predicate
3036procedure to call on each character. If @var{char_pred} is not given
3037the default is whitespace as per @code{char-set:whitespace}
3038(@pxref{Standard Character Sets}).
5676b4fa 3039
dc297bb7
KR
3040@example
3041(string-trim " x ") @result{} "x "
3042(string-trim-right "banana" #\a) @result{} "banan"
3043(string-trim-both ".,xy:;" char-set:punctuation)
3044 @result{} "xy"
3045(string-trim-both "xyzzy" (lambda (c)
3046 (or (eqv? c #\x)
3047 (eqv? c #\y))))
3048 @result{} "zz"
3049@end example
5676b4fa
MV
3050@end deffn
3051
07d83abe
MV
3052@node String Modification
3053@subsubsection String Modification
3054
3055These procedures are for modifying strings in-place. This means that the
3056result of the operation is not a new string; instead, the original string's
3057memory representation is modified.
3058
3059@rnindex string-set!
3060@deffn {Scheme Procedure} string-set! str k chr
3061@deffnx {C Function} scm_string_set_x (str, k, chr)
3062Store @var{chr} in element @var{k} of @var{str} and return
3063an unspecified value. @var{k} must be a valid index of
3064@var{str}.
3065@end deffn
3066
c48c62d0
MV
3067@deftypefn {C Function} void scm_c_string_set_x (SCM str, size_t k, SCM chr)
3068Like @code{scm_string_set_x}, but the index is given as a @code{size_t}.
3069@end deftypefn
3070
07d83abe 3071@rnindex string-fill!
5676b4fa
MV
3072@deffn {Scheme Procedure} string-fill! str chr [start [end]]
3073@deffnx {C Function} scm_substring_fill_x (str, chr, start, end)
07d83abe 3074@deffnx {C Function} scm_string_fill_x (str, chr)
5676b4fa
MV
3075Stores @var{chr} in every element of the given @var{str} and
3076returns an unspecified value.
07d83abe
MV
3077@end deffn
3078
3079@deffn {Scheme Procedure} substring-fill! str start end fill
3080@deffnx {C Function} scm_substring_fill_x (str, start, end, fill)
3081Change every character in @var{str} between @var{start} and
3082@var{end} to @var{fill}.
3083
3084@lisp
3085(define y "abcdefg")
3086(substring-fill! y 1 3 #\r)
3087y
3088@result{} "arrdefg"
3089@end lisp
3090@end deffn
3091
3092@deffn {Scheme Procedure} substring-move! str1 start1 end1 str2 start2
3093@deffnx {C Function} scm_substring_move_x (str1, start1, end1, str2, start2)
3094Copy the substring of @var{str1} bounded by @var{start1} and @var{end1}
3095into @var{str2} beginning at position @var{start2}.
3096@var{str1} and @var{str2} can be the same string.
3097@end deffn
3098
5676b4fa
MV
3099@deffn {Scheme Procedure} string-copy! target tstart s [start [end]]
3100@deffnx {C Function} scm_string_copy_x (target, tstart, s, start, end)
3101Copy the sequence of characters from index range [@var{start},
3102@var{end}) in string @var{s} to string @var{target}, beginning
3103at index @var{tstart}. The characters are copied left-to-right
3104or right-to-left as needed -- the copy is guaranteed to work,
3105even if @var{target} and @var{s} are the same string. It is an
3106error if the copy operation runs off the end of the target
3107string.
3108@end deffn
3109
07d83abe
MV
3110
3111@node String Comparison
3112@subsubsection String Comparison
3113
3114The procedures in this section are similar to the character ordering
3115predicates (@pxref{Characters}), but are defined on character sequences.
07d83abe 3116
5676b4fa 3117The first set is specified in R5RS and has names that end in @code{?}.
28cc8dac 3118The second set is specified in SRFI-13 and the names have not ending
67af975c 3119@code{?}.
28cc8dac
MG
3120
3121The predicates ending in @code{-ci} ignore the character case
3122when comparing strings. For now, case-insensitive comparison is done
3123using the R5RS rules, where every lower-case character that has a
3124single character upper-case form is converted to uppercase before
3125comparison. See @xref{Text Collation, the @code{(ice-9
b89c4943 3126i18n)} module}, for locale-dependent string comparison.
07d83abe
MV
3127
3128@rnindex string=?
3323ec06
NJ
3129@deffn {Scheme Procedure} string=? [s1 [s2 . rest]]
3130@deffnx {C Function} scm_i_string_equal_p (s1, s2, rest)
07d83abe
MV
3131Lexicographic equality predicate; return @code{#t} if the two
3132strings are the same length and contain the same characters in
3133the same positions, otherwise return @code{#f}.
3134
3135The procedure @code{string-ci=?} treats upper and lower case
3136letters as though they were the same character, but
3137@code{string=?} treats upper and lower case as distinct
3138characters.
3139@end deffn
3140
3141@rnindex string<?
3323ec06
NJ
3142@deffn {Scheme Procedure} string<? [s1 [s2 . rest]]
3143@deffnx {C Function} scm_i_string_less_p (s1, s2, rest)
07d83abe
MV
3144Lexicographic ordering predicate; return @code{#t} if @var{s1}
3145is lexicographically less than @var{s2}.
3146@end deffn
3147
3148@rnindex string<=?
3323ec06
NJ
3149@deffn {Scheme Procedure} string<=? [s1 [s2 . rest]]
3150@deffnx {C Function} scm_i_string_leq_p (s1, s2, rest)
07d83abe
MV
3151Lexicographic ordering predicate; return @code{#t} if @var{s1}
3152is lexicographically less than or equal to @var{s2}.
3153@end deffn
3154
3155@rnindex string>?
3323ec06
NJ
3156@deffn {Scheme Procedure} string>? [s1 [s2 . rest]]
3157@deffnx {C Function} scm_i_string_gr_p (s1, s2, rest)
07d83abe
MV
3158Lexicographic ordering predicate; return @code{#t} if @var{s1}
3159is lexicographically greater than @var{s2}.
3160@end deffn
3161
3162@rnindex string>=?
3323ec06
NJ
3163@deffn {Scheme Procedure} string>=? [s1 [s2 . rest]]
3164@deffnx {C Function} scm_i_string_geq_p (s1, s2, rest)
07d83abe
MV
3165Lexicographic ordering predicate; return @code{#t} if @var{s1}
3166is lexicographically greater than or equal to @var{s2}.
3167@end deffn
3168
3169@rnindex string-ci=?
3323ec06
NJ
3170@deffn {Scheme Procedure} string-ci=? [s1 [s2 . rest]]
3171@deffnx {C Function} scm_i_string_ci_equal_p (s1, s2, rest)
07d83abe
MV
3172Case-insensitive string equality predicate; return @code{#t} if
3173the two strings are the same length and their component
3174characters match (ignoring case) at each position; otherwise
3175return @code{#f}.
3176@end deffn
3177
5676b4fa 3178@rnindex string-ci<?
3323ec06
NJ
3179@deffn {Scheme Procedure} string-ci<? [s1 [s2 . rest]]
3180@deffnx {C Function} scm_i_string_ci_less_p (s1, s2, rest)
07d83abe
MV
3181Case insensitive lexicographic ordering predicate; return
3182@code{#t} if @var{s1} is lexicographically less than @var{s2}
3183regardless of case.
3184@end deffn
3185
3186@rnindex string<=?
3323ec06
NJ
3187@deffn {Scheme Procedure} string-ci<=? [s1 [s2 . rest]]
3188@deffnx {C Function} scm_i_string_ci_leq_p (s1, s2, rest)
07d83abe
MV
3189Case insensitive lexicographic ordering predicate; return
3190@code{#t} if @var{s1} is lexicographically less than or equal
3191to @var{s2} regardless of case.
3192@end deffn
3193
3194@rnindex string-ci>?
3323ec06
NJ
3195@deffn {Scheme Procedure} string-ci>? [s1 [s2 . rest]]
3196@deffnx {C Function} scm_i_string_ci_gr_p (s1, s2, rest)
07d83abe
MV
3197Case insensitive lexicographic ordering predicate; return
3198@code{#t} if @var{s1} is lexicographically greater than
3199@var{s2} regardless of case.
3200@end deffn
3201
3202@rnindex string-ci>=?
3323ec06
NJ
3203@deffn {Scheme Procedure} string-ci>=? [s1 [s2 . rest]]
3204@deffnx {C Function} scm_i_string_ci_geq_p (s1, s2, rest)
07d83abe
MV
3205Case insensitive lexicographic ordering predicate; return
3206@code{#t} if @var{s1} is lexicographically greater than or
3207equal to @var{s2} regardless of case.
3208@end deffn
3209
5676b4fa
MV
3210@deffn {Scheme Procedure} string-compare s1 s2 proc_lt proc_eq proc_gt [start1 [end1 [start2 [end2]]]]
3211@deffnx {C Function} scm_string_compare (s1, s2, proc_lt, proc_eq, proc_gt, start1, end1, start2, end2)
3212Apply @var{proc_lt}, @var{proc_eq}, @var{proc_gt} to the
3213mismatch index, depending upon whether @var{s1} is less than,
3214equal to, or greater than @var{s2}. The mismatch index is the
3215largest index @var{i} such that for every 0 <= @var{j} <
3216@var{i}, @var{s1}[@var{j}] = @var{s2}[@var{j}] -- that is,
3217@var{i} is the first position that does not match.
3218@end deffn
3219
3220@deffn {Scheme Procedure} string-compare-ci s1 s2 proc_lt proc_eq proc_gt [start1 [end1 [start2 [end2]]]]
3221@deffnx {C Function} scm_string_compare_ci (s1, s2, proc_lt, proc_eq, proc_gt, start1, end1, start2, end2)
3222Apply @var{proc_lt}, @var{proc_eq}, @var{proc_gt} to the
3223mismatch index, depending upon whether @var{s1} is less than,
3224equal to, or greater than @var{s2}. The mismatch index is the
3225largest index @var{i} such that for every 0 <= @var{j} <
3226@var{i}, @var{s1}[@var{j}] = @var{s2}[@var{j}] -- that is,
3323ec06
NJ
3227@var{i} is the first position where the lowercased letters
3228do not match.
3229
5676b4fa
MV
3230@end deffn
3231
3232@deffn {Scheme Procedure} string= s1 s2 [start1 [end1 [start2 [end2]]]]
3233@deffnx {C Function} scm_string_eq (s1, s2, start1, end1, start2, end2)
3234Return @code{#f} if @var{s1} and @var{s2} are not equal, a true
3235value otherwise.
3236@end deffn
3237
3238@deffn {Scheme Procedure} string<> s1 s2 [start1 [end1 [start2 [end2]]]]
3239@deffnx {C Function} scm_string_neq (s1, s2, start1, end1, start2, end2)
3240Return @code{#f} if @var{s1} and @var{s2} are equal, a true
3241value otherwise.
3242@end deffn
3243
3244@deffn {Scheme Procedure} string< s1 s2 [start1 [end1 [start2 [end2]]]]
3245@deffnx {C Function} scm_string_lt (s1, s2, start1, end1, start2, end2)
3246Return @code{#f} if @var{s1} is greater or equal to @var{s2}, a
3247true value otherwise.
3248@end deffn
3249
3250@deffn {Scheme Procedure} string> s1 s2 [start1 [end1 [start2 [end2]]]]
3251@deffnx {C Function} scm_string_gt (s1, s2, start1, end1, start2, end2)
3252Return @code{#f} if @var{s1} is less or equal to @var{s2}, a
3253true value otherwise.
3254@end deffn
3255
3256@deffn {Scheme Procedure} string<= s1 s2 [start1 [end1 [start2 [end2]]]]
3257@deffnx {C Function} scm_string_le (s1, s2, start1, end1, start2, end2)
3258Return @code{#f} if @var{s1} is greater to @var{s2}, a true
3259value otherwise.
3260@end deffn
3261
3262@deffn {Scheme Procedure} string>= s1 s2 [start1 [end1 [start2 [end2]]]]
3263@deffnx {C Function} scm_string_ge (s1, s2, start1, end1, start2, end2)
3264Return @code{#f} if @var{s1} is less to @var{s2}, a true value
3265otherwise.
3266@end deffn
3267
3268@deffn {Scheme Procedure} string-ci= s1 s2 [start1 [end1 [start2 [end2]]]]
3269@deffnx {C Function} scm_string_ci_eq (s1, s2, start1, end1, start2, end2)
3270Return @code{#f} if @var{s1} and @var{s2} are not equal, a true
3271value otherwise. The character comparison is done
3272case-insensitively.
3273@end deffn
3274
3275@deffn {Scheme Procedure} string-ci<> s1 s2 [start1 [end1 [start2 [end2]]]]
3276@deffnx {C Function} scm_string_ci_neq (s1, s2, start1, end1, start2, end2)
3277Return @code{#f} if @var{s1} and @var{s2} are equal, a true
3278value otherwise. The character comparison is done
3279case-insensitively.
3280@end deffn
3281
3282@deffn {Scheme Procedure} string-ci< s1 s2 [start1 [end1 [start2 [end2]]]]
3283@deffnx {C Function} scm_string_ci_lt (s1, s2, start1, end1, start2, end2)
3284Return @code{#f} if @var{s1} is greater or equal to @var{s2}, a
3285true value otherwise. The character comparison is done
3286case-insensitively.
3287@end deffn
3288
3289@deffn {Scheme Procedure} string-ci> s1 s2 [start1 [end1 [start2 [end2]]]]
3290@deffnx {C Function} scm_string_ci_gt (s1, s2, start1, end1, start2, end2)
3291Return @code{#f} if @var{s1} is less or equal to @var{s2}, a
3292true value otherwise. The character comparison is done
3293case-insensitively.
3294@end deffn
3295
3296@deffn {Scheme Procedure} string-ci<= s1 s2 [start1 [end1 [start2 [end2]]]]
3297@deffnx {C Function} scm_string_ci_le (s1, s2, start1, end1, start2, end2)
3298Return @code{#f} if @var{s1} is greater to @var{s2}, a true
3299value otherwise. The character comparison is done
3300case-insensitively.
3301@end deffn
3302
3303@deffn {Scheme Procedure} string-ci>= s1 s2 [start1 [end1 [start2 [end2]]]]
3304@deffnx {C Function} scm_string_ci_ge (s1, s2, start1, end1, start2, end2)
3305Return @code{#f} if @var{s1} is less to @var{s2}, a true value
3306otherwise. The character comparison is done
3307case-insensitively.
3308@end deffn
3309
3310@deffn {Scheme Procedure} string-hash s [bound [start [end]]]
3311@deffnx {C Function} scm_substring_hash (s, bound, start, end)
3312Compute a hash value for @var{S}. the optional argument @var{bound} is a non-negative exact integer specifying the range of the hash function. A positive value restricts the return value to the range [0,bound).
3313@end deffn
3314
3315@deffn {Scheme Procedure} string-hash-ci s [bound [start [end]]]
3316@deffnx {C Function} scm_substring_hash_ci (s, bound, start, end)
3317Compute a hash value for @var{S}. the optional argument @var{bound} is a non-negative exact integer specifying the range of the hash function. A positive value restricts the return value to the range [0,bound).
3318@end deffn
07d83abe 3319
edb7bb47
JG
3320Because the same visual appearance of an abstract Unicode character can
3321be obtained via multiple sequences of Unicode characters, even the
3322case-insensitive string comparison functions described above may return
3323@code{#f} when presented with strings containing different
3324representations of the same character. For example, the Unicode
3325character ``LATIN SMALL LETTER S WITH DOT BELOW AND DOT ABOVE'' can be
3326represented with a single character (U+1E69) or by the character ``LATIN
3327SMALL LETTER S'' (U+0073) followed by the combining marks ``COMBINING
3328DOT BELOW'' (U+0323) and ``COMBINING DOT ABOVE'' (U+0307).
3329
3330For this reason, it is often desirable to ensure that the strings
3331to be compared are using a mutually consistent representation for every
3332character. The Unicode standard defines two methods of normalizing the
3333contents of strings: Decomposition, which breaks composite characters
3334into a set of constituent characters with an ordering defined by the
3335Unicode Standard; and composition, which performs the converse.
3336
3337There are two decomposition operations. ``Canonical decomposition''
3338produces character sequences that share the same visual appearance as
3339the original characters, while ``compatiblity decomposition'' produces
3340ones whose visual appearances may differ from the originals but which
3341represent the same abstract character.
3342
3343These operations are encapsulated in the following set of normalization
3344forms:
3345
3346@table @dfn
3347@item NFD
3348Characters are decomposed to their canonical forms.
3349
3350@item NFKD
3351Characters are decomposed to their compatibility forms.
3352
3353@item NFC
3354Characters are decomposed to their canonical forms, then composed.
3355
3356@item NFKC
3357Characters are decomposed to their compatibility forms, then composed.
3358
3359@end table
3360
3361The functions below put their arguments into one of the forms described
3362above.
3363
3364@deffn {Scheme Procedure} string-normalize-nfd s
3365@deffnx {C Function} scm_string_normalize_nfd (s)
3366Return the @code{NFD} normalized form of @var{s}.
3367@end deffn
3368
3369@deffn {Scheme Procedure} string-normalize-nfkd s
3370@deffnx {C Function} scm_string_normalize_nfkd (s)
3371Return the @code{NFKD} normalized form of @var{s}.
3372@end deffn
3373
3374@deffn {Scheme Procedure} string-normalize-nfc s
3375@deffnx {C Function} scm_string_normalize_nfc (s)
3376Return the @code{NFC} normalized form of @var{s}.
3377@end deffn
3378
3379@deffn {Scheme Procedure} string-normalize-nfkc s
3380@deffnx {C Function} scm_string_normalize_nfkc (s)
3381Return the @code{NFKC} normalized form of @var{s}.
3382@end deffn
3383
07d83abe
MV
3384@node String Searching
3385@subsubsection String Searching
3386
5676b4fa
MV
3387@deffn {Scheme Procedure} string-index s char_pred [start [end]]
3388@deffnx {C Function} scm_string_index (s, char_pred, start, end)
3389Search through the string @var{s} from left to right, returning
be3eb25c 3390the index of the first occurrence of a character which
07d83abe 3391
5676b4fa
MV
3392@itemize @bullet
3393@item
3394equals @var{char_pred}, if it is character,
07d83abe 3395
5676b4fa 3396@item
be3eb25c 3397satisfies the predicate @var{char_pred}, if it is a procedure,
07d83abe 3398
5676b4fa
MV
3399@item
3400is in the set @var{char_pred}, if it is a character set.
3401@end itemize
3402@end deffn
07d83abe 3403
5676b4fa
MV
3404@deffn {Scheme Procedure} string-rindex s char_pred [start [end]]
3405@deffnx {C Function} scm_string_rindex (s, char_pred, start, end)
3406Search through the string @var{s} from right to left, returning
be3eb25c 3407the index of the last occurrence of a character which
5676b4fa
MV
3408
3409@itemize @bullet
3410@item
3411equals @var{char_pred}, if it is character,
3412
3413@item
be3eb25c 3414satisfies the predicate @var{char_pred}, if it is a procedure,
5676b4fa
MV
3415
3416@item
3417is in the set if @var{char_pred} is a character set.
3418@end itemize
07d83abe
MV
3419@end deffn
3420
5676b4fa
MV
3421@deffn {Scheme Procedure} string-prefix-length s1 s2 [start1 [end1 [start2 [end2]]]]
3422@deffnx {C Function} scm_string_prefix_length (s1, s2, start1, end1, start2, end2)
3423Return the length of the longest common prefix of the two
3424strings.
3425@end deffn
07d83abe 3426
5676b4fa
MV
3427@deffn {Scheme Procedure} string-prefix-length-ci s1 s2 [start1 [end1 [start2 [end2]]]]
3428@deffnx {C Function} scm_string_prefix_length_ci (s1, s2, start1, end1, start2, end2)
3429Return the length of the longest common prefix of the two
3430strings, ignoring character case.
3431@end deffn
07d83abe 3432
5676b4fa
MV
3433@deffn {Scheme Procedure} string-suffix-length s1 s2 [start1 [end1 [start2 [end2]]]]
3434@deffnx {C Function} scm_string_suffix_length (s1, s2, start1, end1, start2, end2)
3435Return the length of the longest common suffix of the two
3436strings.
3437@end deffn
07d83abe 3438
5676b4fa
MV
3439@deffn {Scheme Procedure} string-suffix-length-ci s1 s2 [start1 [end1 [start2 [end2]]]]
3440@deffnx {C Function} scm_string_suffix_length_ci (s1, s2, start1, end1, start2, end2)
3441Return the length of the longest common suffix of the two
3442strings, ignoring character case.
3443@end deffn
3444
3445@deffn {Scheme Procedure} string-prefix? s1 s2 [start1 [end1 [start2 [end2]]]]
3446@deffnx {C Function} scm_string_prefix_p (s1, s2, start1, end1, start2, end2)
3447Is @var{s1} a prefix of @var{s2}?
3448@end deffn
3449
3450@deffn {Scheme Procedure} string-prefix-ci? s1 s2 [start1 [end1 [start2 [end2]]]]
3451@deffnx {C Function} scm_string_prefix_ci_p (s1, s2, start1, end1, start2, end2)
3452Is @var{s1} a prefix of @var{s2}, ignoring character case?
3453@end deffn
3454
3455@deffn {Scheme Procedure} string-suffix? s1 s2 [start1 [end1 [start2 [end2]]]]
3456@deffnx {C Function} scm_string_suffix_p (s1, s2, start1, end1, start2, end2)
3457Is @var{s1} a suffix of @var{s2}?
3458@end deffn
3459
3460@deffn {Scheme Procedure} string-suffix-ci? s1 s2 [start1 [end1 [start2 [end2]]]]
3461@deffnx {C Function} scm_string_suffix_ci_p (s1, s2, start1, end1, start2, end2)
3462Is @var{s1} a suffix of @var{s2}, ignoring character case?
3463@end deffn
3464
3465@deffn {Scheme Procedure} string-index-right s char_pred [start [end]]
3466@deffnx {C Function} scm_string_index_right (s, char_pred, start, end)
3467Search through the string @var{s} from right to left, returning
be3eb25c 3468the index of the last occurrence of a character which
5676b4fa
MV
3469
3470@itemize @bullet
3471@item
3472equals @var{char_pred}, if it is character,
3473
3474@item
be3eb25c 3475satisfies the predicate @var{char_pred}, if it is a procedure,
5676b4fa
MV
3476
3477@item
3478is in the set if @var{char_pred} is a character set.
3479@end itemize
3480@end deffn
3481
3482@deffn {Scheme Procedure} string-skip s char_pred [start [end]]
3483@deffnx {C Function} scm_string_skip (s, char_pred, start, end)
3484Search through the string @var{s} from left to right, returning
be3eb25c 3485the index of the first occurrence of a character which
5676b4fa
MV
3486
3487@itemize @bullet
3488@item
3489does not equal @var{char_pred}, if it is character,
3490
3491@item
be3eb25c 3492does not satisfy the predicate @var{char_pred}, if it is a
5676b4fa
MV
3493procedure,
3494
3495@item
3496is not in the set if @var{char_pred} is a character set.
3497@end itemize
3498@end deffn
3499
3500@deffn {Scheme Procedure} string-skip-right s char_pred [start [end]]
3501@deffnx {C Function} scm_string_skip_right (s, char_pred, start, end)
3502Search through the string @var{s} from right to left, returning
be3eb25c 3503the index of the last occurrence of a character which
5676b4fa
MV
3504
3505@itemize @bullet
3506@item
3507does not equal @var{char_pred}, if it is character,
3508
3509@item
3510does not satisfy the predicate @var{char_pred}, if it is a
3511procedure,
3512
3513@item
3514is not in the set if @var{char_pred} is a character set.
3515@end itemize
3516@end deffn
3517
3518@deffn {Scheme Procedure} string-count s char_pred [start [end]]
3519@deffnx {C Function} scm_string_count (s, char_pred, start, end)
3520Return the count of the number of characters in the string
3521@var{s} which
3522
3523@itemize @bullet
3524@item
3525equals @var{char_pred}, if it is character,
3526
3527@item
be3eb25c 3528satisfies the predicate @var{char_pred}, if it is a procedure.
5676b4fa
MV
3529
3530@item
3531is in the set @var{char_pred}, if it is a character set.
3532@end itemize
3533@end deffn
3534
3535@deffn {Scheme Procedure} string-contains s1 s2 [start1 [end1 [start2 [end2]]]]
3536@deffnx {C Function} scm_string_contains (s1, s2, start1, end1, start2, end2)
3537Does string @var{s1} contain string @var{s2}? Return the index
3538in @var{s1} where @var{s2} occurs as a substring, or false.
3539The optional start/end indices restrict the operation to the
3540indicated substrings.
3541@end deffn
3542
3543@deffn {Scheme Procedure} string-contains-ci s1 s2 [start1 [end1 [start2 [end2]]]]
3544@deffnx {C Function} scm_string_contains_ci (s1, s2, start1, end1, start2, end2)
3545Does string @var{s1} contain string @var{s2}? Return the index
3546in @var{s1} where @var{s2} occurs as a substring, or false.
3547The optional start/end indices restrict the operation to the
3548indicated substrings. Character comparison is done
3549case-insensitively.
07d83abe
MV
3550@end deffn
3551
3552@node Alphabetic Case Mapping
3553@subsubsection Alphabetic Case Mapping
3554
3555These are procedures for mapping strings to their upper- or lower-case
3556equivalents, respectively, or for capitalizing strings.
3557
67af975c
MG
3558They use the basic case mapping rules for Unicode characters. No
3559special language or context rules are considered. The resulting strings
3560are guaranteed to be the same length as the input strings.
3561
3562@xref{Character Case Mapping, the @code{(ice-9
3563i18n)} module}, for locale-dependent case conversions.
3564
5676b4fa
MV
3565@deffn {Scheme Procedure} string-upcase str [start [end]]
3566@deffnx {C Function} scm_substring_upcase (str, start, end)
07d83abe 3567@deffnx {C Function} scm_string_upcase (str)
5676b4fa 3568Upcase every character in @code{str}.
07d83abe
MV
3569@end deffn
3570
5676b4fa
MV
3571@deffn {Scheme Procedure} string-upcase! str [start [end]]
3572@deffnx {C Function} scm_substring_upcase_x (str, start, end)
07d83abe 3573@deffnx {C Function} scm_string_upcase_x (str)
5676b4fa
MV
3574Destructively upcase every character in @code{str}.
3575
07d83abe 3576@lisp
5676b4fa
MV
3577(string-upcase! y)
3578@result{} "ARRDEFG"
3579y
3580@result{} "ARRDEFG"
07d83abe
MV
3581@end lisp
3582@end deffn
3583
5676b4fa
MV
3584@deffn {Scheme Procedure} string-downcase str [start [end]]
3585@deffnx {C Function} scm_substring_downcase (str, start, end)
07d83abe 3586@deffnx {C Function} scm_string_downcase (str)
5676b4fa 3587Downcase every character in @var{str}.
07d83abe
MV
3588@end deffn
3589
5676b4fa
MV
3590@deffn {Scheme Procedure} string-downcase! str [start [end]]
3591@deffnx {C Function} scm_substring_downcase_x (str, start, end)
07d83abe 3592@deffnx {C Function} scm_string_downcase_x (str)
5676b4fa
MV
3593Destructively downcase every character in @var{str}.
3594
07d83abe 3595@lisp
5676b4fa
MV
3596y
3597@result{} "ARRDEFG"
3598(string-downcase! y)
3599@result{} "arrdefg"
3600y
3601@result{} "arrdefg"
07d83abe
MV
3602@end lisp
3603@end deffn
3604
3605@deffn {Scheme Procedure} string-capitalize str
3606@deffnx {C Function} scm_string_capitalize (str)
3607Return a freshly allocated string with the characters in
3608@var{str}, where the first character of every word is
3609capitalized.
3610@end deffn
3611
3612@deffn {Scheme Procedure} string-capitalize! str
3613@deffnx {C Function} scm_string_capitalize_x (str)
3614Upcase the first character of every word in @var{str}
3615destructively and return @var{str}.
3616
3617@lisp
3618y @result{} "hello world"
3619(string-capitalize! y) @result{} "Hello World"
3620y @result{} "Hello World"
3621@end lisp
3622@end deffn
3623
5676b4fa
MV
3624@deffn {Scheme Procedure} string-titlecase str [start [end]]
3625@deffnx {C Function} scm_string_titlecase (str, start, end)
3626Titlecase every first character in a word in @var{str}.
3627@end deffn
07d83abe 3628
5676b4fa
MV
3629@deffn {Scheme Procedure} string-titlecase! str [start [end]]
3630@deffnx {C Function} scm_string_titlecase_x (str, start, end)
3631Destructively titlecase every first character in a word in
3632@var{str}.
3633@end deffn
3634
3635@node Reversing and Appending Strings
3636@subsubsection Reversing and Appending Strings
07d83abe 3637
5676b4fa
MV
3638@deffn {Scheme Procedure} string-reverse str [start [end]]
3639@deffnx {C Function} scm_string_reverse (str, start, end)
3640Reverse the string @var{str}. The optional arguments
3641@var{start} and @var{end} delimit the region of @var{str} to
3642operate on.
3643@end deffn
3644
3645@deffn {Scheme Procedure} string-reverse! str [start [end]]
3646@deffnx {C Function} scm_string_reverse_x (str, start, end)
3647Reverse the string @var{str} in-place. The optional arguments
3648@var{start} and @var{end} delimit the region of @var{str} to
3649operate on. The return value is unspecified.
3650@end deffn
07d83abe
MV
3651
3652@rnindex string-append
3653@deffn {Scheme Procedure} string-append . args
3654@deffnx {C Function} scm_string_append (args)
3655Return a newly allocated string whose characters form the
3656concatenation of the given strings, @var{args}.
3657
3658@example
3659(let ((h "hello "))
3660 (string-append h "world"))
3661@result{} "hello world"
3662@end example
3663@end deffn
3664
3323ec06
NJ
3665@deffn {Scheme Procedure} string-append/shared . rest
3666@deffnx {C Function} scm_string_append_shared (rest)
5676b4fa
MV
3667Like @code{string-append}, but the result may share memory
3668with the argument strings.
3669@end deffn
3670
3671@deffn {Scheme Procedure} string-concatenate ls
3672@deffnx {C Function} scm_string_concatenate (ls)
3673Append the elements of @var{ls} (which must be strings)
3674together into a single string. Guaranteed to return a freshly
3675allocated string.
3676@end deffn
3677
3678@deffn {Scheme Procedure} string-concatenate-reverse ls [final_string [end]]
3679@deffnx {C Function} scm_string_concatenate_reverse (ls, final_string, end)
3680Without optional arguments, this procedure is equivalent to
3681
aba0dff5 3682@lisp
5676b4fa 3683(string-concatenate (reverse ls))
aba0dff5 3684@end lisp
5676b4fa
MV
3685
3686If the optional argument @var{final_string} is specified, it is
3687consed onto the beginning to @var{ls} before performing the
3688list-reverse and string-concatenate operations. If @var{end}
3689is given, only the characters of @var{final_string} up to index
3690@var{end} are used.
3691
3692Guaranteed to return a freshly allocated string.
3693@end deffn
3694
3695@deffn {Scheme Procedure} string-concatenate/shared ls
3696@deffnx {C Function} scm_string_concatenate_shared (ls)
3697Like @code{string-concatenate}, but the result may share memory
3698with the strings in the list @var{ls}.
3699@end deffn
3700
3701@deffn {Scheme Procedure} string-concatenate-reverse/shared ls [final_string [end]]
3702@deffnx {C Function} scm_string_concatenate_reverse_shared (ls, final_string, end)
3703Like @code{string-concatenate-reverse}, but the result may
72b3aa56 3704share memory with the strings in the @var{ls} arguments.
5676b4fa
MV
3705@end deffn
3706
3707@node Mapping Folding and Unfolding
3708@subsubsection Mapping, Folding, and Unfolding
3709
3710@deffn {Scheme Procedure} string-map proc s [start [end]]
3711@deffnx {C Function} scm_string_map (proc, s, start, end)
3712@var{proc} is a char->char procedure, it is mapped over
3713@var{s}. The order in which the procedure is applied to the
3714string elements is not specified.
3715@end deffn
3716
3717@deffn {Scheme Procedure} string-map! proc s [start [end]]
3718@deffnx {C Function} scm_string_map_x (proc, s, start, end)
3719@var{proc} is a char->char procedure, it is mapped over
3720@var{s}. The order in which the procedure is applied to the
3721string elements is not specified. The string @var{s} is
3722modified in-place, the return value is not specified.
3723@end deffn
3724
3725@deffn {Scheme Procedure} string-for-each proc s [start [end]]
3726@deffnx {C Function} scm_string_for_each (proc, s, start, end)
3727@var{proc} is mapped over @var{s} in left-to-right order. The
3728return value is not specified.
3729@end deffn
3730
3731@deffn {Scheme Procedure} string-for-each-index proc s [start [end]]
3732@deffnx {C Function} scm_string_for_each_index (proc, s, start, end)
2a7820f2
KR
3733Call @code{(@var{proc} i)} for each index i in @var{s}, from left to
3734right.
3735
3736For example, to change characters to alternately upper and lower case,
3737
3738@example
3739(define str (string-copy "studly"))
45867c2a
NJ
3740(string-for-each-index
3741 (lambda (i)
3742 (string-set! str i
3743 ((if (even? i) char-upcase char-downcase)
3744 (string-ref str i))))
3745 str)
2a7820f2
KR
3746str @result{} "StUdLy"
3747@end example
5676b4fa
MV
3748@end deffn
3749
3750@deffn {Scheme Procedure} string-fold kons knil s [start [end]]
3751@deffnx {C Function} scm_string_fold (kons, knil, s, start, end)
3752Fold @var{kons} over the characters of @var{s}, with @var{knil}
3753as the terminating element, from left to right. @var{kons}
3754must expect two arguments: The actual character and the last
3755result of @var{kons}' application.
3756@end deffn
3757
3758@deffn {Scheme Procedure} string-fold-right kons knil s [start [end]]
3759@deffnx {C Function} scm_string_fold_right (kons, knil, s, start, end)
3760Fold @var{kons} over the characters of @var{s}, with @var{knil}
3761as the terminating element, from right to left. @var{kons}
3762must expect two arguments: The actual character and the last
3763result of @var{kons}' application.
3764@end deffn
3765
3766@deffn {Scheme Procedure} string-unfold p f g seed [base [make_final]]
3767@deffnx {C Function} scm_string_unfold (p, f, g, seed, base, make_final)
3768@itemize @bullet
3769@item @var{g} is used to generate a series of @emph{seed}
3770values from the initial @var{seed}: @var{seed}, (@var{g}
3771@var{seed}), (@var{g}^2 @var{seed}), (@var{g}^3 @var{seed}),
3772@dots{}
3773@item @var{p} tells us when to stop -- when it returns true
3774when applied to one of these seed values.
3775@item @var{f} maps each seed value to the corresponding
3776character in the result string. These chars are assembled
3777into the string in a left-to-right order.
3778@item @var{base} is the optional initial/leftmost portion
3779of the constructed string; it default to the empty
3780string.
3781@item @var{make_final} is applied to the terminal seed
3782value (on which @var{p} returns true) to produce
3783the final/rightmost portion of the constructed string.
9a18d8d4 3784The default is nothing extra.
5676b4fa
MV
3785@end itemize
3786@end deffn
3787
3788@deffn {Scheme Procedure} string-unfold-right p f g seed [base [make_final]]
3789@deffnx {C Function} scm_string_unfold_right (p, f, g, seed, base, make_final)
3790@itemize @bullet
3791@item @var{g} is used to generate a series of @emph{seed}
3792values from the initial @var{seed}: @var{seed}, (@var{g}
3793@var{seed}), (@var{g}^2 @var{seed}), (@var{g}^3 @var{seed}),
3794@dots{}
3795@item @var{p} tells us when to stop -- when it returns true
3796when applied to one of these seed values.
3797@item @var{f} maps each seed value to the corresponding
3798character in the result string. These chars are assembled
3799into the string in a right-to-left order.
3800@item @var{base} is the optional initial/rightmost portion
3801of the constructed string; it default to the empty
3802string.
3803@item @var{make_final} is applied to the terminal seed
3804value (on which @var{p} returns true) to produce
3805the final/leftmost portion of the constructed string.
3806It defaults to @code{(lambda (x) )}.
3807@end itemize
3808@end deffn
3809
3810@node Miscellaneous String Operations
3811@subsubsection Miscellaneous String Operations
3812
3813@deffn {Scheme Procedure} xsubstring s from [to [start [end]]]
3814@deffnx {C Function} scm_xsubstring (s, from, to, start, end)
3815This is the @emph{extended substring} procedure that implements
3816replicated copying of a substring of some string.
3817
3818@var{s} is a string, @var{start} and @var{end} are optional
3819arguments that demarcate a substring of @var{s}, defaulting to
38200 and the length of @var{s}. Replicate this substring up and
3821down index space, in both the positive and negative directions.
3822@code{xsubstring} returns the substring of this string
3823beginning at index @var{from}, and ending at @var{to}, which
3824defaults to @var{from} + (@var{end} - @var{start}).
3825@end deffn
3826
3827@deffn {Scheme Procedure} string-xcopy! target tstart s sfrom [sto [start [end]]]
3828@deffnx {C Function} scm_string_xcopy_x (target, tstart, s, sfrom, sto, start, end)
3829Exactly the same as @code{xsubstring}, but the extracted text
3830is written into the string @var{target} starting at index
3831@var{tstart}. The operation is not defined if @code{(eq?
3832@var{target} @var{s})} or these arguments share storage -- you
3833cannot copy a string on top of itself.
3834@end deffn
3835
3836@deffn {Scheme Procedure} string-replace s1 s2 [start1 [end1 [start2 [end2]]]]
3837@deffnx {C Function} scm_string_replace (s1, s2, start1, end1, start2, end2)
3838Return the string @var{s1}, but with the characters
3839@var{start1} @dots{} @var{end1} replaced by the characters
3840@var{start2} @dots{} @var{end2} from @var{s2}.
3841@end deffn
3842
3843@deffn {Scheme Procedure} string-tokenize s [token_set [start [end]]]
3844@deffnx {C Function} scm_string_tokenize (s, token_set, start, end)
3845Split the string @var{s} into a list of substrings, where each
3846substring is a maximal non-empty contiguous sequence of
3847characters from the character set @var{token_set}, which
3848defaults to @code{char-set:graphic}.
3849If @var{start} or @var{end} indices are provided, they restrict
3850@code{string-tokenize} to operating on the indicated substring
3851of @var{s}.
3852@end deffn
3853
3854@deffn {Scheme Procedure} string-filter s char_pred [start [end]]
3855@deffnx {C Function} scm_string_filter (s, char_pred, start, end)
08de3e24 3856Filter the string @var{s}, retaining only those characters which
a88e2a96 3857satisfy @var{char_pred}.
08de3e24
KR
3858
3859If @var{char_pred} is a procedure, it is applied to each character as
3860a predicate, if it is a character, it is tested for equality and if it
3861is a character set, it is tested for membership.
5676b4fa
MV
3862@end deffn
3863
3864@deffn {Scheme Procedure} string-delete s char_pred [start [end]]
3865@deffnx {C Function} scm_string_delete (s, char_pred, start, end)
a88e2a96 3866Delete characters satisfying @var{char_pred} from @var{s}.
08de3e24
KR
3867
3868If @var{char_pred} is a procedure, it is applied to each character as
3869a predicate, if it is a character, it is tested for equality and if it
3870is a character set, it is tested for membership.
5676b4fa
MV
3871@end deffn
3872
91210d62
MV
3873@node Conversion to/from C
3874@subsubsection Conversion to/from C
3875
3876When creating a Scheme string from a C string or when converting a
3877Scheme string to a C string, the concept of character encoding becomes
3878important.
3879
3880In C, a string is just a sequence of bytes, and the character encoding
3881describes the relation between these bytes and the actual characters
c88453e8
MV
3882that make up the string. For Scheme strings, character encoding is
3883not an issue (most of the time), since in Scheme you never get to see
3884the bytes, only the characters.
91210d62 3885
67af975c
MG
3886Converting to C and converting from C each have their own challenges.
3887
3888When converting from C to Scheme, it is important that the sequence of
3889bytes in the C string be valid with respect to its encoding. ASCII
3890strings, for example, can't have any bytes greater than 127. An ASCII
3891byte greater than 127 is considered @emph{ill-formed} and cannot be
3892converted into a Scheme character.
3893
3894Problems can occur in the reverse operation as well. Not all character
3895encodings can hold all possible Scheme characters. Some encodings, like
3896ASCII for example, can only describe a small subset of all possible
3897characters. So, when converting to C, one must first decide what to do
3898with Scheme characters that can't be represented in the C string.
91210d62 3899
c88453e8
MV
3900Converting a Scheme string to a C string will often allocate fresh
3901memory to hold the result. You must take care that this memory is
3902properly freed eventually. In many cases, this can be achieved by
661ae7ab
MV
3903using @code{scm_dynwind_free} inside an appropriate dynwind context,
3904@xref{Dynamic Wind}.
91210d62
MV
3905
3906@deftypefn {C Function} SCM scm_from_locale_string (const char *str)
3907@deftypefnx {C Function} SCM scm_from_locale_stringn (const char *str, size_t len)
67af975c
MG
3908Creates a new Scheme string that has the same contents as @var{str} when
3909interpreted in the locale character encoding of the
3910@code{current-input-port}.
91210d62
MV
3911
3912For @code{scm_from_locale_string}, @var{str} must be null-terminated.
3913
3914For @code{scm_from_locale_stringn}, @var{len} specifies the length of
3915@var{str} in bytes, and @var{str} does not need to be null-terminated.
3916If @var{len} is @code{(size_t)-1}, then @var{str} does need to be
3917null-terminated and the real length will be found with @code{strlen}.
67af975c
MG
3918
3919If the C string is ill-formed, an error will be raised.
91210d62
MV
3920@end deftypefn
3921
3922@deftypefn {C Function} SCM scm_take_locale_string (char *str)
3923@deftypefnx {C Function} SCM scm_take_locale_stringn (char *str, size_t len)
3924Like @code{scm_from_locale_string} and @code{scm_from_locale_stringn},
3925respectively, but also frees @var{str} with @code{free} eventually.
3926Thus, you can use this function when you would free @var{str} anyway
3927immediately after creating the Scheme string. In certain cases, Guile
3928can then use @var{str} directly as its internal representation.
3929@end deftypefn
3930
4846ae2c
KR
3931@deftypefn {C Function} {char *} scm_to_locale_string (SCM str)
3932@deftypefnx {C Function} {char *} scm_to_locale_stringn (SCM str, size_t *lenp)
67af975c
MG
3933Returns a C string with the same contents as @var{str} in the locale
3934encoding of the @code{current-output-port}. The C string must be freed
3935with @code{free} eventually, maybe by using @code{scm_dynwind_free},
3936@xref{Dynamic Wind}.
91210d62
MV
3937
3938For @code{scm_to_locale_string}, the returned string is
3939null-terminated and an error is signalled when @var{str} contains
3940@code{#\nul} characters.
3941
3942For @code{scm_to_locale_stringn} and @var{lenp} not @code{NULL},
3943@var{str} might contain @code{#\nul} characters and the length of the
3944returned string in bytes is stored in @code{*@var{lenp}}. The
3945returned string will not be null-terminated in this case. If
3946@var{lenp} is @code{NULL}, @code{scm_to_locale_stringn} behaves like
3947@code{scm_to_locale_string}.
67af975c
MG
3948
3949If a character in @var{str} cannot be represented in the locale encoding
3950of the current output port, the port conversion strategy of the current
3951output port will determine the result, @xref{Ports}. If output port's
3952conversion strategy is @code{error}, an error will be raised. If it is
3953@code{subsitute}, a replacement character, such as a question mark, will
3954be inserted in its place. If it is @code{escape}, a hex escape will be
3955inserted in its place.
91210d62
MV
3956@end deftypefn
3957
3958@deftypefn {C Function} size_t scm_to_locale_stringbuf (SCM str, char *buf, size_t max_len)
3959Puts @var{str} as a C string in the current locale encoding into the
3960memory pointed to by @var{buf}. The buffer at @var{buf} has room for
3961@var{max_len} bytes and @code{scm_to_local_stringbuf} will never store
3962more than that. No terminating @code{'\0'} will be stored.
3963
3964The return value of @code{scm_to_locale_stringbuf} is the number of
3965bytes that are needed for all of @var{str}, regardless of whether
3966@var{buf} was large enough to hold them. Thus, when the return value
3967is larger than @var{max_len}, only @var{max_len} bytes have been
3968stored and you probably need to try again with a larger buffer.
3969@end deftypefn
cf313a94
MG
3970
3971For most situations, string conversion should occur using the current
3972locale, such as with the functions above. But there may be cases where
3973one wants to convert strings from a character encoding other than the
3974locale's character encoding. For these cases, the lower-level functions
3975@code{scm_to_stringn} and @code{scm_from_stringn} are provided. These
3976functions should seldom be necessary if one is properly using locales.
3977
3978@deftp {C Type} scm_t_string_failed_conversion_handler
3979This is an enumerated type that can take one of three values:
3980@code{SCM_FAILED_CONVERSION_ERROR},
3981@code{SCM_FAILED_CONVERSION_QUESTION_MARK}, and
3982@code{SCM_FAILED_CONVERSION_ESCAPE_SEQUENCE}. They are used to indicate
3983a strategy for handling characters that cannot be converted to or from a
3984given character encoding. @code{SCM_FAILED_CONVERSION_ERROR} indicates
3985that a conversion should throw an error if some characters cannot be
3986converted. @code{SCM_FAILED_CONVERSION_QUESTION_MARK} indicates that a
3987conversion should replace unconvertable characters with the question
3988mark character. And, @code{SCM_FAILED_CONVERSION_ESCAPE_SEQUENCE}
3989requests that a conversion should replace an unconvertable character
3990with an escape sequence.
3991
3992While all three strategies apply when converting Scheme strings to C,
3993only @code{SCM_FAILED_CONVERSION_ERROR} and
3994@code{SCM_FAILED_CONVERSION_QUESTION_MARK} can be used when converting C
3995strings to Scheme.
3996@end deftp
3997
3998@deftypefn {C Function} char *scm_to_stringn (SCM str, size_t *lenp, const char *encoding, scm_t_string_failed_conversion_handler handler)
3999This function returns a newly allocated C string from the Guile string
4000@var{str}. The length of the string will be returned in @var{lenp}.
4001The character encoding of the C string is passed as the ASCII,
4002null-terminated C string @var{encoding}. The @var{handler} parameter
4003gives a strategy for dealing with characters that cannot be converted
4004into @var{encoding}.
4005
4006If @var{lenp} is NULL, this function will return a null-terminated C
4007string. It will throw an error if the string contains a null
4008character.
4009@end deftypefn
4010
4011@deftypefn {C Function} SCM scm_from_stringn (const char *str, size_t len, const char *encoding, scm_t_string_failed_conversion_handler handler)
4012This function returns a scheme string from the C string @var{str}. The
4013length of the C string is input as @var{len}. The encoding of the C
4014string is passed as the ASCII, null-terminated C string @code{encoding}.
4015The @var{handler} parameters suggests a strategy for dealing with
4016unconvertable characters.
4017@end deftypefn
4018
4019ISO-8859-1 is the most common 8-bit character encoding. This encoding
4020is also referred to as the Latin-1 encoding. The following two
4021conversion functions are provided to convert between Latin-1 C strings
4022and Guile strings.
4023
4024@deftypefn {C Function} SCM scm_from_latin1_stringn (const char *str, size_t len)
4025This function returns a scheme string from an ISO-8859-1-encoded C
4026string @var{str} of length @var{len}.
4027@end deftypefn
4028
4029@deftypefn {C function} char * scm_to_latin1_stringn (SCM str, size_t *lenp)
4030This function returns a newly allocated, ISO-8859-1-encoded C string
4031from the scheme string @var{str}. An error will be thrown if the scheme
4032string cannot be converted to the ISO-8859-1 encoding. If @var{lenp} is
4033@code{NULL}, the returned C string will be null terminated, and an error
4034will be thrown if the C string would otherwise contain null
4035characters. If @var{lenp} is not NULL, the length of the string is
4036returned in @var{lenp}, and the string is not null terminated.
4037@end deftypefn
07d83abe 4038
5b6b22e8
MG
4039@node String Internals
4040@subsubsection String Internals
4041
4042Guile stores each string in memory as a contiguous array of Unicode code
4043points along with an associated set of attributes. If all of the code
4044points of a string have an integer range between 0 and 255 inclusive,
4045the code point array is stored as one byte per code point: it is stored
4046as an ISO-8859-1 (aka Latin-1) string. If any of the code points of the
4047string has an integer value greater that 255, the code point array is
4048stored as four bytes per code point: it is stored as a UTF-32 string.
4049
4050Conversion between the one-byte-per-code-point and
4051four-bytes-per-code-point representations happens automatically as
4052necessary.
4053
4054No API is provided to set the internal representation of strings;
4055however, there are pair of procedures available to query it. These are
4056debugging procedures. Using them in production code is discouraged,
4057since the details of Guile's internal representation of strings may
4058change from release to release.
4059
4060@deffn {Scheme Procedure} string-bytes-per-char str
4061@deffnx {C Function} scm_string_bytes_per_char (str)
4062Return the number of bytes used to encode a Unicode code point in string
4063@var{str}. The result is one or four.
4064@end deffn
4065
4066@deffn {Scheme Procedure} %string-dump str
4067@deffnx {C Function} scm_sys_string_dump (str)
4068Returns an association list containing debugging information for
4069@var{str}. The association list has the following entries.
4070@table @code
4071
4072@item string
4073The string itself.
4074
4075@item start
4076The start index of the string into its stringbuf
4077
4078@item length
4079The length of the string
4080
4081@item shared
4082If this string is a substring, it returns its
4083parent string. Otherwise, it returns @code{#f}
4084
4085@item read-only
4086@code{#t} if the string is read-only
4087
4088@item stringbuf-chars
4089A new string containing this string's stringbuf's characters
4090
4091@item stringbuf-length
4092The number of characters in this stringbuf
4093
4094@item stringbuf-shared
4095@code{#t} if this stringbuf is shared
4096
4097@item stringbuf-wide
4098@code{#t} if this stringbuf's characters are stored in a 32-bit buffer,
4099or @code{#f} if they are stored in an 8-bit buffer
4100@end table
4101@end deffn
4102
4103
b242715b
LC
4104@node Bytevectors
4105@subsection Bytevectors
4106
4107@cindex bytevector
4108@cindex R6RS
4109
07d22c02 4110A @dfn{bytevector} is a raw bit string. The @code{(rnrs bytevectors)}
b242715b 4111module provides the programming interface specified by the
5fa2deb3 4112@uref{http://www.r6rs.org/, Revised^6 Report on the Algorithmic Language
b242715b
LC
4113Scheme (R6RS)}. It contains procedures to manipulate bytevectors and
4114interpret their contents in a number of ways: bytevector contents can be
4115accessed as signed or unsigned integer of various sizes and endianness,
4116as IEEE-754 floating point numbers, or as strings. It is a useful tool
4117to encode and decode binary data.
4118
4119The R6RS (Section 4.3.4) specifies an external representation for
4120bytevectors, whereby the octets (integers in the range 0--255) contained
4121in the bytevector are represented as a list prefixed by @code{#vu8}:
4122
4123@lisp
4124#vu8(1 53 204)
4125@end lisp
4126
4127denotes a 3-byte bytevector containing the octets 1, 53, and 204. Like
4128string literals, booleans, etc., bytevectors are ``self-quoting'', i.e.,
4129they do not need to be quoted:
4130
4131@lisp
4132#vu8(1 53 204)
4133@result{} #vu8(1 53 204)
4134@end lisp
4135
4136Bytevectors can be used with the binary input/output primitives of the
4137R6RS (@pxref{R6RS I/O Ports}).
4138
4139@menu
4140* Bytevector Endianness:: Dealing with byte order.
4141* Bytevector Manipulation:: Creating, copying, manipulating bytevectors.
4142* Bytevectors as Integers:: Interpreting bytes as integers.
4143* Bytevectors and Integer Lists:: Converting to/from an integer list.
4144* Bytevectors as Floats:: Interpreting bytes as real numbers.
4145* Bytevectors as Strings:: Interpreting bytes as Unicode strings.
438974d0 4146* Bytevectors as Generalized Vectors:: Guile extension to the bytevector API.
27219b32 4147* Bytevectors as Uniform Vectors:: Bytevectors and SRFI-4.
b242715b
LC
4148@end menu
4149
4150@node Bytevector Endianness
4151@subsubsection Endianness
4152
4153@cindex endianness
4154@cindex byte order
4155@cindex word order
4156
4157Some of the following procedures take an @var{endianness} parameter.
5fa2deb3
AW
4158The @dfn{endianness} is defined as the order of bytes in multi-byte
4159numbers: numbers encoded in @dfn{big endian} have their most
4160significant bytes written first, whereas numbers encoded in
4161@dfn{little endian} have their least significant bytes
4162first@footnote{Big-endian and little-endian are the most common
4163``endiannesses'', but others do exist. For instance, the GNU MP
4164library allows @dfn{word order} to be specified independently of
4165@dfn{byte order} (@pxref{Integer Import and Export,,, gmp, The GNU
4166Multiple Precision Arithmetic Library Manual}).}.
4167
4168Little-endian is the native endianness of the IA32 architecture and
4169its derivatives, while big-endian is native to SPARC and PowerPC,
4170among others. The @code{native-endianness} procedure returns the
4171native endianness of the machine it runs on.
b242715b
LC
4172
4173@deffn {Scheme Procedure} native-endianness
4174@deffnx {C Function} scm_native_endianness ()
4175Return a value denoting the native endianness of the host machine.
4176@end deffn
4177
4178@deffn {Scheme Macro} endianness symbol
4179Return an object denoting the endianness specified by @var{symbol}. If
5fa2deb3
AW
4180@var{symbol} is neither @code{big} nor @code{little} then an error is
4181raised at expand-time.
b242715b
LC
4182@end deffn
4183
4184@defvr {C Variable} scm_endianness_big
4185@defvrx {C Variable} scm_endianness_little
5fa2deb3 4186The objects denoting big- and little-endianness, respectively.
b242715b
LC
4187@end defvr
4188
4189
4190@node Bytevector Manipulation
4191@subsubsection Manipulating Bytevectors
4192
4193Bytevectors can be created, copied, and analyzed with the following
404bb5f8 4194procedures and C functions.
b242715b
LC
4195
4196@deffn {Scheme Procedure} make-bytevector len [fill]
4197@deffnx {C Function} scm_make_bytevector (len, fill)
2d34e924 4198@deffnx {C Function} scm_c_make_bytevector (size_t len)
b242715b 4199Return a new bytevector of @var{len} bytes. Optionally, if @var{fill}
d64fc8b0
LC
4200is given, fill it with @var{fill}; @var{fill} must be in the range
4201[-128,255].
b242715b
LC
4202@end deffn
4203
4204@deffn {Scheme Procedure} bytevector? obj
4205@deffnx {C Function} scm_bytevector_p (obj)
4206Return true if @var{obj} is a bytevector.
4207@end deffn
4208
404bb5f8
LC
4209@deftypefn {C Function} int scm_is_bytevector (SCM obj)
4210Equivalent to @code{scm_is_true (scm_bytevector_p (obj))}.
4211@end deftypefn
4212
b242715b
LC
4213@deffn {Scheme Procedure} bytevector-length bv
4214@deffnx {C Function} scm_bytevector_length (bv)
4215Return the length in bytes of bytevector @var{bv}.
4216@end deffn
4217
404bb5f8
LC
4218@deftypefn {C Function} size_t scm_c_bytevector_length (SCM bv)
4219Likewise, return the length in bytes of bytevector @var{bv}.
4220@end deftypefn
4221
b242715b
LC
4222@deffn {Scheme Procedure} bytevector=? bv1 bv2
4223@deffnx {C Function} scm_bytevector_eq_p (bv1, bv2)
4224Return is @var{bv1} equals to @var{bv2}---i.e., if they have the same
4225length and contents.
4226@end deffn
4227
4228@deffn {Scheme Procedure} bytevector-fill! bv fill
4229@deffnx {C Function} scm_bytevector_fill_x (bv, fill)
4230Fill bytevector @var{bv} with @var{fill}, a byte.
4231@end deffn
4232
4233@deffn {Scheme Procedure} bytevector-copy! source source-start target target-start len
4234@deffnx {C Function} scm_bytevector_copy_x (source, source_start, target, target_start, len)
4235Copy @var{len} bytes from @var{source} into @var{target}, starting
4236reading from @var{source-start} (a positive index within @var{source})
4237and start writing at @var{target-start}.
4238@end deffn
4239
4240@deffn {Scheme Procedure} bytevector-copy bv
4241@deffnx {C Function} scm_bytevector_copy (bv)
4242Return a newly allocated copy of @var{bv}.
4243@end deffn
4244
404bb5f8
LC
4245@deftypefn {C Function} scm_t_uint8 scm_c_bytevector_ref (SCM bv, size_t index)
4246Return the byte at @var{index} in bytevector @var{bv}.
4247@end deftypefn
4248
4249@deftypefn {C Function} void scm_c_bytevector_set_x (SCM bv, size_t index, scm_t_uint8 value)
4250Set the byte at @var{index} in @var{bv} to @var{value}.
4251@end deftypefn
4252
b242715b
LC
4253Low-level C macros are available. They do not perform any
4254type-checking; as such they should be used with care.
4255
4256@deftypefn {C Macro} size_t SCM_BYTEVECTOR_LENGTH (bv)
4257Return the length in bytes of bytevector @var{bv}.
4258@end deftypefn
4259
4260@deftypefn {C Macro} {signed char *} SCM_BYTEVECTOR_CONTENTS (bv)
4261Return a pointer to the contents of bytevector @var{bv}.
4262@end deftypefn
4263
4264
4265@node Bytevectors as Integers
4266@subsubsection Interpreting Bytevector Contents as Integers
4267
4268The contents of a bytevector can be interpreted as a sequence of
4269integers of any given size, sign, and endianness.
4270
4271@lisp
4272(let ((bv (make-bytevector 4)))
4273 (bytevector-u8-set! bv 0 #x12)
4274 (bytevector-u8-set! bv 1 #x34)
4275 (bytevector-u8-set! bv 2 #x56)
4276 (bytevector-u8-set! bv 3 #x78)
4277
4278 (map (lambda (number)
4279 (number->string number 16))
4280 (list (bytevector-u8-ref bv 0)
4281 (bytevector-u16-ref bv 0 (endianness big))
4282 (bytevector-u32-ref bv 0 (endianness little)))))
4283
4284@result{} ("12" "1234" "78563412")
4285@end lisp
4286
4287The most generic procedures to interpret bytevector contents as integers
4288are described below.
4289
4290@deffn {Scheme Procedure} bytevector-uint-ref bv index endianness size
4291@deffnx {Scheme Procedure} bytevector-sint-ref bv index endianness size
4292@deffnx {C Function} scm_bytevector_uint_ref (bv, index, endianness, size)
4293@deffnx {C Function} scm_bytevector_sint_ref (bv, index, endianness, size)
4294Return the @var{size}-byte long unsigned (resp. signed) integer at
4295index @var{index} in @var{bv}, decoded according to @var{endianness}.
4296@end deffn
4297
4298@deffn {Scheme Procedure} bytevector-uint-set! bv index value endianness size
4299@deffnx {Scheme Procedure} bytevector-sint-set! bv index value endianness size
4300@deffnx {C Function} scm_bytevector_uint_set_x (bv, index, value, endianness, size)
4301@deffnx {C Function} scm_bytevector_sint_set_x (bv, index, value, endianness, size)
4302Set the @var{size}-byte long unsigned (resp. signed) integer at
4303@var{index} to @var{value}, encoded according to @var{endianness}.
4304@end deffn
4305
4306The following procedures are similar to the ones above, but specialized
4307to a given integer size:
4308
4309@deffn {Scheme Procedure} bytevector-u8-ref bv index
4310@deffnx {Scheme Procedure} bytevector-s8-ref bv index
4311@deffnx {Scheme Procedure} bytevector-u16-ref bv index endianness
4312@deffnx {Scheme Procedure} bytevector-s16-ref bv index endianness
4313@deffnx {Scheme Procedure} bytevector-u32-ref bv index endianness
4314@deffnx {Scheme Procedure} bytevector-s32-ref bv index endianness
4315@deffnx {Scheme Procedure} bytevector-u64-ref bv index endianness
4316@deffnx {Scheme Procedure} bytevector-s64-ref bv index endianness
4317@deffnx {C Function} scm_bytevector_u8_ref (bv, index)
4318@deffnx {C Function} scm_bytevector_s8_ref (bv, index)
4319@deffnx {C Function} scm_bytevector_u16_ref (bv, index, endianness)
4320@deffnx {C Function} scm_bytevector_s16_ref (bv, index, endianness)
4321@deffnx {C Function} scm_bytevector_u32_ref (bv, index, endianness)
4322@deffnx {C Function} scm_bytevector_s32_ref (bv, index, endianness)
4323@deffnx {C Function} scm_bytevector_u64_ref (bv, index, endianness)
4324@deffnx {C Function} scm_bytevector_s64_ref (bv, index, endianness)
4325Return the unsigned @var{n}-bit (signed) integer (where @var{n} is 8,
432616, 32 or 64) from @var{bv} at @var{index}, decoded according to
4327@var{endianness}.
4328@end deffn
4329
4330@deffn {Scheme Procedure} bytevector-u8-set! bv index value
4331@deffnx {Scheme Procedure} bytevector-s8-set! bv index value
4332@deffnx {Scheme Procedure} bytevector-u16-set! bv index value endianness
4333@deffnx {Scheme Procedure} bytevector-s16-set! bv index value endianness
4334@deffnx {Scheme Procedure} bytevector-u32-set! bv index value endianness
4335@deffnx {Scheme Procedure} bytevector-s32-set! bv index value endianness
4336@deffnx {Scheme Procedure} bytevector-u64-set! bv index value endianness
4337@deffnx {Scheme Procedure} bytevector-s64-set! bv index value endianness
4338@deffnx {C Function} scm_bytevector_u8_set_x (bv, index, value)
4339@deffnx {C Function} scm_bytevector_s8_set_x (bv, index, value)
4340@deffnx {C Function} scm_bytevector_u16_set_x (bv, index, value, endianness)
4341@deffnx {C Function} scm_bytevector_s16_set_x (bv, index, value, endianness)
4342@deffnx {C Function} scm_bytevector_u32_set_x (bv, index, value, endianness)
4343@deffnx {C Function} scm_bytevector_s32_set_x (bv, index, value, endianness)
4344@deffnx {C Function} scm_bytevector_u64_set_x (bv, index, value, endianness)
4345@deffnx {C Function} scm_bytevector_s64_set_x (bv, index, value, endianness)
4346Store @var{value} as an @var{n}-bit (signed) integer (where @var{n} is
43478, 16, 32 or 64) in @var{bv} at @var{index}, encoded according to
4348@var{endianness}.
4349@end deffn
4350
4351Finally, a variant specialized for the host's endianness is available
4352for each of these functions (with the exception of the @code{u8}
4353accessors, for obvious reasons):
4354
4355@deffn {Scheme Procedure} bytevector-u16-native-ref bv index
4356@deffnx {Scheme Procedure} bytevector-s16-native-ref bv index
4357@deffnx {Scheme Procedure} bytevector-u32-native-ref bv index
4358@deffnx {Scheme Procedure} bytevector-s32-native-ref bv index
4359@deffnx {Scheme Procedure} bytevector-u64-native-ref bv index
4360@deffnx {Scheme Procedure} bytevector-s64-native-ref bv index
4361@deffnx {C Function} scm_bytevector_u16_native_ref (bv, index)
4362@deffnx {C Function} scm_bytevector_s16_native_ref (bv, index)
4363@deffnx {C Function} scm_bytevector_u32_native_ref (bv, index)
4364@deffnx {C Function} scm_bytevector_s32_native_ref (bv, index)
4365@deffnx {C Function} scm_bytevector_u64_native_ref (bv, index)
4366@deffnx {C Function} scm_bytevector_s64_native_ref (bv, index)
4367Return the unsigned @var{n}-bit (signed) integer (where @var{n} is 8,
436816, 32 or 64) from @var{bv} at @var{index}, decoded according to the
4369host's native endianness.
4370@end deffn
4371
4372@deffn {Scheme Procedure} bytevector-u16-native-set! bv index value
4373@deffnx {Scheme Procedure} bytevector-s16-native-set! bv index value
4374@deffnx {Scheme Procedure} bytevector-u32-native-set! bv index value
4375@deffnx {Scheme Procedure} bytevector-s32-native-set! bv index value
4376@deffnx {Scheme Procedure} bytevector-u64-native-set! bv index value
4377@deffnx {Scheme Procedure} bytevector-s64-native-set! bv index value
4378@deffnx {C Function} scm_bytevector_u16_native_set_x (bv, index, value)
4379@deffnx {C Function} scm_bytevector_s16_native_set_x (bv, index, value)
4380@deffnx {C Function} scm_bytevector_u32_native_set_x (bv, index, value)
4381@deffnx {C Function} scm_bytevector_s32_native_set_x (bv, index, value)
4382@deffnx {C Function} scm_bytevector_u64_native_set_x (bv, index, value)
4383@deffnx {C Function} scm_bytevector_s64_native_set_x (bv, index, value)
4384Store @var{value} as an @var{n}-bit (signed) integer (where @var{n} is
43858, 16, 32 or 64) in @var{bv} at @var{index}, encoded according to the
4386host's native endianness.
4387@end deffn
4388
4389
4390@node Bytevectors and Integer Lists
4391@subsubsection Converting Bytevectors to/from Integer Lists
4392
4393Bytevector contents can readily be converted to/from lists of signed or
4394unsigned integers:
4395
4396@lisp
4397(bytevector->sint-list (u8-list->bytevector (make-list 4 255))
4398 (endianness little) 2)
4399@result{} (-1 -1)
4400@end lisp
4401
4402@deffn {Scheme Procedure} bytevector->u8-list bv
4403@deffnx {C Function} scm_bytevector_to_u8_list (bv)
4404Return a newly allocated list of unsigned 8-bit integers from the
4405contents of @var{bv}.
4406@end deffn
4407
4408@deffn {Scheme Procedure} u8-list->bytevector lst
4409@deffnx {C Function} scm_u8_list_to_bytevector (lst)
4410Return a newly allocated bytevector consisting of the unsigned 8-bit
4411integers listed in @var{lst}.
4412@end deffn
4413
4414@deffn {Scheme Procedure} bytevector->uint-list bv endianness size
4415@deffnx {Scheme Procedure} bytevector->sint-list bv endianness size
4416@deffnx {C Function} scm_bytevector_to_uint_list (bv, endianness, size)
4417@deffnx {C Function} scm_bytevector_to_sint_list (bv, endianness, size)
4418Return a list of unsigned (resp. signed) integers of @var{size} bytes
4419representing the contents of @var{bv}, decoded according to
4420@var{endianness}.
4421@end deffn
4422
4423@deffn {Scheme Procedure} uint-list->bytevector lst endianness size
4424@deffnx {Scheme Procedure} sint-list->bytevector lst endianness size
4425@deffnx {C Function} scm_uint_list_to_bytevector (lst, endianness, size)
4426@deffnx {C Function} scm_sint_list_to_bytevector (lst, endianness, size)
4427Return a new bytevector containing the unsigned (resp. signed) integers
4428listed in @var{lst} and encoded on @var{size} bytes according to
4429@var{endianness}.
4430@end deffn
4431
4432@node Bytevectors as Floats
4433@subsubsection Interpreting Bytevector Contents as Floating Point Numbers
4434
4435@cindex IEEE-754 floating point numbers
4436
4437Bytevector contents can also be accessed as IEEE-754 single- or
4438double-precision floating point numbers (respectively 32 and 64-bit
4439long) using the procedures described here.
4440
4441@deffn {Scheme Procedure} bytevector-ieee-single-ref bv index endianness
4442@deffnx {Scheme Procedure} bytevector-ieee-double-ref bv index endianness
4443@deffnx {C Function} scm_bytevector_ieee_single_ref (bv, index, endianness)
4444@deffnx {C Function} scm_bytevector_ieee_double_ref (bv, index, endianness)
4445Return the IEEE-754 single-precision floating point number from @var{bv}
4446at @var{index} according to @var{endianness}.
4447@end deffn
4448
4449@deffn {Scheme Procedure} bytevector-ieee-single-set! bv index value endianness
4450@deffnx {Scheme Procedure} bytevector-ieee-double-set! bv index value endianness
4451@deffnx {C Function} scm_bytevector_ieee_single_set_x (bv, index, value, endianness)
4452@deffnx {C Function} scm_bytevector_ieee_double_set_x (bv, index, value, endianness)
4453Store real number @var{value} in @var{bv} at @var{index} according to
4454@var{endianness}.
4455@end deffn
4456
4457Specialized procedures are also available:
4458
4459@deffn {Scheme Procedure} bytevector-ieee-single-native-ref bv index
4460@deffnx {Scheme Procedure} bytevector-ieee-double-native-ref bv index
4461@deffnx {C Function} scm_bytevector_ieee_single_native_ref (bv, index)
4462@deffnx {C Function} scm_bytevector_ieee_double_native_ref (bv, index)
4463Return the IEEE-754 single-precision floating point number from @var{bv}
4464at @var{index} according to the host's native endianness.
4465@end deffn
4466
4467@deffn {Scheme Procedure} bytevector-ieee-single-native-set! bv index value
4468@deffnx {Scheme Procedure} bytevector-ieee-double-native-set! bv index value
4469@deffnx {C Function} scm_bytevector_ieee_single_native_set_x (bv, index, value)
4470@deffnx {C Function} scm_bytevector_ieee_double_native_set_x (bv, index, value)
4471Store real number @var{value} in @var{bv} at @var{index} according to
4472the host's native endianness.
4473@end deffn
4474
4475
4476@node Bytevectors as Strings
4477@subsubsection Interpreting Bytevector Contents as Unicode Strings
4478
4479@cindex Unicode string encoding
4480
4481Bytevector contents can also be interpreted as Unicode strings encoded
d3b5628c 4482in one of the most commonly available encoding formats.
b242715b
LC
4483
4484@lisp
4485(utf8->string (u8-list->bytevector '(99 97 102 101)))
4486@result{} "cafe"
4487
4488(string->utf8 "caf@'e") ;; SMALL LATIN LETTER E WITH ACUTE ACCENT
4489@result{} #vu8(99 97 102 195 169)
4490@end lisp
4491
4492@deffn {Scheme Procedure} string->utf8 str
524aa8ae
LC
4493@deffnx {Scheme Procedure} string->utf16 str [endianness]
4494@deffnx {Scheme Procedure} string->utf32 str [endianness]
b242715b 4495@deffnx {C Function} scm_string_to_utf8 (str)
524aa8ae
LC
4496@deffnx {C Function} scm_string_to_utf16 (str, endianness)
4497@deffnx {C Function} scm_string_to_utf32 (str, endianness)
b242715b 4498Return a newly allocated bytevector that contains the UTF-8, UTF-16, or
524aa8ae
LC
4499UTF-32 (aka. UCS-4) encoding of @var{str}. For UTF-16 and UTF-32,
4500@var{endianness} should be the symbol @code{big} or @code{little}; when omitted,
4501it defaults to big endian.
b242715b
LC
4502@end deffn
4503
4504@deffn {Scheme Procedure} utf8->string utf
524aa8ae
LC
4505@deffnx {Scheme Procedure} utf16->string utf [endianness]
4506@deffnx {Scheme Procedure} utf32->string utf [endianness]
b242715b 4507@deffnx {C Function} scm_utf8_to_string (utf)
524aa8ae
LC
4508@deffnx {C Function} scm_utf16_to_string (utf, endianness)
4509@deffnx {C Function} scm_utf32_to_string (utf, endianness)
b242715b 4510Return a newly allocated string that contains from the UTF-8-, UTF-16-,
524aa8ae
LC
4511or UTF-32-decoded contents of bytevector @var{utf}. For UTF-16 and UTF-32,
4512@var{endianness} should be the symbol @code{big} or @code{little}; when omitted,
4513it defaults to big endian.
b242715b
LC
4514@end deffn
4515
438974d0
LC
4516@node Bytevectors as Generalized Vectors
4517@subsubsection Accessing Bytevectors with the Generalized Vector API
4518
4519As an extension to the R6RS, Guile allows bytevectors to be manipulated
4520with the @dfn{generalized vector} procedures (@pxref{Generalized
4521Vectors}). This also allows bytevectors to be accessed using the
4522generic @dfn{array} procedures (@pxref{Array Procedures}). When using
4523these APIs, bytes are accessed one at a time as 8-bit unsigned integers:
4524
4525@example
4526(define bv #vu8(0 1 2 3))
4527
4528(generalized-vector? bv)
4529@result{} #t
4530
4531(generalized-vector-ref bv 2)
4532@result{} 2
4533
4534(generalized-vector-set! bv 2 77)
4535(array-ref bv 2)
4536@result{} 77
4537
4538(array-type bv)
4539@result{} vu8
4540@end example
4541
b242715b 4542
27219b32
AW
4543@node Bytevectors as Uniform Vectors
4544@subsubsection Accessing Bytevectors with the SRFI-4 API
4545
4546Bytevectors may also be accessed with the SRFI-4 API. @xref{SRFI-4 and
4547Bytevectors}, for more information.
4548
4549
07d83abe
MV
4550@node Regular Expressions
4551@subsection Regular Expressions
4552@tpindex Regular expressions
4553
4554@cindex regular expressions
4555@cindex regex
4556@cindex emacs regexp
4557
4558A @dfn{regular expression} (or @dfn{regexp}) is a pattern that
4559describes a whole class of strings. A full description of regular
4560expressions and their syntax is beyond the scope of this manual;
4561an introduction can be found in the Emacs manual (@pxref{Regexps,
4562, Syntax of Regular Expressions, emacs, The GNU Emacs Manual}), or
4563in many general Unix reference books.
4564
4565If your system does not include a POSIX regular expression library,
4566and you have not linked Guile with a third-party regexp library such
4567as Rx, these functions will not be available. You can tell whether
4568your Guile installation includes regular expression support by
4569checking whether @code{(provided? 'regex)} returns true.
4570
4571The following regexp and string matching features are provided by the
4572@code{(ice-9 regex)} module. Before using the described functions,
4573you should load this module by executing @code{(use-modules (ice-9
4574regex))}.
4575
4576@menu
4577* Regexp Functions:: Functions that create and match regexps.
4578* Match Structures:: Finding what was matched by a regexp.
4579* Backslash Escapes:: Removing the special meaning of regexp
4580 meta-characters.
4581@end menu
4582
4583
4584@node Regexp Functions
4585@subsubsection Regexp Functions
4586
4587By default, Guile supports POSIX extended regular expressions.
4588That means that the characters @samp{(}, @samp{)}, @samp{+} and
4589@samp{?} are special, and must be escaped if you wish to match the
4590literal characters.
4591
4592This regular expression interface was modeled after that
4593implemented by SCSH, the Scheme Shell. It is intended to be
4594upwardly compatible with SCSH regular expressions.
4595
083f9d74
KR
4596Zero bytes (@code{#\nul}) cannot be used in regex patterns or input
4597strings, since the underlying C functions treat that as the end of
4598string. If there's a zero byte an error is thrown.
4599
4600Patterns and input strings are treated as being in the locale
4601character set if @code{setlocale} has been called (@pxref{Locales}),
4602and in a multibyte locale this includes treating multi-byte sequences
4603as a single character. (Guile strings are currently merely bytes,
4604though this may change in the future, @xref{Conversion to/from C}.)
4605
07d83abe
MV
4606@deffn {Scheme Procedure} string-match pattern str [start]
4607Compile the string @var{pattern} into a regular expression and compare
4608it with @var{str}. The optional numeric argument @var{start} specifies
4609the position of @var{str} at which to begin matching.
4610
4611@code{string-match} returns a @dfn{match structure} which
4612describes what, if anything, was matched by the regular
4613expression. @xref{Match Structures}. If @var{str} does not match
4614@var{pattern} at all, @code{string-match} returns @code{#f}.
4615@end deffn
4616
4617Two examples of a match follow. In the first example, the pattern
4618matches the four digits in the match string. In the second, the pattern
4619matches nothing.
4620
4621@example
4622(string-match "[0-9][0-9][0-9][0-9]" "blah2002")
4623@result{} #("blah2002" (4 . 8))
4624
4625(string-match "[A-Za-z]" "123456")
4626@result{} #f
4627@end example
4628
4629Each time @code{string-match} is called, it must compile its
4630@var{pattern} argument into a regular expression structure. This
4631operation is expensive, which makes @code{string-match} inefficient if
4632the same regular expression is used several times (for example, in a
4633loop). For better performance, you can compile a regular expression in
4634advance and then match strings against the compiled regexp.
4635
4636@deffn {Scheme Procedure} make-regexp pat flag@dots{}
4637@deffnx {C Function} scm_make_regexp (pat, flaglst)
4638Compile the regular expression described by @var{pat}, and
4639return the compiled regexp structure. If @var{pat} does not
4640describe a legal regular expression, @code{make-regexp} throws
4641a @code{regular-expression-syntax} error.
4642
4643The @var{flag} arguments change the behavior of the compiled
4644regular expression. The following values may be supplied:
4645
4646@defvar regexp/icase
4647Consider uppercase and lowercase letters to be the same when
4648matching.
4649@end defvar
4650
4651@defvar regexp/newline
4652If a newline appears in the target string, then permit the
4653@samp{^} and @samp{$} operators to match immediately after or
4654immediately before the newline, respectively. Also, the
4655@samp{.} and @samp{[^...]} operators will never match a newline
4656character. The intent of this flag is to treat the target
4657string as a buffer containing many lines of text, and the
4658regular expression as a pattern that may match a single one of
4659those lines.
4660@end defvar
4661
4662@defvar regexp/basic
4663Compile a basic (``obsolete'') regexp instead of the extended
4664(``modern'') regexps that are the default. Basic regexps do
4665not consider @samp{|}, @samp{+} or @samp{?} to be special
4666characters, and require the @samp{@{...@}} and @samp{(...)}
4667metacharacters to be backslash-escaped (@pxref{Backslash
4668Escapes}). There are several other differences between basic
4669and extended regular expressions, but these are the most
4670significant.
4671@end defvar
4672
4673@defvar regexp/extended
4674Compile an extended regular expression rather than a basic
4675regexp. This is the default behavior; this flag will not
4676usually be needed. If a call to @code{make-regexp} includes
4677both @code{regexp/basic} and @code{regexp/extended} flags, the
4678one which comes last will override the earlier one.
4679@end defvar
4680@end deffn
4681
4682@deffn {Scheme Procedure} regexp-exec rx str [start [flags]]
4683@deffnx {C Function} scm_regexp_exec (rx, str, start, flags)
4684Match the compiled regular expression @var{rx} against
4685@code{str}. If the optional integer @var{start} argument is
4686provided, begin matching from that position in the string.
4687Return a match structure describing the results of the match,
4688or @code{#f} if no match could be found.
4689
36c7474e
KR
4690The @var{flags} argument changes the matching behavior. The following
4691flag values may be supplied, use @code{logior} (@pxref{Bitwise
4692Operations}) to combine them,
07d83abe
MV
4693
4694@defvar regexp/notbol
36c7474e
KR
4695Consider that the @var{start} offset into @var{str} is not the
4696beginning of a line and should not match operator @samp{^}.
4697
4698If @var{rx} was created with the @code{regexp/newline} option above,
4699@samp{^} will still match after a newline in @var{str}.
07d83abe
MV
4700@end defvar
4701
4702@defvar regexp/noteol
36c7474e
KR
4703Consider that the end of @var{str} is not the end of a line and should
4704not match operator @samp{$}.
4705
4706If @var{rx} was created with the @code{regexp/newline} option above,
4707@samp{$} will still match before a newline in @var{str}.
07d83abe
MV
4708@end defvar
4709@end deffn
4710
4711@lisp
4712;; Regexp to match uppercase letters
4713(define r (make-regexp "[A-Z]*"))
4714
4715;; Regexp to match letters, ignoring case
4716(define ri (make-regexp "[A-Z]*" regexp/icase))
4717
4718;; Search for bob using regexp r
4719(match:substring (regexp-exec r "bob"))
4720@result{} "" ; no match
4721
4722;; Search for bob using regexp ri
4723(match:substring (regexp-exec ri "Bob"))
4724@result{} "Bob" ; matched case insensitive
4725@end lisp
4726
4727@deffn {Scheme Procedure} regexp? obj
4728@deffnx {C Function} scm_regexp_p (obj)
4729Return @code{#t} if @var{obj} is a compiled regular expression,
4730or @code{#f} otherwise.
4731@end deffn
4732
a285fb86
KR
4733@sp 1
4734@deffn {Scheme Procedure} list-matches regexp str [flags]
4735Return a list of match structures which are the non-overlapping
4736matches of @var{regexp} in @var{str}. @var{regexp} can be either a
4737pattern string or a compiled regexp. The @var{flags} argument is as
4738per @code{regexp-exec} above.
4739
4740@example
4741(map match:substring (list-matches "[a-z]+" "abc 42 def 78"))
4742@result{} ("abc" "def")
4743@end example
4744@end deffn
4745
4746@deffn {Scheme Procedure} fold-matches regexp str init proc [flags]
4747Apply @var{proc} to the non-overlapping matches of @var{regexp} in
4748@var{str}, to build a result. @var{regexp} can be either a pattern
4749string or a compiled regexp. The @var{flags} argument is as per
4750@code{regexp-exec} above.
4751
4752@var{proc} is called as @code{(@var{proc} match prev)} where
4753@var{match} is a match structure and @var{prev} is the previous return
4754from @var{proc}. For the first call @var{prev} is the given
4755@var{init} parameter. @code{fold-matches} returns the final value
4756from @var{proc}.
4757
4758For example to count matches,
4759
4760@example
4761(fold-matches "[a-z][0-9]" "abc x1 def y2" 0
4762 (lambda (match count)
4763 (1+ count)))
4764@result{} 2
4765@end example
4766@end deffn
4767
a13befdc
KR
4768@sp 1
4769Regular expressions are commonly used to find patterns in one string
4770and replace them with the contents of another string. The following
4771functions are convenient ways to do this.
07d83abe
MV
4772
4773@c begin (scm-doc-string "regex.scm" "regexp-substitute")
4774@deffn {Scheme Procedure} regexp-substitute port match [item@dots{}]
a13befdc
KR
4775Write to @var{port} selected parts of the match structure @var{match}.
4776Or if @var{port} is @code{#f} then form a string from those parts and
4777return that.
4778
4779Each @var{item} specifies a part to be written, and may be one of the
4780following,
07d83abe
MV
4781
4782@itemize @bullet
4783@item
4784A string. String arguments are written out verbatim.
4785
4786@item
a13befdc
KR
4787An integer. The submatch with that number is written
4788(@code{match:substring}). Zero is the entire match.
07d83abe
MV
4789
4790@item
4791The symbol @samp{pre}. The portion of the matched string preceding
a13befdc 4792the regexp match is written (@code{match:prefix}).
07d83abe
MV
4793
4794@item
4795The symbol @samp{post}. The portion of the matched string following
a13befdc 4796the regexp match is written (@code{match:suffix}).
07d83abe
MV
4797@end itemize
4798
a13befdc
KR
4799For example, changing a match and retaining the text before and after,
4800
4801@example
4802(regexp-substitute #f (string-match "[0-9]+" "number 25 is good")
4803 'pre "37" 'post)
4804@result{} "number 37 is good"
4805@end example
07d83abe 4806
a13befdc
KR
4807Or matching a @sc{yyyymmdd} format date such as @samp{20020828} and
4808re-ordering and hyphenating the fields.
07d83abe
MV
4809
4810@lisp
45867c2a
NJ
4811(define date-regex
4812 "([0-9][0-9][0-9][0-9])([0-9][0-9])([0-9][0-9])")
07d83abe 4813(define s "Date 20020429 12am.")
a13befdc
KR
4814(regexp-substitute #f (string-match date-regex s)
4815 'pre 2 "-" 3 "-" 1 'post " (" 0 ")")
07d83abe
MV
4816@result{} "Date 04-29-2002 12am. (20020429)"
4817@end lisp
a13befdc
KR
4818@end deffn
4819
07d83abe
MV
4820
4821@c begin (scm-doc-string "regex.scm" "regexp-substitute")
4822@deffn {Scheme Procedure} regexp-substitute/global port regexp target [item@dots{}]
a13befdc
KR
4823@cindex search and replace
4824Write to @var{port} selected parts of matches of @var{regexp} in
4825@var{target}. If @var{port} is @code{#f} then form a string from
4826those parts and return that. @var{regexp} can be a string or a
4827compiled regex.
07d83abe 4828
a13befdc
KR
4829This is similar to @code{regexp-substitute}, but allows global
4830substitutions on @var{target}. Each @var{item} behaves as per
4831@code{regexp-substitute}, with the following differences,
07d83abe
MV
4832
4833@itemize @bullet
4834@item
a13befdc
KR
4835A function. Called as @code{(@var{item} match)} with the match
4836structure for the @var{regexp} match, it should return a string to be
4837written to @var{port}.
07d83abe
MV
4838
4839@item
a13befdc
KR
4840The symbol @samp{post}. This doesn't output anything, but instead
4841causes @code{regexp-substitute/global} to recurse on the unmatched
4842portion of @var{target}.
4843
4844This @emph{must} be supplied to perform a global search and replace on
4845@var{target}; without it @code{regexp-substitute/global} returns after
4846a single match and output.
07d83abe 4847@end itemize
07d83abe 4848
a13befdc
KR
4849For example, to collapse runs of tabs and spaces to a single hyphen
4850each,
4851
4852@example
4853(regexp-substitute/global #f "[ \t]+" "this is the text"
4854 'pre "-" 'post)
4855@result{} "this-is-the-text"
4856@end example
4857
4858Or using a function to reverse the letters in each word,
4859
4860@example
4861(regexp-substitute/global #f "[a-z]+" "to do and not-do"
4862 'pre (lambda (m) (string-reverse (match:substring m))) 'post)
4863@result{} "ot od dna ton-od"
4864@end example
4865
4866Without the @code{post} symbol, just one regexp match is made. For
4867example the following is the date example from
4868@code{regexp-substitute} above, without the need for the separate
4869@code{string-match} call.
07d83abe
MV
4870
4871@lisp
45867c2a
NJ
4872(define date-regex
4873 "([0-9][0-9][0-9][0-9])([0-9][0-9])([0-9][0-9])")
07d83abe
MV
4874(define s "Date 20020429 12am.")
4875(regexp-substitute/global #f date-regex s
a13befdc
KR
4876 'pre 2 "-" 3 "-" 1 'post " (" 0 ")")
4877
07d83abe
MV
4878@result{} "Date 04-29-2002 12am. (20020429)"
4879@end lisp
a13befdc 4880@end deffn
07d83abe
MV
4881
4882
4883@node Match Structures
4884@subsubsection Match Structures
4885
4886@cindex match structures
4887
4888A @dfn{match structure} is the object returned by @code{string-match} and
4889@code{regexp-exec}. It describes which portion of a string, if any,
4890matched the given regular expression. Match structures include: a
4891reference to the string that was checked for matches; the starting and
4892ending positions of the regexp match; and, if the regexp included any
4893parenthesized subexpressions, the starting and ending positions of each
4894submatch.
4895
4896In each of the regexp match functions described below, the @code{match}
4897argument must be a match structure returned by a previous call to
4898@code{string-match} or @code{regexp-exec}. Most of these functions
4899return some information about the original target string that was
4900matched against a regular expression; we will call that string
4901@var{target} for easy reference.
4902
4903@c begin (scm-doc-string "regex.scm" "regexp-match?")
4904@deffn {Scheme Procedure} regexp-match? obj
4905Return @code{#t} if @var{obj} is a match structure returned by a
4906previous call to @code{regexp-exec}, or @code{#f} otherwise.
4907@end deffn
4908
4909@c begin (scm-doc-string "regex.scm" "match:substring")
4910@deffn {Scheme Procedure} match:substring match [n]
4911Return the portion of @var{target} matched by subexpression number
4912@var{n}. Submatch 0 (the default) represents the entire regexp match.
4913If the regular expression as a whole matched, but the subexpression
4914number @var{n} did not match, return @code{#f}.
4915@end deffn
4916
4917@lisp
4918(define s (string-match "[0-9][0-9][0-9][0-9]" "blah2002foo"))
4919(match:substring s)
4920@result{} "2002"
4921
4922;; match starting at offset 6 in the string
4923(match:substring
4924 (string-match "[0-9][0-9][0-9][0-9]" "blah987654" 6))
4925@result{} "7654"
4926@end lisp
4927
4928@c begin (scm-doc-string "regex.scm" "match:start")
4929@deffn {Scheme Procedure} match:start match [n]
4930Return the starting position of submatch number @var{n}.
4931@end deffn
4932
4933In the following example, the result is 4, since the match starts at
4934character index 4:
4935
4936@lisp
4937(define s (string-match "[0-9][0-9][0-9][0-9]" "blah2002foo"))
4938(match:start s)
4939@result{} 4
4940@end lisp
4941
4942@c begin (scm-doc-string "regex.scm" "match:end")
4943@deffn {Scheme Procedure} match:end match [n]
4944Return the ending position of submatch number @var{n}.
4945@end deffn
4946
4947In the following example, the result is 8, since the match runs between
4948characters 4 and 8 (i.e. the ``2002'').
4949
4950@lisp
4951(define s (string-match "[0-9][0-9][0-9][0-9]" "blah2002foo"))
4952(match:end s)
4953@result{} 8
4954@end lisp
4955
4956@c begin (scm-doc-string "regex.scm" "match:prefix")
4957@deffn {Scheme Procedure} match:prefix match
4958Return the unmatched portion of @var{target} preceding the regexp match.
4959
4960@lisp
4961(define s (string-match "[0-9][0-9][0-9][0-9]" "blah2002foo"))
4962(match:prefix s)
4963@result{} "blah"
4964@end lisp
4965@end deffn
4966
4967@c begin (scm-doc-string "regex.scm" "match:suffix")
4968@deffn {Scheme Procedure} match:suffix match
4969Return the unmatched portion of @var{target} following the regexp match.
4970@end deffn
4971
4972@lisp
4973(define s (string-match "[0-9][0-9][0-9][0-9]" "blah2002foo"))
4974(match:suffix s)
4975@result{} "foo"
4976@end lisp
4977
4978@c begin (scm-doc-string "regex.scm" "match:count")
4979@deffn {Scheme Procedure} match:count match
4980Return the number of parenthesized subexpressions from @var{match}.
4981Note that the entire regular expression match itself counts as a
4982subexpression, and failed submatches are included in the count.
4983@end deffn
4984
4985@c begin (scm-doc-string "regex.scm" "match:string")
4986@deffn {Scheme Procedure} match:string match
4987Return the original @var{target} string.
4988@end deffn
4989
4990@lisp
4991(define s (string-match "[0-9][0-9][0-9][0-9]" "blah2002foo"))
4992(match:string s)
4993@result{} "blah2002foo"
4994@end lisp
4995
4996
4997@node Backslash Escapes
4998@subsubsection Backslash Escapes
4999
5000Sometimes you will want a regexp to match characters like @samp{*} or
5001@samp{$} exactly. For example, to check whether a particular string
5002represents a menu entry from an Info node, it would be useful to match
5003it against a regexp like @samp{^* [^:]*::}. However, this won't work;
5004because the asterisk is a metacharacter, it won't match the @samp{*} at
5005the beginning of the string. In this case, we want to make the first
5006asterisk un-magic.
5007
5008You can do this by preceding the metacharacter with a backslash
5009character @samp{\}. (This is also called @dfn{quoting} the
5010metacharacter, and is known as a @dfn{backslash escape}.) When Guile
5011sees a backslash in a regular expression, it considers the following
5012glyph to be an ordinary character, no matter what special meaning it
5013would ordinarily have. Therefore, we can make the above example work by
5014changing the regexp to @samp{^\* [^:]*::}. The @samp{\*} sequence tells
5015the regular expression engine to match only a single asterisk in the
5016target string.
5017
5018Since the backslash is itself a metacharacter, you may force a regexp to
5019match a backslash in the target string by preceding the backslash with
5020itself. For example, to find variable references in a @TeX{} program,
5021you might want to find occurrences of the string @samp{\let\} followed
5022by any number of alphabetic characters. The regular expression
5023@samp{\\let\\[A-Za-z]*} would do this: the double backslashes in the
5024regexp each match a single backslash in the target string.
5025
5026@c begin (scm-doc-string "regex.scm" "regexp-quote")
5027@deffn {Scheme Procedure} regexp-quote str
5028Quote each special character found in @var{str} with a backslash, and
5029return the resulting string.
5030@end deffn
5031
5032@strong{Very important:} Using backslash escapes in Guile source code
5033(as in Emacs Lisp or C) can be tricky, because the backslash character
5034has special meaning for the Guile reader. For example, if Guile
5035encounters the character sequence @samp{\n} in the middle of a string
5036while processing Scheme code, it replaces those characters with a
5037newline character. Similarly, the character sequence @samp{\t} is
5038replaced by a horizontal tab. Several of these @dfn{escape sequences}
5039are processed by the Guile reader before your code is executed.
5040Unrecognized escape sequences are ignored: if the characters @samp{\*}
5041appear in a string, they will be translated to the single character
5042@samp{*}.
5043
5044This translation is obviously undesirable for regular expressions, since
5045we want to be able to include backslashes in a string in order to
5046escape regexp metacharacters. Therefore, to make sure that a backslash
5047is preserved in a string in your Guile program, you must use @emph{two}
5048consecutive backslashes:
5049
5050@lisp
5051(define Info-menu-entry-pattern (make-regexp "^\\* [^:]*"))
5052@end lisp
5053
5054The string in this example is preprocessed by the Guile reader before
5055any code is executed. The resulting argument to @code{make-regexp} is
5056the string @samp{^\* [^:]*}, which is what we really want.
5057
5058This also means that in order to write a regular expression that matches
5059a single backslash character, the regular expression string in the
5060source code must include @emph{four} backslashes. Each consecutive pair
5061of backslashes gets translated by the Guile reader to a single
5062backslash, and the resulting double-backslash is interpreted by the
5063regexp engine as matching a single backslash character. Hence:
5064
5065@lisp
5066(define tex-variable-pattern (make-regexp "\\\\let\\\\=[A-Za-z]*"))
5067@end lisp
5068
5069The reason for the unwieldiness of this syntax is historical. Both
5070regular expression pattern matchers and Unix string processing systems
5071have traditionally used backslashes with the special meanings
5072described above. The POSIX regular expression specification and ANSI C
5073standard both require these semantics. Attempting to abandon either
5074convention would cause other kinds of compatibility problems, possibly
5075more severe ones. Therefore, without extending the Scheme reader to
5076support strings with different quoting conventions (an ungainly and
5077confusing extension when implemented in other languages), we must adhere
5078to this cumbersome escape syntax.
5079
5080
5081@node Symbols
5082@subsection Symbols
5083@tpindex Symbols
5084
5085Symbols in Scheme are widely used in three ways: as items of discrete
5086data, as lookup keys for alists and hash tables, and to denote variable
5087references.
5088
5089A @dfn{symbol} is similar to a string in that it is defined by a
5090sequence of characters. The sequence of characters is known as the
5091symbol's @dfn{name}. In the usual case --- that is, where the symbol's
5092name doesn't include any characters that could be confused with other
5093elements of Scheme syntax --- a symbol is written in a Scheme program by
5094writing the sequence of characters that make up the name, @emph{without}
5095any quotation marks or other special syntax. For example, the symbol
5096whose name is ``multiply-by-2'' is written, simply:
5097
5098@lisp
5099multiply-by-2
5100@end lisp
5101
5102Notice how this differs from a @emph{string} with contents
5103``multiply-by-2'', which is written with double quotation marks, like
5104this:
5105
5106@lisp
5107"multiply-by-2"
5108@end lisp
5109
5110Looking beyond how they are written, symbols are different from strings
5111in two important respects.
5112
5113The first important difference is uniqueness. If the same-looking
5114string is read twice from two different places in a program, the result
5115is two @emph{different} string objects whose contents just happen to be
5116the same. If, on the other hand, the same-looking symbol is read twice
5117from two different places in a program, the result is the @emph{same}
5118symbol object both times.
5119
5120Given two read symbols, you can use @code{eq?} to test whether they are
5121the same (that is, have the same name). @code{eq?} is the most
5122efficient comparison operator in Scheme, and comparing two symbols like
5123this is as fast as comparing, for example, two numbers. Given two
5124strings, on the other hand, you must use @code{equal?} or
5125@code{string=?}, which are much slower comparison operators, to
5126determine whether the strings have the same contents.
5127
5128@lisp
5129(define sym1 (quote hello))
5130(define sym2 (quote hello))
5131(eq? sym1 sym2) @result{} #t
5132
5133(define str1 "hello")
5134(define str2 "hello")
5135(eq? str1 str2) @result{} #f
5136(equal? str1 str2) @result{} #t
5137@end lisp
5138
5139The second important difference is that symbols, unlike strings, are not
5140self-evaluating. This is why we need the @code{(quote @dots{})}s in the
5141example above: @code{(quote hello)} evaluates to the symbol named
5142"hello" itself, whereas an unquoted @code{hello} is @emph{read} as the
5143symbol named "hello" and evaluated as a variable reference @dots{} about
5144which more below (@pxref{Symbol Variables}).
5145
5146@menu
5147* Symbol Data:: Symbols as discrete data.
5148* Symbol Keys:: Symbols as lookup keys.
5149* Symbol Variables:: Symbols as denoting variables.
5150* Symbol Primitives:: Operations related to symbols.
5151* Symbol Props:: Function slots and property lists.
5152* Symbol Read Syntax:: Extended read syntax for symbols.
5153* Symbol Uninterned:: Uninterned symbols.
5154@end menu
5155
5156
5157@node Symbol Data
5158@subsubsection Symbols as Discrete Data
5159
5160Numbers and symbols are similar to the extent that they both lend
5161themselves to @code{eq?} comparison. But symbols are more descriptive
5162than numbers, because a symbol's name can be used directly to describe
5163the concept for which that symbol stands.
5164
5165For example, imagine that you need to represent some colours in a
5166computer program. Using numbers, you would have to choose arbitrarily
5167some mapping between numbers and colours, and then take care to use that
5168mapping consistently:
5169
5170@lisp
5171;; 1=red, 2=green, 3=purple
5172
5173(if (eq? (colour-of car) 1)
5174 ...)
5175@end lisp
5176
5177@noindent
5178You can make the mapping more explicit and the code more readable by
5179defining constants:
5180
5181@lisp
5182(define red 1)
5183(define green 2)
5184(define purple 3)
5185
5186(if (eq? (colour-of car) red)
5187 ...)
5188@end lisp
5189
5190@noindent
5191But the simplest and clearest approach is not to use numbers at all, but
5192symbols whose names specify the colours that they refer to:
5193
5194@lisp
5195(if (eq? (colour-of car) 'red)
5196 ...)
5197@end lisp
5198
5199The descriptive advantages of symbols over numbers increase as the set
5200of concepts that you want to describe grows. Suppose that a car object
5201can have other properties as well, such as whether it has or uses:
5202
5203@itemize @bullet
5204@item
5205automatic or manual transmission
5206@item
5207leaded or unleaded fuel
5208@item
5209power steering (or not).
5210@end itemize
5211
5212@noindent
5213Then a car's combined property set could be naturally represented and
5214manipulated as a list of symbols:
5215
5216@lisp
5217(properties-of car1)
5218@result{}
5219(red manual unleaded power-steering)
5220
5221(if (memq 'power-steering (properties-of car1))
5222 (display "Unfit people can drive this car.\n")
5223 (display "You'll need strong arms to drive this car!\n"))
5224@print{}
5225Unfit people can drive this car.
5226@end lisp
5227
5228Remember, the fundamental property of symbols that we are relying on
5229here is that an occurrence of @code{'red} in one part of a program is an
5230@emph{indistinguishable} symbol from an occurrence of @code{'red} in
5231another part of a program; this means that symbols can usefully be
5232compared using @code{eq?}. At the same time, symbols have naturally
5233descriptive names. This combination of efficiency and descriptive power
5234makes them ideal for use as discrete data.
5235
5236
5237@node Symbol Keys
5238@subsubsection Symbols as Lookup Keys
5239
5240Given their efficiency and descriptive power, it is natural to use
5241symbols as the keys in an association list or hash table.
5242
5243To illustrate this, consider a more structured representation of the car
5244properties example from the preceding subsection. Rather than
5245mixing all the properties up together in a flat list, we could use an
5246association list like this:
5247
5248@lisp
5249(define car1-properties '((colour . red)
5250 (transmission . manual)
5251 (fuel . unleaded)
5252 (steering . power-assisted)))
5253@end lisp
5254
5255Notice how this structure is more explicit and extensible than the flat
5256list. For example it makes clear that @code{manual} refers to the
5257transmission rather than, say, the windows or the locking of the car.
5258It also allows further properties to use the same symbols among their
5259possible values without becoming ambiguous:
5260
5261@lisp
5262(define car1-properties '((colour . red)
5263 (transmission . manual)
5264 (fuel . unleaded)
5265 (steering . power-assisted)
5266 (seat-colour . red)
5267 (locking . manual)))
5268@end lisp
5269
5270With a representation like this, it is easy to use the efficient
5271@code{assq-XXX} family of procedures (@pxref{Association Lists}) to
5272extract or change individual pieces of information:
5273
5274@lisp
5275(assq-ref car1-properties 'fuel) @result{} unleaded
5276(assq-ref car1-properties 'transmission) @result{} manual
5277
5278(assq-set! car1-properties 'seat-colour 'black)
5279@result{}
5280((colour . red)
5281 (transmission . manual)
5282 (fuel . unleaded)
5283 (steering . power-assisted)
5284 (seat-colour . black)
5285 (locking . manual)))
5286@end lisp
5287
5288Hash tables also have keys, and exactly the same arguments apply to the
5289use of symbols in hash tables as in association lists. The hash value
5290that Guile uses to decide where to add a symbol-keyed entry to a hash
5291table can be obtained by calling the @code{symbol-hash} procedure:
5292
5293@deffn {Scheme Procedure} symbol-hash symbol
5294@deffnx {C Function} scm_symbol_hash (symbol)
5295Return a hash value for @var{symbol}.
5296@end deffn
5297
5298See @ref{Hash Tables} for information about hash tables in general, and
5299for why you might choose to use a hash table rather than an association
5300list.
5301
5302
5303@node Symbol Variables
5304@subsubsection Symbols as Denoting Variables
5305
5306When an unquoted symbol in a Scheme program is evaluated, it is
5307interpreted as a variable reference, and the result of the evaluation is
5308the appropriate variable's value.
5309
5310For example, when the expression @code{(string-length "abcd")} is read
5311and evaluated, the sequence of characters @code{string-length} is read
5312as the symbol whose name is "string-length". This symbol is associated
5313with a variable whose value is the procedure that implements string
5314length calculation. Therefore evaluation of the @code{string-length}
5315symbol results in that procedure.
5316
5317The details of the connection between an unquoted symbol and the
5318variable to which it refers are explained elsewhere. See @ref{Binding
5319Constructs}, for how associations between symbols and variables are
5320created, and @ref{Modules}, for how those associations are affected by
5321Guile's module system.
5322
5323
5324@node Symbol Primitives
5325@subsubsection Operations Related to Symbols
5326
5327Given any Scheme value, you can determine whether it is a symbol using
5328the @code{symbol?} primitive:
5329
5330@rnindex symbol?
5331@deffn {Scheme Procedure} symbol? obj
5332@deffnx {C Function} scm_symbol_p (obj)
5333Return @code{#t} if @var{obj} is a symbol, otherwise return
5334@code{#f}.
5335@end deffn
5336
c9dc8c6c
MV
5337@deftypefn {C Function} int scm_is_symbol (SCM val)
5338Equivalent to @code{scm_is_true (scm_symbol_p (val))}.
5339@end deftypefn
5340
07d83abe
MV
5341Once you know that you have a symbol, you can obtain its name as a
5342string by calling @code{symbol->string}. Note that Guile differs by
5343default from R5RS on the details of @code{symbol->string} as regards
5344case-sensitivity:
5345
5346@rnindex symbol->string
5347@deffn {Scheme Procedure} symbol->string s
5348@deffnx {C Function} scm_symbol_to_string (s)
5349Return the name of symbol @var{s} as a string. By default, Guile reads
5350symbols case-sensitively, so the string returned will have the same case
5351variation as the sequence of characters that caused @var{s} to be
5352created.
5353
5354If Guile is set to read symbols case-insensitively (as specified by
5355R5RS), and @var{s} comes into being as part of a literal expression
5356(@pxref{Literal expressions,,,r5rs, The Revised^5 Report on Scheme}) or
5357by a call to the @code{read} or @code{string-ci->symbol} procedures,
5358Guile converts any alphabetic characters in the symbol's name to
5359lower case before creating the symbol object, so the string returned
5360here will be in lower case.
5361
5362If @var{s} was created by @code{string->symbol}, the case of characters
5363in the string returned will be the same as that in the string that was
5364passed to @code{string->symbol}, regardless of Guile's case-sensitivity
5365setting at the time @var{s} was created.
5366
5367It is an error to apply mutation procedures like @code{string-set!} to
5368strings returned by this procedure.
5369@end deffn
5370
5371Most symbols are created by writing them literally in code. However it
5372is also possible to create symbols programmatically using the following
5373@code{string->symbol} and @code{string-ci->symbol} procedures:
5374
5375@rnindex string->symbol
5376@deffn {Scheme Procedure} string->symbol string
5377@deffnx {C Function} scm_string_to_symbol (string)
5378Return the symbol whose name is @var{string}. This procedure can create
5379symbols with names containing special characters or letters in the
5380non-standard case, but it is usually a bad idea to create such symbols
5381because in some implementations of Scheme they cannot be read as
5382themselves.
5383@end deffn
5384
5385@deffn {Scheme Procedure} string-ci->symbol str
5386@deffnx {C Function} scm_string_ci_to_symbol (str)
5387Return the symbol whose name is @var{str}. If Guile is currently
5388reading symbols case-insensitively, @var{str} is converted to lowercase
5389before the returned symbol is looked up or created.
5390@end deffn
5391
5392The following examples illustrate Guile's detailed behaviour as regards
5393the case-sensitivity of symbols:
5394
5395@lisp
5396(read-enable 'case-insensitive) ; R5RS compliant behaviour
5397
5398(symbol->string 'flying-fish) @result{} "flying-fish"
5399(symbol->string 'Martin) @result{} "martin"
5400(symbol->string
5401 (string->symbol "Malvina")) @result{} "Malvina"
5402
5403(eq? 'mISSISSIppi 'mississippi) @result{} #t
5404(string->symbol "mISSISSIppi") @result{} mISSISSIppi
5405(eq? 'bitBlt (string->symbol "bitBlt")) @result{} #f
5406(eq? 'LolliPop
5407 (string->symbol (symbol->string 'LolliPop))) @result{} #t
5408(string=? "K. Harper, M.D."
5409 (symbol->string
5410 (string->symbol "K. Harper, M.D."))) @result{} #t
5411
5412(read-disable 'case-insensitive) ; Guile default behaviour
5413
5414(symbol->string 'flying-fish) @result{} "flying-fish"
5415(symbol->string 'Martin) @result{} "Martin"
5416(symbol->string
5417 (string->symbol "Malvina")) @result{} "Malvina"
5418
5419(eq? 'mISSISSIppi 'mississippi) @result{} #f
5420(string->symbol "mISSISSIppi") @result{} mISSISSIppi
5421(eq? 'bitBlt (string->symbol "bitBlt")) @result{} #t
5422(eq? 'LolliPop
5423 (string->symbol (symbol->string 'LolliPop))) @result{} #t
5424(string=? "K. Harper, M.D."
5425 (symbol->string
5426 (string->symbol "K. Harper, M.D."))) @result{} #t
5427@end lisp
5428
5429From C, there are lower level functions that construct a Scheme symbol
c48c62d0
MV
5430from a C string in the current locale encoding.
5431
5432When you want to do more from C, you should convert between symbols
5433and strings using @code{scm_symbol_to_string} and
5434@code{scm_string_to_symbol} and work with the strings.
07d83abe 5435
c48c62d0
MV
5436@deffn {C Function} scm_from_locale_symbol (const char *name)
5437@deffnx {C Function} scm_from_locale_symboln (const char *name, size_t len)
07d83abe 5438Construct and return a Scheme symbol whose name is specified by
c48c62d0
MV
5439@var{name}. For @code{scm_from_locale_symbol}, @var{name} must be null
5440terminated; for @code{scm_from_locale_symboln} the length of @var{name} is
07d83abe
MV
5441specified explicitly by @var{len}.
5442@end deffn
5443
fd0a5bbc
HWN
5444@deftypefn {C Function} SCM scm_take_locale_symbol (char *str)
5445@deftypefnx {C Function} SCM scm_take_locale_symboln (char *str, size_t len)
5446Like @code{scm_from_locale_symbol} and @code{scm_from_locale_symboln},
5447respectively, but also frees @var{str} with @code{free} eventually.
5448Thus, you can use this function when you would free @var{str} anyway
5449immediately after creating the Scheme string. In certain cases, Guile
5450can then use @var{str} directly as its internal representation.
5451@end deftypefn
5452
071bb6a8
LC
5453The size of a symbol can also be obtained from C:
5454
5455@deftypefn {C Function} size_t scm_c_symbol_length (SCM sym)
5456Return the number of characters in @var{sym}.
5457@end deftypefn
fd0a5bbc 5458
07d83abe
MV
5459Finally, some applications, especially those that generate new Scheme
5460code dynamically, need to generate symbols for use in the generated
5461code. The @code{gensym} primitive meets this need:
5462
5463@deffn {Scheme Procedure} gensym [prefix]
5464@deffnx {C Function} scm_gensym (prefix)
5465Create a new symbol with a name constructed from a prefix and a counter
5466value. The string @var{prefix} can be specified as an optional
5467argument. Default prefix is @samp{@w{ g}}. The counter is increased by 1
5468at each call. There is no provision for resetting the counter.
5469@end deffn
5470
5471The symbols generated by @code{gensym} are @emph{likely} to be unique,
5472since their names begin with a space and it is only otherwise possible
5473to generate such symbols if a programmer goes out of their way to do
5474so. Uniqueness can be guaranteed by instead using uninterned symbols
5475(@pxref{Symbol Uninterned}), though they can't be usefully written out
5476and read back in.
5477
5478
5479@node Symbol Props
5480@subsubsection Function Slots and Property Lists
5481
5482In traditional Lisp dialects, symbols are often understood as having
5483three kinds of value at once:
5484
5485@itemize @bullet
5486@item
5487a @dfn{variable} value, which is used when the symbol appears in
5488code in a variable reference context
5489
5490@item
5491a @dfn{function} value, which is used when the symbol appears in
5492code in a function name position (i.e. as the first element in an
5493unquoted list)
5494
5495@item
5496a @dfn{property list} value, which is used when the symbol is given as
5497the first argument to Lisp's @code{put} or @code{get} functions.
5498@end itemize
5499
5500Although Scheme (as one of its simplifications with respect to Lisp)
5501does away with the distinction between variable and function namespaces,
5502Guile currently retains some elements of the traditional structure in
5503case they turn out to be useful when implementing translators for other
5504languages, in particular Emacs Lisp.
5505
5506Specifically, Guile symbols have two extra slots. for a symbol's
5507property list, and for its ``function value.'' The following procedures
5508are provided to access these slots.
5509
5510@deffn {Scheme Procedure} symbol-fref symbol
5511@deffnx {C Function} scm_symbol_fref (symbol)
5512Return the contents of @var{symbol}'s @dfn{function slot}.
5513@end deffn
5514
5515@deffn {Scheme Procedure} symbol-fset! symbol value
5516@deffnx {C Function} scm_symbol_fset_x (symbol, value)
5517Set the contents of @var{symbol}'s function slot to @var{value}.
5518@end deffn
5519
5520@deffn {Scheme Procedure} symbol-pref symbol
5521@deffnx {C Function} scm_symbol_pref (symbol)
5522Return the @dfn{property list} currently associated with @var{symbol}.
5523@end deffn
5524
5525@deffn {Scheme Procedure} symbol-pset! symbol value
5526@deffnx {C Function} scm_symbol_pset_x (symbol, value)
5527Set @var{symbol}'s property list to @var{value}.
5528@end deffn
5529
5530@deffn {Scheme Procedure} symbol-property sym prop
5531From @var{sym}'s property list, return the value for property
5532@var{prop}. The assumption is that @var{sym}'s property list is an
5533association list whose keys are distinguished from each other using
5534@code{equal?}; @var{prop} should be one of the keys in that list. If
5535the property list has no entry for @var{prop}, @code{symbol-property}
5536returns @code{#f}.
5537@end deffn
5538
5539@deffn {Scheme Procedure} set-symbol-property! sym prop val
5540In @var{sym}'s property list, set the value for property @var{prop} to
5541@var{val}, or add a new entry for @var{prop}, with value @var{val}, if
5542none already exists. For the structure of the property list, see
5543@code{symbol-property}.
5544@end deffn
5545
5546@deffn {Scheme Procedure} symbol-property-remove! sym prop
5547From @var{sym}'s property list, remove the entry for property
5548@var{prop}, if there is one. For the structure of the property list,
5549see @code{symbol-property}.
5550@end deffn
5551
5552Support for these extra slots may be removed in a future release, and it
4695789c
NJ
5553is probably better to avoid using them. For a more modern and Schemely
5554approach to properties, see @ref{Object Properties}.
07d83abe
MV
5555
5556
5557@node Symbol Read Syntax
5558@subsubsection Extended Read Syntax for Symbols
5559
5560The read syntax for a symbol is a sequence of letters, digits, and
5561@dfn{extended alphabetic characters}, beginning with a character that
5562cannot begin a number. In addition, the special cases of @code{+},
5563@code{-}, and @code{...} are read as symbols even though numbers can
5564begin with @code{+}, @code{-} or @code{.}.
5565
5566Extended alphabetic characters may be used within identifiers as if
5567they were letters. The set of extended alphabetic characters is:
5568
5569@example
5570! $ % & * + - . / : < = > ? @@ ^ _ ~
5571@end example
5572
5573In addition to the standard read syntax defined above (which is taken
5574from R5RS (@pxref{Formal syntax,,,r5rs,The Revised^5 Report on
5575Scheme})), Guile provides an extended symbol read syntax that allows the
5576inclusion of unusual characters such as space characters, newlines and
5577parentheses. If (for whatever reason) you need to write a symbol
5578containing characters not mentioned above, you can do so as follows.
5579
5580@itemize @bullet
5581@item
5582Begin the symbol with the characters @code{#@{},
5583
5584@item
5585write the characters of the symbol and
5586
5587@item
5588finish the symbol with the characters @code{@}#}.
5589@end itemize
5590
5591Here are a few examples of this form of read syntax. The first symbol
5592needs to use extended syntax because it contains a space character, the
5593second because it contains a line break, and the last because it looks
5594like a number.
5595
5596@lisp
5597#@{foo bar@}#
5598
5599#@{what
5600ever@}#
5601
5602#@{4242@}#
5603@end lisp
5604
5605Although Guile provides this extended read syntax for symbols,
5606widespread usage of it is discouraged because it is not portable and not
5607very readable.
5608
5609
5610@node Symbol Uninterned
5611@subsubsection Uninterned Symbols
5612
5613What makes symbols useful is that they are automatically kept unique.
5614There are no two symbols that are distinct objects but have the same
5615name. But of course, there is no rule without exception. In addition
5616to the normal symbols that have been discussed up to now, you can also
5617create special @dfn{uninterned} symbols that behave slightly
5618differently.
5619
5620To understand what is different about them and why they might be useful,
5621we look at how normal symbols are actually kept unique.
5622
5623Whenever Guile wants to find the symbol with a specific name, for
5624example during @code{read} or when executing @code{string->symbol}, it
5625first looks into a table of all existing symbols to find out whether a
5626symbol with the given name already exists. When this is the case, Guile
5627just returns that symbol. When not, a new symbol with the name is
5628created and entered into the table so that it can be found later.
5629
5630Sometimes you might want to create a symbol that is guaranteed `fresh',
5631i.e. a symbol that did not exist previously. You might also want to
5632somehow guarantee that no one else will ever unintentionally stumble
5633across your symbol in the future. These properties of a symbol are
5634often needed when generating code during macro expansion. When
5635introducing new temporary variables, you want to guarantee that they
5636don't conflict with variables in other people's code.
5637
5638The simplest way to arrange for this is to create a new symbol but
5639not enter it into the global table of all symbols. That way, no one
5640will ever get access to your symbol by chance. Symbols that are not in
5641the table are called @dfn{uninterned}. Of course, symbols that
5642@emph{are} in the table are called @dfn{interned}.
5643
5644You create new uninterned symbols with the function @code{make-symbol}.
5645You can test whether a symbol is interned or not with
5646@code{symbol-interned?}.
5647
5648Uninterned symbols break the rule that the name of a symbol uniquely
5649identifies the symbol object. Because of this, they can not be written
5650out and read back in like interned symbols. Currently, Guile has no
5651support for reading uninterned symbols. Note that the function
5652@code{gensym} does not return uninterned symbols for this reason.
5653
5654@deffn {Scheme Procedure} make-symbol name
5655@deffnx {C Function} scm_make_symbol (name)
5656Return a new uninterned symbol with the name @var{name}. The returned
5657symbol is guaranteed to be unique and future calls to
5658@code{string->symbol} will not return it.
5659@end deffn
5660
5661@deffn {Scheme Procedure} symbol-interned? symbol
5662@deffnx {C Function} scm_symbol_interned_p (symbol)
5663Return @code{#t} if @var{symbol} is interned, otherwise return
5664@code{#f}.
5665@end deffn
5666
5667For example:
5668
5669@lisp
5670(define foo-1 (string->symbol "foo"))
5671(define foo-2 (string->symbol "foo"))
5672(define foo-3 (make-symbol "foo"))
5673(define foo-4 (make-symbol "foo"))
5674
5675(eq? foo-1 foo-2)
5676@result{} #t
5677; Two interned symbols with the same name are the same object,
5678
5679(eq? foo-1 foo-3)
5680@result{} #f
5681; but a call to make-symbol with the same name returns a
5682; distinct object.
5683
5684(eq? foo-3 foo-4)
5685@result{} #f
5686; A call to make-symbol always returns a new object, even for
5687; the same name.
5688
5689foo-3
5690@result{} #<uninterned-symbol foo 8085290>
5691; Uninterned symbols print differently from interned symbols,
5692
5693(symbol? foo-3)
5694@result{} #t
5695; but they are still symbols,
5696
5697(symbol-interned? foo-3)
5698@result{} #f
5699; just not interned.
5700@end lisp
5701
5702
5703@node Keywords
5704@subsection Keywords
5705@tpindex Keywords
5706
5707Keywords are self-evaluating objects with a convenient read syntax that
5708makes them easy to type.
5709
5710Guile's keyword support conforms to R5RS, and adds a (switchable) read
5711syntax extension to permit keywords to begin with @code{:} as well as
ef4cbc08 5712@code{#:}, or to end with @code{:}.
07d83abe
MV
5713
5714@menu
5715* Why Use Keywords?:: Motivation for keyword usage.
5716* Coding With Keywords:: How to use keywords.
5717* Keyword Read Syntax:: Read syntax for keywords.
5718* Keyword Procedures:: Procedures for dealing with keywords.
07d83abe
MV
5719@end menu
5720
5721@node Why Use Keywords?
5722@subsubsection Why Use Keywords?
5723
5724Keywords are useful in contexts where a program or procedure wants to be
5725able to accept a large number of optional arguments without making its
5726interface unmanageable.
5727
5728To illustrate this, consider a hypothetical @code{make-window}
5729procedure, which creates a new window on the screen for drawing into
5730using some graphical toolkit. There are many parameters that the caller
5731might like to specify, but which could also be sensibly defaulted, for
5732example:
5733
5734@itemize @bullet
5735@item
5736color depth -- Default: the color depth for the screen
5737
5738@item
5739background color -- Default: white
5740
5741@item
5742width -- Default: 600
5743
5744@item
5745height -- Default: 400
5746@end itemize
5747
5748If @code{make-window} did not use keywords, the caller would have to
5749pass in a value for each possible argument, remembering the correct
5750argument order and using a special value to indicate the default value
5751for that argument:
5752
5753@lisp
5754(make-window 'default ;; Color depth
5755 'default ;; Background color
5756 800 ;; Width
5757 100 ;; Height
5758 @dots{}) ;; More make-window arguments
5759@end lisp
5760
5761With keywords, on the other hand, defaulted arguments are omitted, and
5762non-default arguments are clearly tagged by the appropriate keyword. As
5763a result, the invocation becomes much clearer:
5764
5765@lisp
5766(make-window #:width 800 #:height 100)
5767@end lisp
5768
5769On the other hand, for a simpler procedure with few arguments, the use
5770of keywords would be a hindrance rather than a help. The primitive
5771procedure @code{cons}, for example, would not be improved if it had to
5772be invoked as
5773
5774@lisp
5775(cons #:car x #:cdr y)
5776@end lisp
5777
5778So the decision whether to use keywords or not is purely pragmatic: use
5779them if they will clarify the procedure invocation at point of call.
5780
5781@node Coding With Keywords
5782@subsubsection Coding With Keywords
5783
5784If a procedure wants to support keywords, it should take a rest argument
5785and then use whatever means is convenient to extract keywords and their
5786corresponding arguments from the contents of that rest argument.
5787
5788The following example illustrates the principle: the code for
5789@code{make-window} uses a helper procedure called
5790@code{get-keyword-value} to extract individual keyword arguments from
5791the rest argument.
5792
5793@lisp
5794(define (get-keyword-value args keyword default)
5795 (let ((kv (memq keyword args)))
5796 (if (and kv (>= (length kv) 2))
5797 (cadr kv)
5798 default)))
5799
5800(define (make-window . args)
5801 (let ((depth (get-keyword-value args #:depth screen-depth))
5802 (bg (get-keyword-value args #:bg "white"))
5803 (width (get-keyword-value args #:width 800))
5804 (height (get-keyword-value args #:height 100))
5805 @dots{})
5806 @dots{}))
5807@end lisp
5808
5809But you don't need to write @code{get-keyword-value}. The @code{(ice-9
5810optargs)} module provides a set of powerful macros that you can use to
5811implement keyword-supporting procedures like this:
5812
5813@lisp
5814(use-modules (ice-9 optargs))
5815
5816(define (make-window . args)
5817 (let-keywords args #f ((depth screen-depth)
5818 (bg "white")
5819 (width 800)
5820 (height 100))
5821 ...))
5822@end lisp
5823
5824@noindent
5825Or, even more economically, like this:
5826
5827@lisp
5828(use-modules (ice-9 optargs))
5829
5830(define* (make-window #:key (depth screen-depth)
5831 (bg "white")
5832 (width 800)
5833 (height 100))
5834 ...)
5835@end lisp
5836
5837For further details on @code{let-keywords}, @code{define*} and other
5838facilities provided by the @code{(ice-9 optargs)} module, see
5839@ref{Optional Arguments}.
5840
5841
5842@node Keyword Read Syntax
5843@subsubsection Keyword Read Syntax
5844
7719ef22
MV
5845Guile, by default, only recognizes a keyword syntax that is compatible
5846with R5RS. A token of the form @code{#:NAME}, where @code{NAME} has the
5847same syntax as a Scheme symbol (@pxref{Symbol Read Syntax}), is the
5848external representation of the keyword named @code{NAME}. Keyword
5849objects print using this syntax as well, so values containing keyword
5850objects can be read back into Guile. When used in an expression,
5851keywords are self-quoting objects.
07d83abe
MV
5852
5853If the @code{keyword} read option is set to @code{'prefix}, Guile also
5854recognizes the alternative read syntax @code{:NAME}. Otherwise, tokens
5855of the form @code{:NAME} are read as symbols, as required by R5RS.
5856
ef4cbc08
LC
5857@cindex SRFI-88 keyword syntax
5858
5859If the @code{keyword} read option is set to @code{'postfix}, Guile
189681f5
LC
5860recognizes the SRFI-88 read syntax @code{NAME:} (@pxref{SRFI-88}).
5861Otherwise, tokens of this form are read as symbols.
ef4cbc08 5862
07d83abe 5863To enable and disable the alternative non-R5RS keyword syntax, you use
1518f649
AW
5864the @code{read-set!} procedure documented @ref{Scheme Read}. Note that
5865the @code{prefix} and @code{postfix} syntax are mutually exclusive.
07d83abe 5866
aba0dff5 5867@lisp
07d83abe
MV
5868(read-set! keywords 'prefix)
5869
5870#:type
5871@result{}
5872#:type
5873
5874:type
5875@result{}
5876#:type
5877
ef4cbc08
LC
5878(read-set! keywords 'postfix)
5879
5880type:
5881@result{}
5882#:type
5883
5884:type
5885@result{}
5886:type
5887
07d83abe
MV
5888(read-set! keywords #f)
5889
5890#:type
5891@result{}
5892#:type
5893
5894:type
5895@print{}
5896ERROR: In expression :type:
5897ERROR: Unbound variable: :type
5898ABORT: (unbound-variable)
aba0dff5 5899@end lisp
07d83abe
MV
5900
5901@node Keyword Procedures
5902@subsubsection Keyword Procedures
5903
07d83abe
MV
5904@deffn {Scheme Procedure} keyword? obj
5905@deffnx {C Function} scm_keyword_p (obj)
5906Return @code{#t} if the argument @var{obj} is a keyword, else
5907@code{#f}.
5908@end deffn
5909
7719ef22
MV
5910@deffn {Scheme Procedure} keyword->symbol keyword
5911@deffnx {C Function} scm_keyword_to_symbol (keyword)
5912Return the symbol with the same name as @var{keyword}.
07d83abe
MV
5913@end deffn
5914
7719ef22
MV
5915@deffn {Scheme Procedure} symbol->keyword symbol
5916@deffnx {C Function} scm_symbol_to_keyword (symbol)
5917Return the keyword with the same name as @var{symbol}.
5918@end deffn
07d83abe 5919
7719ef22
MV
5920@deftypefn {C Function} int scm_is_keyword (SCM obj)
5921Equivalent to @code{scm_is_true (scm_keyword_p (@var{obj}))}.
07d83abe
MV
5922@end deftypefn
5923
7719ef22
MV
5924@deftypefn {C Function} SCM scm_from_locale_keyword (const char *str)
5925@deftypefnx {C Function} SCM scm_from_locale_keywordn (const char *str, size_t len)
5926Equivalent to @code{scm_symbol_to_keyword (scm_from_locale_symbol
5927(@var{str}))} and @code{scm_symbol_to_keyword (scm_from_locale_symboln
5928(@var{str}, @var{len}))}, respectively.
5929@end deftypefn
07d83abe
MV
5930
5931@node Other Types
5932@subsection ``Functionality-Centric'' Data Types
5933
5934Procedures and macros are documented in their own chapter: see
e4955559 5935@ref{Procedures} and @ref{Macros}.
07d83abe
MV
5936
5937Variable objects are documented as part of the description of Guile's
5938module system: see @ref{Variables}.
5939
5940Asyncs, dynamic roots and fluids are described in the chapter on
5941scheduling: see @ref{Scheduling}.
5942
5943Hooks are documented in the chapter on general utility functions: see
5944@ref{Hooks}.
5945
5946Ports are described in the chapter on I/O: see @ref{Input and Output}.
5947
5948
5949@c Local Variables:
5950@c TeX-master: "guile.texi"
5951@c End: