RTL: Compile prompts
[bpt/guile.git] / libguile / vm-engine.c
CommitLineData
27c7c630 1/* Copyright (C) 2001, 2009, 2010, 2011, 2012, 2013 Free Software Foundation, Inc.
a98cef7e 2 *
560b9c25 3 * This library is free software; you can redistribute it and/or
53befeb7
NJ
4 * modify it under the terms of the GNU Lesser General Public License
5 * as published by the Free Software Foundation; either version 3 of
6 * the License, or (at your option) any later version.
a98cef7e 7 *
53befeb7
NJ
8 * This library is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
560b9c25
AW
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * Lesser General Public License for more details.
a98cef7e 12 *
560b9c25
AW
13 * You should have received a copy of the GNU Lesser General Public
14 * License along with this library; if not, write to the Free Software
53befeb7
NJ
15 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
16 * 02110-1301 USA
560b9c25 17 */
a98cef7e 18
510ca126
AW
19/* This file is included in vm.c multiple times. */
20
21
22/* Virtual Machine
23
24 This file contains two virtual machines. First, the old one -- the
25 one that is currently used, and corresponds to Guile 2.0. It's a
26 stack machine, meaning that most instructions pop their operands from
27 the top of the stack, and push results there too.
28
29 Following it is the new virtual machine. It's a register machine,
30 meaning that intructions address their operands by index, and store
31 results in indexed slots as well. Those slots are on the stack.
32 It's somewhat confusing to call it a register machine, given that the
33 values are on the stack. Perhaps it needs a new name.
34
35 Anyway, things are in a transitional state. We're going to try to
36 avoid munging the old VM very much while we flesh out the new one.
37 We're also going to try to make them interoperable, as much as
38 possible -- to have the old VM be able to call procedures for the new
39 VM, and vice versa. This should ease the bootstrapping process. */
40
41
42/* The old VM. */
43static SCM VM_NAME (SCM, SCM, SCM*, int);
44/* The new VM. */
45static SCM RTL_VM_NAME (SCM, SCM, SCM*, size_t);
46
6d14383e
AW
47
48#if (VM_ENGINE == SCM_VM_REGULAR_ENGINE)
ff3968c2 49# define VM_USE_HOOKS 0 /* Various hooks */
6d14383e 50#elif (VM_ENGINE == SCM_VM_DEBUG_ENGINE)
ff3968c2 51# define VM_USE_HOOKS 1
6d14383e 52#else
ff3968c2 53# error unknown debug engine VM_ENGINE
6d14383e 54#endif
a98cef7e 55
8dd6bfa7
AW
56/* Assign some registers by hand. There used to be a bigger list here,
57 but it was never tested, and in the case of x86-32, was a source of
58 compilation failures. It can be revived if it's useful, but my naive
59 hope is that simply annotating the locals with "register" will be a
60 sufficient hint to the compiler. */
eac12024 61#ifdef __GNUC__
8dd6bfa7 62# if defined __x86_64__
eac12024
AW
63/* GCC 4.6 chooses %rbp for IP_REG and %rbx for SP_REG, which works
64 well. Tell it to keep the jump table in a r12, which is
65 callee-saved. */
8dd6bfa7
AW
66# define JT_REG asm ("r12")
67# endif
eac12024
AW
68#endif
69
70#ifndef IP_REG
8dd6bfa7 71# define IP_REG
eac12024
AW
72#endif
73#ifndef SP_REG
8dd6bfa7 74# define SP_REG
eac12024
AW
75#endif
76#ifndef FP_REG
8dd6bfa7 77# define FP_REG
eac12024
AW
78#endif
79#ifndef JT_REG
8dd6bfa7 80# define JT_REG
eac12024
AW
81#endif
82
27c7c630
AW
83#define VM_ASSERT(condition, handler) \
84 do { \
85 if (SCM_UNLIKELY (!(condition))) \
86 { \
87 SYNC_ALL(); \
88 handler; \
89 } \
90 } while (0)
eac12024
AW
91
92#ifdef VM_ENABLE_ASSERTIONS
93# define ASSERT(condition) VM_ASSERT (condition, abort())
94#else
95# define ASSERT(condition)
96#endif
97
c850a0ff
AW
98#if VM_USE_HOOKS
99#define RUN_HOOK(h, args, n) \
100 do { \
101 if (SCM_UNLIKELY (vp->trace_level > 0)) \
102 { \
103 SYNC_REGISTER (); \
104 vm_dispatch_hook (vm, h, args, n); \
105 } \
106 } while (0)
107#else
108#define RUN_HOOK(h, args, n)
109#endif
110#define RUN_HOOK0(h) RUN_HOOK(h, NULL, 0)
111
112#define APPLY_HOOK() \
113 RUN_HOOK0 (SCM_VM_APPLY_HOOK)
114#define PUSH_CONTINUATION_HOOK() \
115 RUN_HOOK0 (SCM_VM_PUSH_CONTINUATION_HOOK)
116#define POP_CONTINUATION_HOOK(vals, n) \
117 RUN_HOOK (SCM_VM_POP_CONTINUATION_HOOK, vals, n)
118#define NEXT_HOOK() \
119 RUN_HOOK0 (SCM_VM_NEXT_HOOK)
120#define ABORT_CONTINUATION_HOOK(vals, n) \
121 RUN_HOOK (SCM_VM_ABORT_CONTINUATION_HOOK, vals, n)
122#define RESTORE_CONTINUATION_HOOK() \
123 RUN_HOOK0 (SCM_VM_RESTORE_CONTINUATION_HOOK)
124
125#define VM_HANDLE_INTERRUPTS \
126 SCM_ASYNC_TICK_WITH_CODE (current_thread, SYNC_REGISTER ())
127
128
129\f
eac12024
AW
130
131/* Cache the VM's instruction, stack, and frame pointer in local variables. */
132#define CACHE_REGISTER() \
133{ \
134 ip = vp->ip; \
135 sp = vp->sp; \
136 fp = vp->fp; \
137}
138
139/* Update the registers in VP, a pointer to the current VM. This must be done
140 at least before any GC invocation so that `vp->sp' is up-to-date and the
141 whole stack gets marked. */
142#define SYNC_REGISTER() \
143{ \
144 vp->ip = ip; \
145 vp->sp = sp; \
146 vp->fp = fp; \
147}
148
149/* FIXME */
150#define ASSERT_VARIABLE(x) \
27c7c630 151 VM_ASSERT (SCM_VARIABLEP (x), abort())
eac12024 152#define ASSERT_BOUND_VARIABLE(x) \
27c7c630
AW
153 VM_ASSERT (SCM_VARIABLEP (x) \
154 && !scm_is_eq (SCM_VARIABLE_REF (x), SCM_UNDEFINED), \
155 abort())
eac12024
AW
156
157#ifdef VM_ENABLE_PARANOID_ASSERTIONS
158#define CHECK_IP() \
159 do { if (ip < bp->base || ip - bp->base > bp->len) abort (); } while (0)
160#define ASSERT_ALIGNED_PROCEDURE() \
161 do { if ((scm_t_bits)bp % 8) abort (); } while (0)
162#define ASSERT_BOUND(x) \
27c7c630 163 VM_ASSERT (!scm_is_eq ((x), SCM_UNDEFINED), abort())
eac12024
AW
164#else
165#define CHECK_IP()
166#define ASSERT_ALIGNED_PROCEDURE()
167#define ASSERT_BOUND(x)
168#endif
169
eac12024
AW
170/* Cache the object table and free variables. */
171#define CACHE_PROGRAM() \
172{ \
173 if (bp != SCM_PROGRAM_DATA (program)) { \
174 bp = SCM_PROGRAM_DATA (program); \
175 ASSERT_ALIGNED_PROCEDURE (); \
176 if (SCM_I_IS_VECTOR (SCM_PROGRAM_OBJTABLE (program))) { \
177 objects = SCM_I_VECTOR_WELTS (SCM_PROGRAM_OBJTABLE (program)); \
eac12024
AW
178 } else { \
179 objects = NULL; \
eac12024
AW
180 } \
181 } \
182}
183
184#define SYNC_BEFORE_GC() \
185{ \
186 SYNC_REGISTER (); \
187}
188
189#define SYNC_ALL() \
190{ \
191 SYNC_REGISTER (); \
192}
193
194\f
195/*
196 * Error check
197 */
198
199/* Accesses to a program's object table. */
eac12024 200#define CHECK_OBJECT(_num)
eac12024 201#define CHECK_FREE_VARIABLE(_num)
eac12024
AW
202
203\f
eac12024
AW
204/*
205 * Stack operation
206 */
207
208#ifdef VM_ENABLE_STACK_NULLING
209# define CHECK_STACK_LEAKN(_n) ASSERT (!sp[_n]);
210# define CHECK_STACK_LEAK() CHECK_STACK_LEAKN(1)
211# define NULLSTACK(_n) { int __x = _n; CHECK_STACK_LEAKN (_n+1); while (__x > 0) sp[__x--] = NULL; }
212/* If you have a nonlocal exit in a pre-wind proc while invoking a continuation
213 inside a dynwind (phew!), the stack is fully rewound but vm_reset_stack for
214 that continuation doesn't have a chance to run. It's not important on a
215 semantic level, but it does mess up our stack nulling -- so this macro is to
216 fix that. */
217# define NULLSTACK_FOR_NONLOCAL_EXIT() if (vp->sp > sp) NULLSTACK (vp->sp - sp);
218#else
219# define CHECK_STACK_LEAKN(_n)
220# define CHECK_STACK_LEAK()
221# define NULLSTACK(_n)
222# define NULLSTACK_FOR_NONLOCAL_EXIT()
223#endif
224
225/* For this check, we don't use VM_ASSERT, because that leads to a
226 per-site SYNC_ALL, which is too much code growth. The real problem
227 of course is having to check for overflow all the time... */
228#define CHECK_OVERFLOW() \
229 do { if (SCM_UNLIKELY (sp >= stack_limit)) goto handle_overflow; } while (0)
230
231#ifdef VM_CHECK_UNDERFLOW
232#define PRE_CHECK_UNDERFLOW(N) \
233 VM_ASSERT (sp - (N) > SCM_FRAME_UPPER_ADDRESS (fp), vm_error_stack_underflow ())
234#define CHECK_UNDERFLOW() PRE_CHECK_UNDERFLOW (0)
235#else
236#define PRE_CHECK_UNDERFLOW(N) /* nop */
237#define CHECK_UNDERFLOW() /* nop */
238#endif
239
240
241#define PUSH(x) do { sp++; CHECK_OVERFLOW (); *sp = x; } while (0)
242#define DROP() do { sp--; CHECK_UNDERFLOW (); NULLSTACK (1); } while (0)
243#define DROPN(_n) do { sp -= (_n); CHECK_UNDERFLOW (); NULLSTACK (_n); } while (0)
244#define POP(x) do { PRE_CHECK_UNDERFLOW (1); x = *sp--; NULLSTACK (1); } while (0)
245#define POP2(x,y) do { PRE_CHECK_UNDERFLOW (2); x = *sp--; y = *sp--; NULLSTACK (2); } while (0)
246#define POP3(x,y,z) do { PRE_CHECK_UNDERFLOW (3); x = *sp--; y = *sp--; z = *sp--; NULLSTACK (3); } while (0)
247
eac12024
AW
248/* Pop the N objects on top of the stack and push a list that contains
249 them. */
250#define POP_LIST(n) \
251do \
252{ \
253 int i; \
254 SCM l = SCM_EOL, x; \
52182d52 255 SYNC_BEFORE_GC (); \
eac12024
AW
256 for (i = n; i; i--) \
257 { \
258 POP (x); \
52182d52 259 l = scm_cons (x, l); \
eac12024
AW
260 } \
261 PUSH (l); \
262} while (0)
263
264/* The opposite: push all of the elements in L onto the list. */
265#define PUSH_LIST(l, NILP) \
266do \
267{ \
268 for (; scm_is_pair (l); l = SCM_CDR (l)) \
269 PUSH (SCM_CAR (l)); \
270 VM_ASSERT (NILP (l), vm_error_improper_list (l)); \
271} while (0)
272
273\f
eac12024
AW
274/*
275 * Instruction operation
276 */
277
278#define FETCH() (*ip++)
279#define FETCH_LENGTH(len) do { len=*ip++; len<<=8; len+=*ip++; len<<=8; len+=*ip++; } while (0)
280
281#undef NEXT_JUMP
282#ifdef HAVE_LABELS_AS_VALUES
27c7c630 283# define NEXT_JUMP() goto *jump_table[FETCH () & SCM_VM_INSTRUCTION_MASK]
eac12024 284#else
27c7c630 285# define NEXT_JUMP() goto vm_start
eac12024
AW
286#endif
287
288#define NEXT \
289{ \
290 NEXT_HOOK (); \
291 CHECK_STACK_LEAK (); \
292 NEXT_JUMP (); \
293}
294
295\f
296/* See frames.h for the layout of stack frames */
297/* When this is called, bp points to the new program data,
298 and the arguments are already on the stack */
299#define DROP_FRAME() \
300 { \
301 sp -= 3; \
302 NULLSTACK (3); \
303 CHECK_UNDERFLOW (); \
304 }
305
238e7a11 306
a98cef7e 307static SCM
7656f194 308VM_NAME (SCM vm, SCM program, SCM *argv, int nargs)
a98cef7e 309{
17e90c5e 310 /* VM registers */
2fb924f6 311 register scm_t_uint8 *ip IP_REG; /* instruction pointer */
17e90c5e
KN
312 register SCM *sp SP_REG; /* stack pointer */
313 register SCM *fp FP_REG; /* frame pointer */
7656f194 314 struct scm_vm *vp = SCM_VM_DATA (vm);
a98cef7e 315
d608d68d 316 /* Cache variables */
53e28ed9 317 struct scm_objcode *bp = NULL; /* program base pointer */
17e90c5e 318 SCM *objects = NULL; /* constant objects */
3d5ee0cd 319 SCM *stack_limit = vp->stack_limit; /* stack limit address */
2d026f04 320
a2a6c0e3 321 scm_i_thread *current_thread = SCM_I_CURRENT_THREAD;
a98cef7e 322
d608d68d 323 /* Internal variables */
ef24c01b 324 int nvalues = 0;
9d381ba4
AW
325 scm_i_jmp_buf registers; /* used for prompts */
326
53e28ed9 327#ifdef HAVE_LABELS_AS_VALUES
37a5970c 328 static const void **jump_table_pointer = NULL;
e06e857c 329#endif
37a5970c 330
e06e857c 331#ifdef HAVE_LABELS_AS_VALUES
37a5970c
LC
332 register const void **jump_table JT_REG;
333
334 if (SCM_UNLIKELY (!jump_table_pointer))
53e28ed9
AW
335 {
336 int i;
37a5970c 337 jump_table_pointer = malloc (SCM_VM_NUM_INSTRUCTIONS * sizeof (void*));
53e28ed9 338 for (i = 0; i < SCM_VM_NUM_INSTRUCTIONS; i++)
37a5970c 339 jump_table_pointer[i] = &&vm_error_bad_instruction;
53e28ed9 340#define VM_INSTRUCTION_TO_LABEL 1
37a5970c 341#define jump_table jump_table_pointer
aeeff258
AW
342#include <libguile/vm-expand.h>
343#include <libguile/vm-i-system.i>
344#include <libguile/vm-i-scheme.i>
345#include <libguile/vm-i-loader.i>
37a5970c 346#undef jump_table
53e28ed9
AW
347#undef VM_INSTRUCTION_TO_LABEL
348 }
37a5970c
LC
349
350 /* Attempt to keep JUMP_TABLE_POINTER in a register. This saves one
351 load instruction at each instruction dispatch. */
352 jump_table = jump_table_pointer;
53e28ed9 353#endif
9d381ba4
AW
354
355 if (SCM_I_SETJMP (registers))
356 {
357 /* Non-local return. Cache the VM registers back from the vp, and
358 go to the handler.
359
360 Note, at this point, we must assume that any variable local to
361 vm_engine that can be assigned *has* been assigned. So we need to pull
362 all our state back from the ip/fp/sp.
363 */
364 CACHE_REGISTER ();
365 program = SCM_FRAME_PROGRAM (fp);
366 CACHE_PROGRAM ();
367 /* The stack contains the values returned to this continuation,
368 along with a number-of-values marker -- like an MV return. */
c850a0ff 369 ABORT_CONTINUATION_HOOK (sp - SCM_I_INUM (*sp), SCM_I_INUM (*sp));
9d381ba4
AW
370 NEXT;
371 }
53e28ed9 372
67b699cc 373 CACHE_REGISTER ();
27319ffa
AW
374
375 /* Since it's possible to receive the arguments on the stack itself,
376 and indeed the RTL VM invokes us that way, shuffle up the
377 arguments first. */
378 VM_ASSERT (sp + 8 + nargs < stack_limit, vm_error_too_many_args (nargs));
379 {
380 int i;
381 for (i = nargs - 1; i >= 0; i--)
382 sp[9 + i] = argv[i];
383 }
384
385 /* Initial frame */
67b699cc
AW
386 PUSH (SCM_PACK (fp)); /* dynamic link */
387 PUSH (SCM_PACK (0)); /* mvra */
388 PUSH (SCM_PACK (ip)); /* ra */
389 PUSH (boot_continuation);
390 fp = sp + 1;
391 ip = SCM_C_OBJCODE_BASE (SCM_PROGRAM_DATA (boot_continuation));
392
393 /* MV-call frame, function & arguments */
394 PUSH (SCM_PACK (fp)); /* dynamic link */
395 PUSH (SCM_PACK (ip + 1)); /* mvra */
396 PUSH (SCM_PACK (ip)); /* ra */
397 PUSH (program);
398 fp = sp + 1;
27319ffa 399 sp += nargs;
67b699cc
AW
400
401 PUSH_CONTINUATION_HOOK ();
402
403 apply:
404 program = fp[-1];
405 if (!SCM_PROGRAM_P (program))
406 {
407 if (SCM_STRUCTP (program) && SCM_STRUCT_APPLICABLE_P (program))
408 fp[-1] = SCM_STRUCT_PROCEDURE (program);
510ca126
AW
409 else if (SCM_HAS_TYP7 (program, scm_tc7_rtl_program))
410 {
411 SCM ret;
412 SYNC_ALL ();
413
414 ret = RTL_VM_NAME (vm, program, fp, sp - fp + 1);
415
416 NULLSTACK_FOR_NONLOCAL_EXIT ();
417
418 if (SCM_UNLIKELY (SCM_VALUESP (ret)))
419 {
420 /* multiple values returned to continuation */
421 ret = scm_struct_ref (ret, SCM_INUM0);
422 nvalues = scm_ilength (ret);
423 PUSH_LIST (ret, scm_is_null);
424 goto vm_return_values;
425 }
426 else
427 {
428 PUSH (ret);
429 goto vm_return;
430 }
431 }
968a9add 432 else if (SCM_HAS_TYP7 (program, scm_tc7_smob)
67b699cc
AW
433 && SCM_SMOB_APPLICABLE_P (program))
434 {
435 /* (smob arg0 ... argN) => (apply-smob smob arg0 ... argN) */
436 int i;
437 PUSH (SCM_BOOL_F);
438 for (i = sp - fp; i >= 0; i--)
439 fp[i] = fp[i - 1];
968a9add 440 fp[-1] = SCM_SMOB_DESCRIPTOR (program).apply_trampoline;
67b699cc
AW
441 }
442 else
443 {
444 SYNC_ALL();
445 vm_error_wrong_type_apply (program);
446 }
447 goto apply;
448 }
449
450 CACHE_PROGRAM ();
451 ip = SCM_C_OBJCODE_BASE (bp);
452
453 APPLY_HOOK ();
a98cef7e
KN
454
455 /* Let's go! */
53e28ed9 456 NEXT;
a98cef7e
KN
457
458#ifndef HAVE_LABELS_AS_VALUES
17e90c5e 459 vm_start:
53e28ed9 460 switch ((*ip++) & SCM_VM_INSTRUCTION_MASK) {
a98cef7e
KN
461#endif
462
83495480
AW
463#include "vm-expand.h"
464#include "vm-i-system.c"
465#include "vm-i-scheme.c"
466#include "vm-i-loader.c"
a98cef7e
KN
467
468#ifndef HAVE_LABELS_AS_VALUES
53e28ed9
AW
469 default:
470 goto vm_error_bad_instruction;
a98cef7e
KN
471 }
472#endif
473
53bdfcf0 474 abort (); /* never reached */
a52b2d3d 475
53bdfcf0
AW
476 vm_error_bad_instruction:
477 vm_error_bad_instruction (ip[-1]);
478 abort (); /* never reached */
17e90c5e 479
53bdfcf0
AW
480 handle_overflow:
481 SYNC_ALL ();
482 vm_error_stack_overflow (vp);
a98cef7e
KN
483 abort (); /* never reached */
484}
6d14383e 485
a0ec1ca1
AW
486#undef ALIGNED_P
487#undef CACHE_REGISTER
488#undef CHECK_OVERFLOW
a0ec1ca1
AW
489#undef FUNC2
490#undef INIT
491#undef INUM_MAX
492#undef INUM_MIN
d2295ba5 493#undef INUM_STEP
a0ec1ca1
AW
494#undef jump_table
495#undef LOCAL_REF
496#undef LOCAL_SET
497#undef NEXT
498#undef NEXT_JUMP
499#undef REL
500#undef RETURN
501#undef RETURN_ONE_VALUE
502#undef RETURN_VALUE_LIST
a0ec1ca1
AW
503#undef SYNC_ALL
504#undef SYNC_BEFORE_GC
505#undef SYNC_IP
506#undef SYNC_REGISTER
507#undef VARIABLE_BOUNDP
508#undef VARIABLE_REF
509#undef VARIABLE_SET
510#undef VM_DEFINE_OP
511#undef VM_INSTRUCTION_TO_LABEL
17e90c5e 512
510ca126
AW
513
514\f
515
516/* Virtual Machine
517
518 This is Guile's new virtual machine. When I say "new", I mean
519 relative to the current virtual machine. At some point it will
520 become "the" virtual machine, and we'll delete this paragraph. As
521 such, the rest of the comments speak as if there's only one VM.
7396d216
AW
522 In difference from the old VM, local 0 is the procedure, and the
523 first argument is local 1. At some point in the future we should
524 change the fp to point to the procedure and not to local 1.
510ca126
AW
525
526 <more overview here>
527 */
528
529
530/* The VM has three state bits: the instruction pointer (IP), the frame
531 pointer (FP), and the top-of-stack pointer (SP). We cache the first
532 two of these in machine registers, local to the VM, because they are
533 used extensively by the VM. As the SP is used more by code outside
534 the VM than by the VM itself, we don't bother caching it locally.
535
536 Since the FP changes infrequently, relative to the IP, we keep vp->fp
537 in sync with the local FP. This would be a big lose for the IP,
538 though, so instead of updating vp->ip all the time, we call SYNC_IP
539 whenever we would need to know the IP of the top frame. In practice,
540 we need to SYNC_IP whenever we call out of the VM to a function that
541 would like to walk the stack, perhaps as the result of an
542 exception. */
543
544#define SYNC_IP() \
545 vp->ip = (scm_t_uint8 *) (ip)
546
547#define SYNC_REGISTER() \
548 SYNC_IP()
549#define SYNC_BEFORE_GC() /* Only SP and FP needed to trace GC */
550#define SYNC_ALL() /* FP already saved */ \
551 SYNC_IP()
552
553#define CHECK_OVERFLOW(sp) \
554 do { \
555 if (SCM_UNLIKELY ((sp) >= stack_limit)) \
556 vm_error_stack_overflow (vp); \
557 } while (0)
558
559/* Reserve stack space for a frame. Will check that there is sufficient
7396d216
AW
560 stack space for N locals, including the procedure, in addition to
561 3 words to set up the next frame. Invoke after preparing the new
510ca126
AW
562 frame and setting the fp and ip. */
563#define ALLOC_FRAME(n) \
564 do { \
7396d216 565 SCM *new_sp = vp->sp = fp - 1 + n - 1; \
510ca126
AW
566 CHECK_OVERFLOW (new_sp + 4); \
567 } while (0)
568
569/* Reset the current frame to hold N locals. Used when we know that no
570 stack expansion is needed. */
571#define RESET_FRAME(n) \
572 do { \
7396d216 573 vp->sp = fp - 2 + n; \
510ca126
AW
574 } while (0)
575
576/* Compute the number of locals in the frame. This is equal to the
7396d216
AW
577 number of actual arguments when a function is first called, plus
578 one for the function. */
510ca126 579#define FRAME_LOCALS_COUNT() \
7396d216 580 (vp->sp + 1 - (fp - 1))
510ca126
AW
581
582/* Restore registers after returning from a frame. */
583#define RESTORE_FRAME() \
584 do { \
585 } while (0)
586
587
588#define CACHE_REGISTER() \
589 do { \
590 ip = (scm_t_uint32 *) vp->ip; \
591 fp = vp->fp; \
592 } while (0)
593
594#ifdef HAVE_LABELS_AS_VALUES
595# define BEGIN_DISPATCH_SWITCH /* */
596# define END_DISPATCH_SWITCH /* */
597# define NEXT(n) \
598 do \
599 { \
600 ip += n; \
601 NEXT_HOOK (); \
602 op = *ip; \
603 goto *jump_table[op & 0xff]; \
604 } \
605 while (0)
606# define VM_DEFINE_OP(opcode, tag, name, meta) \
607 op_##tag:
608#else
609# define BEGIN_DISPATCH_SWITCH \
610 vm_start: \
611 NEXT_HOOK (); \
612 op = *ip; \
613 switch (op & 0xff) \
614 {
615# define END_DISPATCH_SWITCH \
616 default: \
617 goto vm_error_bad_instruction; \
618 }
619# define NEXT(n) \
620 do \
621 { \
622 ip += n; \
623 goto vm_start; \
624 } \
625 while (0)
626# define VM_DEFINE_OP(opcode, tag, name, meta) \
627 op_##tag: \
628 case opcode:
629#endif
630
7396d216
AW
631#define LOCAL_REF(i) SCM_FRAME_VARIABLE (fp, (i) - 1)
632#define LOCAL_SET(i,o) SCM_FRAME_VARIABLE (fp, (i) - 1) = o
510ca126
AW
633
634#define VARIABLE_REF(v) SCM_VARIABLE_REF (v)
635#define VARIABLE_SET(v,o) SCM_VARIABLE_SET (v, o)
636#define VARIABLE_BOUNDP(v) (!scm_is_eq (VARIABLE_REF (v), SCM_UNDEFINED))
510ca126
AW
637
638#define RETURN_ONE_VALUE(ret) \
639 do { \
640 SCM val = ret; \
641 SCM *sp = SCM_FRAME_LOWER_ADDRESS (fp); \
642 VM_HANDLE_INTERRUPTS; \
643 ip = SCM_FRAME_RTL_RETURN_ADDRESS (fp); \
510ca126 644 fp = vp->fp = SCM_FRAME_DYNAMIC_LINK (fp); \
af95414f
AW
645 /* Clear frame. */ \
646 sp[0] = SCM_BOOL_F; \
647 sp[1] = SCM_BOOL_F; \
648 sp[2] = SCM_BOOL_F; \
649 /* Leave proc. */ \
650 sp[4] = val; \
651 vp->sp = sp + 4; \
510ca126
AW
652 POP_CONTINUATION_HOOK (sp, 1); \
653 NEXT (0); \
654 } while (0)
655
656/* While we could generate the list-unrolling code here, it's fine for
657 now to just tail-call (apply values vals). */
658#define RETURN_VALUE_LIST(vals_) \
659 do { \
660 SCM vals = vals_; \
661 VM_HANDLE_INTERRUPTS; \
662 fp[-1] = rtl_apply; \
663 fp[0] = rtl_values; \
664 fp[1] = vals; \
7396d216 665 RESET_FRAME (3); \
510ca126 666 ip = (scm_t_uint32 *) rtl_apply_code; \
adb8d905 667 goto op_tail_apply; \
510ca126
AW
668 } while (0)
669
670#define BR_NARGS(rel) \
671 scm_t_uint16 expected; \
672 SCM_UNPACK_RTL_24 (op, expected); \
673 if (FRAME_LOCALS_COUNT() rel expected) \
674 { \
675 scm_t_int32 offset = ip[1]; \
676 offset >>= 8; /* Sign-extending shift. */ \
677 NEXT (offset); \
678 } \
679 NEXT (2)
680
681#define BR_UNARY(x, exp) \
682 scm_t_uint32 test; \
683 SCM x; \
684 SCM_UNPACK_RTL_24 (op, test); \
685 x = LOCAL_REF (test); \
686 if ((ip[1] & 0x1) ? !(exp) : (exp)) \
687 { \
688 scm_t_int32 offset = ip[1]; \
689 offset >>= 8; /* Sign-extending shift. */ \
690 if (offset < 0) \
691 VM_HANDLE_INTERRUPTS; \
692 NEXT (offset); \
693 } \
694 NEXT (2)
695
696#define BR_BINARY(x, y, exp) \
697 scm_t_uint16 a, b; \
698 SCM x, y; \
699 SCM_UNPACK_RTL_12_12 (op, a, b); \
700 x = LOCAL_REF (a); \
701 y = LOCAL_REF (b); \
702 if ((ip[1] & 0x1) ? !(exp) : (exp)) \
703 { \
704 scm_t_int32 offset = ip[1]; \
705 offset >>= 8; /* Sign-extending shift. */ \
706 if (offset < 0) \
707 VM_HANDLE_INTERRUPTS; \
708 NEXT (offset); \
709 } \
710 NEXT (2)
711
712#define BR_ARITHMETIC(crel,srel) \
713 { \
714 scm_t_uint16 a, b; \
715 SCM x, y; \
716 SCM_UNPACK_RTL_12_12 (op, a, b); \
717 x = LOCAL_REF (a); \
718 y = LOCAL_REF (b); \
719 if (SCM_I_INUMP (x) && SCM_I_INUMP (y)) \
720 { \
721 scm_t_signed_bits x_bits = SCM_UNPACK (x); \
722 scm_t_signed_bits y_bits = SCM_UNPACK (y); \
af95414f 723 if ((ip[1] & 0x1) ? !(x_bits crel y_bits) : (x_bits crel y_bits)) \
510ca126
AW
724 { \
725 scm_t_int32 offset = ip[1]; \
726 offset >>= 8; /* Sign-extending shift. */ \
727 if (offset < 0) \
728 VM_HANDLE_INTERRUPTS; \
729 NEXT (offset); \
730 } \
731 NEXT (2); \
732 } \
733 else \
734 { \
af95414f 735 SCM res; \
510ca126 736 SYNC_IP (); \
af95414f
AW
737 res = srel (x, y); \
738 if ((ip[1] & 0x1) ? scm_is_false (res) : scm_is_true (res)) \
510ca126
AW
739 { \
740 scm_t_int32 offset = ip[1]; \
741 offset >>= 8; /* Sign-extending shift. */ \
742 if (offset < 0) \
743 VM_HANDLE_INTERRUPTS; \
744 NEXT (offset); \
745 } \
746 NEXT (2); \
747 } \
748 }
749
750#define ARGS1(a1) \
751 scm_t_uint16 dst, src; \
752 SCM a1; \
753 SCM_UNPACK_RTL_12_12 (op, dst, src); \
754 a1 = LOCAL_REF (src)
755#define ARGS2(a1, a2) \
756 scm_t_uint8 dst, src1, src2; \
757 SCM a1, a2; \
758 SCM_UNPACK_RTL_8_8_8 (op, dst, src1, src2); \
759 a1 = LOCAL_REF (src1); \
760 a2 = LOCAL_REF (src2)
761#define RETURN(x) \
762 do { LOCAL_SET (dst, x); NEXT (1); } while (0)
763
764/* The maximum/minimum tagged integers. */
d2295ba5
MW
765#define INUM_MAX \
766 ((scm_t_signed_bits) SCM_UNPACK (SCM_I_MAKINUM (SCM_MOST_POSITIVE_FIXNUM)))
767#define INUM_MIN \
768 ((scm_t_signed_bits) SCM_UNPACK (SCM_I_MAKINUM (SCM_MOST_NEGATIVE_FIXNUM)))
769#define INUM_STEP \
770 ((scm_t_signed_bits) SCM_UNPACK (SCM_INUM1) \
771 - (scm_t_signed_bits) SCM_UNPACK (SCM_INUM0))
510ca126
AW
772
773#define BINARY_INTEGER_OP(CFUNC,SFUNC) \
774 { \
775 ARGS2 (x, y); \
776 if (SCM_I_INUMP (x) && SCM_I_INUMP (y)) \
777 { \
778 scm_t_int64 n = SCM_I_INUM (x) CFUNC SCM_I_INUM (y); \
779 if (SCM_FIXABLE (n)) \
780 RETURN (SCM_I_MAKINUM (n)); \
781 } \
782 SYNC_IP (); \
783 RETURN (SFUNC (x, y)); \
784 }
785
786#define VM_VALIDATE_PAIR(x, proc) \
787 VM_ASSERT (scm_is_pair (x), vm_error_not_a_pair (proc, x))
788
789#define VM_VALIDATE_STRUCT(obj, proc) \
790 VM_ASSERT (SCM_STRUCTP (obj), vm_error_not_a_pair (proc, obj))
791
792#define VM_VALIDATE_BYTEVECTOR(x, proc) \
793 VM_ASSERT (SCM_BYTEVECTOR_P (x), vm_error_not_a_bytevector (proc, x))
794
795/* Return true (non-zero) if PTR has suitable alignment for TYPE. */
796#define ALIGNED_P(ptr, type) \
797 ((scm_t_uintptr) (ptr) % alignof_type (type) == 0)
798
799static SCM
800RTL_VM_NAME (SCM vm, SCM program, SCM *argv, size_t nargs_)
801{
802 /* Instruction pointer: A pointer to the opcode that is currently
803 running. */
804 register scm_t_uint32 *ip IP_REG;
805
806 /* Frame pointer: A pointer into the stack, off of which we index
807 arguments and local variables. Pushed at function calls, popped on
808 returns. */
809 register SCM *fp FP_REG;
810
811 /* Current opcode: A cache of *ip. */
812 register scm_t_uint32 op;
813
814 /* Cached variables. */
815 struct scm_vm *vp = SCM_VM_DATA (vm);
816 SCM *stack_limit = vp->stack_limit; /* stack limit address */
817 scm_i_thread *current_thread = SCM_I_CURRENT_THREAD;
818 scm_i_jmp_buf registers; /* used for prompts */
819
820#ifdef HAVE_LABELS_AS_VALUES
821 static const void **jump_table_pointer = NULL;
822 register const void **jump_table JT_REG;
823
824 if (SCM_UNLIKELY (!jump_table_pointer))
825 {
826 int i;
827 jump_table_pointer = malloc (SCM_VM_NUM_INSTRUCTIONS * sizeof (void*));
828 for (i = 0; i < SCM_VM_NUM_INSTRUCTIONS; i++)
829 jump_table_pointer[i] = &&vm_error_bad_instruction;
830#define INIT(opcode, tag, name, meta) jump_table_pointer[opcode] = &&op_##tag;
831 FOR_EACH_VM_OPERATION(INIT);
832#undef INIT
833 }
834
835 /* Attempt to keep JUMP_TABLE_POINTER in a register. This saves one
836 load instruction at each instruction dispatch. */
837 jump_table = jump_table_pointer;
838#endif
839
840 if (SCM_I_SETJMP (registers))
841 {
842 /* Non-local return. The values are on the stack, on a new frame
843 set up to call `values' to return the values to the handler.
844 Cache the VM registers back from the vp, and dispatch to the
845 body of `values'.
846
847 Note, at this point, we must assume that any variable local to
848 vm_engine that can be assigned *has* been assigned. So we need
849 to pull all our state back from the ip/fp/sp.
850 */
851 CACHE_REGISTER ();
852 ABORT_CONTINUATION_HOOK (fp, FRAME_LOCALS_COUNT());
853 NEXT (0);
854 }
855
856 /* Load previous VM registers. */
857 CACHE_REGISTER ();
858
859 VM_HANDLE_INTERRUPTS;
860
861 /* Initialization */
862 {
863 SCM *base;
864
865 /* Check that we have enough space: 4 words for the boot
866 continuation, 4 + nargs for the procedure application, and 4 for
867 setting up a new frame. */
868 base = vp->sp + 1;
869 CHECK_OVERFLOW (vp->sp + 4 + 4 + nargs_ + 4);
870
871 /* Since it's possible to receive the arguments on the stack itself,
872 and indeed the regular VM invokes us that way, shuffle up the
873 arguments first. */
874 {
875 int i;
876 for (i = nargs_ - 1; i >= 0; i--)
877 base[8 + i] = argv[i];
878 }
879
880 /* Initial frame, saving previous fp and ip, with the boot
881 continuation. */
882 base[0] = SCM_PACK (fp); /* dynamic link */
883 base[1] = SCM_PACK (0); /* the boot continuation does not return to scheme */
884 base[2] = SCM_PACK (ip); /* ra */
885 base[3] = rtl_boot_continuation;
886 fp = &base[4];
af95414f 887 ip = (scm_t_uint32 *) rtl_boot_continuation_code;
510ca126
AW
888
889 /* MV-call frame, function & arguments */
890 base[4] = SCM_PACK (fp); /* dynamic link */
af95414f 891 base[5] = SCM_PACK (ip); /* in RTL programs, MVRA same as RA */
510ca126
AW
892 base[6] = SCM_PACK (ip); /* ra */
893 base[7] = program;
894 fp = vp->fp = &base[8];
7396d216 895 RESET_FRAME (nargs_ + 1);
510ca126
AW
896 }
897
898 apply:
899 while (!SCM_RTL_PROGRAM_P (SCM_FRAME_PROGRAM (fp)))
900 {
901#if 0
902 SCM proc = SCM_FRAME_PROGRAM (fp);
903
904 if (SCM_STRUCTP (proc) && SCM_STRUCT_APPLICABLE_P (proc))
905 {
906 fp[-1] = SCM_STRUCT_PROCEDURE (proc);
907 continue;
908 }
909 if (SCM_HAS_TYP7 (proc, scm_tc7_smob) && SCM_SMOB_APPLICABLE_P (proc))
910 {
911 scm_t_uint32 n = FRAME_LOCALS_COUNT();
912
913 /* Shuffle args up, place smob in local 0. */
914 CHECK_OVERFLOW (vp->sp + 1);
915 vp->sp++;
916 while (n--)
917 LOCAL_SET (n + 1, LOCAL_REF (n));
510ca126
AW
918
919 fp[-1] = SCM_SMOB_DESCRIPTOR (proc).apply_trampoline;
920 continue;
921 }
922
923 SYNC_IP();
924 vm_error_wrong_type_apply (proc);
925#else
926 SCM ret;
927 SYNC_ALL ();
928
7396d216 929 ret = VM_NAME (vm, fp[-1], fp, FRAME_LOCALS_COUNT () - 1);
510ca126
AW
930
931 if (SCM_UNLIKELY (SCM_VALUESP (ret)))
932 RETURN_VALUE_LIST (scm_struct_ref (ret, SCM_INUM0));
933 else
934 RETURN_ONE_VALUE (ret);
935#endif
936 }
937
938 /* Let's go! */
939 ip = SCM_RTL_PROGRAM_CODE (SCM_FRAME_PROGRAM (fp));
940 NEXT (0);
941
942 BEGIN_DISPATCH_SWITCH;
943
944
945 \f
946
947 /*
948 * Call and return
949 */
950
951 /* halt _:24
952 *
af95414f 953 * Bring the VM to a halt, returning all the values from the stack.
510ca126
AW
954 */
955 VM_DEFINE_OP (0, halt, "halt", OP1 (U8_X24))
956 {
af95414f
AW
957 scm_t_uint32 nvals = FRAME_LOCALS_COUNT() - 5;
958 SCM ret;
510ca126 959
af95414f 960 /* Boot closure in r0, empty frame in r1/r2/r3, proc in r4, values from r5. */
510ca126 961
af95414f
AW
962 if (nvals == 1)
963 ret = LOCAL_REF (5);
964 else
965 {
966 scm_t_uint32 n;
967 ret = SCM_EOL;
968 SYNC_BEFORE_GC();
969 for (n = nvals; n > 0; n--)
e79ed6b1 970 ret = scm_cons (LOCAL_REF (5 + n - 1), ret);
af95414f
AW
971 ret = scm_values (ret);
972 }
510ca126
AW
973
974 vp->ip = SCM_FRAME_RETURN_ADDRESS (fp);
975 vp->sp = SCM_FRAME_LOWER_ADDRESS (fp) - 1;
976 vp->fp = SCM_FRAME_DYNAMIC_LINK (fp);
977
af95414f 978 return ret;
286a0fb3
AW
979 }
980
af95414f 981 /* call proc:24 _:8 nlocals:24
286a0fb3 982 *
af95414f
AW
983 * Call a procedure. PROC is the local corresponding to a procedure.
984 * The three values below PROC will be overwritten by the saved call
985 * frame data. The new frame will have space for NLOCALS locals: one
986 * for the procedure, and the rest for the arguments which should
987 * already have been pushed on.
510ca126 988 *
af95414f
AW
989 * When the call returns, execution proceeds with the next
990 * instruction. There may be any number of values on the return
991 * stack; the precise number can be had by subtracting the address of
992 * PROC from the post-call SP.
510ca126 993 */
af95414f 994 VM_DEFINE_OP (1, call, "call", OP2 (U8_U24, X8_U24))
510ca126 995 {
af95414f 996 scm_t_uint32 proc, nlocals;
510ca126
AW
997 SCM *old_fp = fp;
998
af95414f
AW
999 SCM_UNPACK_RTL_24 (op, proc);
1000 SCM_UNPACK_RTL_24 (ip[1], nlocals);
510ca126
AW
1001
1002 VM_HANDLE_INTERRUPTS;
1003
af95414f 1004 fp = vp->fp = old_fp + proc;
510ca126 1005 SCM_FRAME_SET_DYNAMIC_LINK (fp, old_fp);
af95414f 1006 SCM_FRAME_SET_RTL_MV_RETURN_ADDRESS (fp, ip + 2);
286a0fb3 1007 SCM_FRAME_SET_RTL_RETURN_ADDRESS (fp, ip + 2);
510ca126 1008
af95414f
AW
1009 RESET_FRAME (nlocals);
1010
510ca126
AW
1011 PUSH_CONTINUATION_HOOK ();
1012 APPLY_HOOK ();
1013
1014 if (SCM_UNLIKELY (!SCM_RTL_PROGRAM_P (SCM_FRAME_PROGRAM (fp))))
1015 goto apply;
1016
1017 ip = SCM_RTL_PROGRAM_CODE (SCM_FRAME_PROGRAM (fp));
1018 NEXT (0);
1019 }
1020
af95414f 1021 /* tail-call nlocals:24
510ca126 1022 *
af95414f
AW
1023 * Tail-call a procedure. Requires that the procedure and all of the
1024 * arguments have already been shuffled into position.
510ca126 1025 */
af95414f 1026 VM_DEFINE_OP (2, tail_call, "tail-call", OP1 (U8_U24))
510ca126 1027 {
af95414f
AW
1028 scm_t_uint32 nlocals;
1029
1030 SCM_UNPACK_RTL_24 (op, nlocals);
510ca126
AW
1031
1032 VM_HANDLE_INTERRUPTS;
1033
af95414f 1034 RESET_FRAME (nlocals);
510ca126
AW
1035 APPLY_HOOK ();
1036
1037 if (SCM_UNLIKELY (!SCM_RTL_PROGRAM_P (SCM_FRAME_PROGRAM (fp))))
1038 goto apply;
1039
1040 ip = SCM_RTL_PROGRAM_CODE (SCM_FRAME_PROGRAM (fp));
1041 NEXT (0);
1042 }
1043
af95414f 1044 /* receive dst:12 proc:12 _:8 nlocals:24
510ca126 1045 *
af95414f
AW
1046 * Receive a single return value from a call whose procedure was in
1047 * PROC, asserting that the call actually returned at least one
1048 * value. Afterwards, resets the frame to NLOCALS locals.
510ca126 1049 */
af95414f 1050 VM_DEFINE_OP (3, receive, "receive", OP2 (U8_U12_U12, X8_U24) | OP_DST)
510ca126 1051 {
af95414f
AW
1052 scm_t_uint16 dst, proc;
1053 scm_t_uint32 nlocals;
1054 SCM_UNPACK_RTL_12_12 (op, dst, proc);
1055 SCM_UNPACK_RTL_24 (ip[1], nlocals);
1056 VM_ASSERT (FRAME_LOCALS_COUNT () > proc + 1, vm_error_no_values ());
1057 LOCAL_SET (dst, LOCAL_REF (proc + 1));
1058 RESET_FRAME (nlocals);
1059 NEXT (2);
1060 }
510ca126 1061
82f4bac4 1062 /* receive-values proc:24 allow-extra?:1 _:7 nvalues:24
af95414f
AW
1063 *
1064 * Receive a return of multiple values from a call whose procedure was
1065 * in PROC. If fewer than NVALUES values were returned, signal an
82f4bac4
AW
1066 * error. Unless ALLOW-EXTRA? is true, require that the number of
1067 * return values equals NVALUES exactly. After receive-values has
1068 * run, the values can be copied down via `mov'.
af95414f 1069 */
82f4bac4 1070 VM_DEFINE_OP (4, receive_values, "receive-values", OP2 (U8_U24, B1_X7_U24))
af95414f
AW
1071 {
1072 scm_t_uint32 proc, nvalues;
1073 SCM_UNPACK_RTL_24 (op, proc);
1074 SCM_UNPACK_RTL_24 (ip[1], nvalues);
82f4bac4
AW
1075 if (ip[1] & 0x1)
1076 VM_ASSERT (FRAME_LOCALS_COUNT () > proc + nvalues,
1077 vm_error_not_enough_values ());
1078 else
1079 VM_ASSERT (FRAME_LOCALS_COUNT () == proc + nvalues,
1080 vm_error_wrong_number_of_values (nvalues));
af95414f 1081 NEXT (2);
510ca126
AW
1082 }
1083
1084 /* return src:24
1085 *
1086 * Return a value.
1087 */
af95414f 1088 VM_DEFINE_OP (5, return, "return", OP1 (U8_U24))
510ca126
AW
1089 {
1090 scm_t_uint32 src;
1091 SCM_UNPACK_RTL_24 (op, src);
1092 RETURN_ONE_VALUE (LOCAL_REF (src));
1093 }
1094
84cc4127 1095 /* return-values _:24
510ca126
AW
1096 *
1097 * Return a number of values from a call frame. This opcode
1098 * corresponds to an application of `values' in tail position. As
af95414f
AW
1099 * with tail calls, we expect that the values have already been
1100 * shuffled down to a contiguous array starting at slot 1.
84cc4127 1101 * We also expect the frame has already been reset.
510ca126 1102 */
84cc4127 1103 VM_DEFINE_OP (6, return_values, "return-values", OP1 (U8_X24))
510ca126 1104 {
84cc4127 1105 scm_t_uint32 nvalues _GL_UNUSED = FRAME_LOCALS_COUNT();
af95414f
AW
1106 SCM *base = fp;
1107
af95414f
AW
1108 VM_HANDLE_INTERRUPTS;
1109 ip = SCM_FRAME_RTL_MV_RETURN_ADDRESS (fp);
1110 fp = vp->fp = SCM_FRAME_DYNAMIC_LINK (fp);
1111
1112 /* Clear stack frame. */
1113 base[-2] = SCM_BOOL_F;
1114 base[-3] = SCM_BOOL_F;
1115 base[-4] = SCM_BOOL_F;
1116
1117 POP_CONTINUATION_HOOK (base, nvalues);
1118
1119 NEXT (0);
510ca126
AW
1120 }
1121
1122
1123 \f
1124
1125 /*
1126 * Specialized call stubs
1127 */
1128
1129 /* subr-call ptr-idx:24
1130 *
1131 * Call a subr, passing all locals in this frame as arguments. Fetch
1132 * the foreign pointer from PTR-IDX, a free variable. Return from the
1133 * calling frame. This instruction is part of the trampolines
1134 * created in gsubr.c, and is not generated by the compiler.
1135 */
af95414f 1136 VM_DEFINE_OP (7, subr_call, "subr-call", OP1 (U8_U24))
510ca126
AW
1137 {
1138 scm_t_uint32 ptr_idx;
1139 SCM pointer, ret;
1140 SCM (*subr)();
1141
1142 SCM_UNPACK_RTL_24 (op, ptr_idx);
1143
7396d216 1144 pointer = SCM_RTL_PROGRAM_FREE_VARIABLE_REF (LOCAL_REF (0), ptr_idx);
510ca126
AW
1145 subr = SCM_POINTER_VALUE (pointer);
1146
1147 VM_HANDLE_INTERRUPTS;
1148 SYNC_IP ();
1149
1150 switch (FRAME_LOCALS_COUNT ())
1151 {
1152 case 0:
1153 ret = subr ();
1154 break;
1155 case 1:
1156 ret = subr (fp[0]);
1157 break;
1158 case 2:
1159 ret = subr (fp[0], fp[1]);
1160 break;
1161 case 3:
1162 ret = subr (fp[0], fp[1], fp[2]);
1163 break;
1164 case 4:
1165 ret = subr (fp[0], fp[1], fp[2], fp[3]);
1166 break;
1167 case 5:
1168 ret = subr (fp[0], fp[1], fp[2], fp[3], fp[4]);
1169 break;
1170 case 6:
1171 ret = subr (fp[0], fp[1], fp[2], fp[3], fp[4], fp[5]);
1172 break;
1173 case 7:
1174 ret = subr (fp[0], fp[1], fp[2], fp[3], fp[4], fp[5], fp[6]);
1175 break;
1176 case 8:
1177 ret = subr (fp[0], fp[1], fp[2], fp[3], fp[4], fp[5], fp[6], fp[7]);
1178 break;
1179 case 9:
1180 ret = subr (fp[0], fp[1], fp[2], fp[3], fp[4], fp[5], fp[6], fp[7], fp[8]);
1181 break;
1182 case 10:
1183 ret = subr (fp[0], fp[1], fp[2], fp[3], fp[4], fp[5], fp[6], fp[7], fp[8], fp[9]);
1184 break;
1185 default:
1186 abort ();
1187 }
1188
1189 // NULLSTACK_FOR_NONLOCAL_EXIT ();
1190
1191 if (SCM_UNLIKELY (SCM_VALUESP (ret)))
1192 /* multiple values returned to continuation */
1193 RETURN_VALUE_LIST (scm_struct_ref (ret, SCM_INUM0));
1194 else
1195 RETURN_ONE_VALUE (ret);
1196 }
1197
1198 /* foreign-call cif-idx:12 ptr-idx:12
1199 *
1200 * Call a foreign function. Fetch the CIF and foreign pointer from
1201 * CIF-IDX and PTR-IDX, both free variables. Return from the calling
1202 * frame. Arguments are taken from the stack. This instruction is
1203 * part of the trampolines created by the FFI, and is not generated by
1204 * the compiler.
1205 */
af95414f 1206 VM_DEFINE_OP (8, foreign_call, "foreign-call", OP1 (U8_U12_U12))
510ca126
AW
1207 {
1208 scm_t_uint16 cif_idx, ptr_idx;
7396d216 1209 SCM closure, cif, pointer, ret;
510ca126
AW
1210
1211 SCM_UNPACK_RTL_12_12 (op, cif_idx, ptr_idx);
1212
7396d216
AW
1213 closure = LOCAL_REF (0);
1214 cif = SCM_RTL_PROGRAM_FREE_VARIABLE_REF (closure, cif_idx);
1215 pointer = SCM_RTL_PROGRAM_FREE_VARIABLE_REF (closure, ptr_idx);
510ca126
AW
1216
1217 SYNC_IP ();
1218 VM_HANDLE_INTERRUPTS;
1219
1220 // FIXME: separate args
1221 ret = scm_i_foreign_call (scm_cons (cif, pointer), fp);
1222
1223 // NULLSTACK_FOR_NONLOCAL_EXIT ();
1224
1225 if (SCM_UNLIKELY (SCM_VALUESP (ret)))
1226 /* multiple values returned to continuation */
1227 RETURN_VALUE_LIST (scm_struct_ref (ret, SCM_INUM0));
1228 else
1229 RETURN_ONE_VALUE (ret);
1230 }
1231
1232 /* continuation-call contregs:24
1233 *
1234 * Return to a continuation, nonlocally. The arguments to the
1235 * continuation are taken from the stack. CONTREGS is a free variable
1236 * containing the reified continuation. This instruction is part of
1237 * the implementation of undelimited continuations, and is not
1238 * generated by the compiler.
1239 */
af95414f 1240 VM_DEFINE_OP (9, continuation_call, "continuation-call", OP1 (U8_U24))
510ca126
AW
1241 {
1242 SCM contregs;
1243 scm_t_uint32 contregs_idx;
1244
1245 SCM_UNPACK_RTL_24 (op, contregs_idx);
1246
7396d216
AW
1247 contregs =
1248 SCM_RTL_PROGRAM_FREE_VARIABLE_REF (LOCAL_REF (0), contregs_idx);
510ca126
AW
1249
1250 SYNC_IP ();
1251 scm_i_check_continuation (contregs);
1252 vm_return_to_continuation (scm_i_contregs_vm (contregs),
1253 scm_i_contregs_vm_cont (contregs),
1254 FRAME_LOCALS_COUNT (), fp);
1255 scm_i_reinstate_continuation (contregs);
1256
1257 /* no NEXT */
1258 abort ();
1259 }
1260
1261 /* compose-continuation cont:24
1262 *
1263 * Compose a partial continution with the current continuation. The
1264 * arguments to the continuation are taken from the stack. CONT is a
1265 * free variable containing the reified continuation. This
1266 * instruction is part of the implementation of partial continuations,
1267 * and is not generated by the compiler.
1268 */
af95414f 1269 VM_DEFINE_OP (10, compose_continuation, "compose-continuation", OP1 (U8_U24))
510ca126
AW
1270 {
1271 SCM vmcont;
1272 scm_t_uint32 cont_idx;
1273
1274 SCM_UNPACK_RTL_24 (op, cont_idx);
1275 vmcont = LOCAL_REF (cont_idx);
1276
1277 SYNC_IP ();
1278 VM_ASSERT (SCM_VM_CONT_REWINDABLE_P (vmcont),
1279 vm_error_continuation_not_rewindable (vmcont));
1280 vm_reinstate_partial_continuation (vm, vmcont, FRAME_LOCALS_COUNT (), fp,
1281 &current_thread->dynstack,
1282 &registers);
1283 CACHE_REGISTER ();
1284 NEXT (0);
1285 }
1286
adb8d905 1287 /* tail-apply _:24
510ca126
AW
1288 *
1289 * Tail-apply the procedure in local slot 0 to the rest of the
1290 * arguments. This instruction is part of the implementation of
1291 * `apply', and is not generated by the compiler.
1292 */
adb8d905 1293 VM_DEFINE_OP (11, tail_apply, "tail-apply", OP1 (U8_X24))
510ca126
AW
1294 {
1295 int i, list_idx, list_len, nargs;
1296 SCM list;
1297
1298 VM_HANDLE_INTERRUPTS;
1299
1300 VM_ASSERT (FRAME_LOCALS_COUNT () >= 2, abort ());
1301 nargs = FRAME_LOCALS_COUNT ();
1302 list_idx = nargs - 1;
1303 list = LOCAL_REF (list_idx);
1304 list_len = scm_ilength (list);
1305
1306 VM_ASSERT (list_len >= 0, vm_error_apply_to_non_list (list));
1307
1308 nargs = nargs - 2 + list_len;
1309 ALLOC_FRAME (nargs);
1310
1311 for (i = 0; i < list_idx; i++)
7396d216 1312 LOCAL_SET(i - 1, LOCAL_REF (i));
510ca126
AW
1313
1314 /* Null out these slots, just in case there are less than 2 elements
1315 in the list. */
7396d216
AW
1316 LOCAL_SET (list_idx - 1, SCM_UNDEFINED);
1317 LOCAL_SET (list_idx, SCM_UNDEFINED);
510ca126
AW
1318
1319 for (i = 0; i < list_len; i++, list = SCM_CDR (list))
7396d216 1320 LOCAL_SET (list_idx - 1 + i, SCM_CAR (list));
510ca126
AW
1321
1322 APPLY_HOOK ();
1323
1324 if (SCM_UNLIKELY (!SCM_RTL_PROGRAM_P (SCM_FRAME_PROGRAM (fp))))
1325 goto apply;
1326
1327 ip = SCM_RTL_PROGRAM_CODE (SCM_FRAME_PROGRAM (fp));
1328 NEXT (0);
1329 }
1330
1331 /* call/cc _:24
1332 *
1333 * Capture the current continuation, and tail-apply the procedure in
1334 * local slot 0 to it. This instruction is part of the implementation
1335 * of `call/cc', and is not generated by the compiler.
1336 */
af95414f 1337 VM_DEFINE_OP (12, call_cc, "call/cc", OP1 (U8_X24))
510ca126
AW
1338#if 0
1339 {
1340 SCM vm_cont, cont;
1341 scm_t_dynstack *dynstack;
1342
1343 VM_HANDLE_INTERRUPTS;
1344
1345 SYNC_IP ();
1346 dynstack = scm_dynstack_capture_all (&current_thread->dynstack);
1347 vm_cont = scm_i_vm_capture_stack (vp->stack_base,
1348 SCM_FRAME_DYNAMIC_LINK (fp),
1349 SCM_FRAME_LOWER_ADDRESS (fp) - 1,
1350 SCM_FRAME_RETURN_ADDRESS (fp),
1351 SCM_FRAME_MV_RETURN_ADDRESS (fp),
1352 dynstack,
1353 0);
1354 cont = scm_i_make_continuation (&registers, vm, vm_cont);
1355
1356 fp[-1] = fp[0];
1357 fp[0] = cont;
7396d216 1358 RESET_FRAME (2);
510ca126
AW
1359
1360 APPLY_HOOK ();
1361
1362 if (SCM_UNLIKELY (!SCM_RTL_PROGRAM_P (SCM_FRAME_PROGRAM (fp))))
1363 goto apply;
1364
1365 ip = SCM_RTL_PROGRAM_CODE (SCM_FRAME_PROGRAM (fp));
1366 NEXT (0);
1367 }
1368#else
1369 abort();
1370#endif
1371
510ca126
AW
1372
1373 \f
1374
1375 /*
1376 * Function prologues
1377 */
1378
1379 /* br-if-nargs-ne expected:24 _:8 offset:24
1380 * br-if-nargs-lt expected:24 _:8 offset:24
1381 * br-if-nargs-gt expected:24 _:8 offset:24
1382 *
1383 * If the number of actual arguments is not equal, less than, or greater
1384 * than EXPECTED, respectively, add OFFSET, a signed 24-bit number, to
1385 * the current instruction pointer.
1386 */
af95414f 1387 VM_DEFINE_OP (13, br_if_nargs_ne, "br-if-nargs-ne", OP2 (U8_U24, X8_L24))
510ca126
AW
1388 {
1389 BR_NARGS (!=);
1390 }
af95414f 1391 VM_DEFINE_OP (14, br_if_nargs_lt, "br-if-nargs-lt", OP2 (U8_U24, X8_L24))
510ca126
AW
1392 {
1393 BR_NARGS (<);
1394 }
af95414f 1395 VM_DEFINE_OP (15, br_if_nargs_gt, "br-if-nargs-gt", OP2 (U8_U24, X8_L24))
510ca126
AW
1396 {
1397 BR_NARGS (>);
1398 }
1399
1400 /* assert-nargs-ee expected:24
1401 * assert-nargs-ge expected:24
1402 * assert-nargs-le expected:24
1403 *
1404 * If the number of actual arguments is not ==, >=, or <= EXPECTED,
1405 * respectively, signal an error.
1406 */
af95414f 1407 VM_DEFINE_OP (16, assert_nargs_ee, "assert-nargs-ee", OP1 (U8_U24))
510ca126
AW
1408 {
1409 scm_t_uint32 expected;
1410 SCM_UNPACK_RTL_24 (op, expected);
1411 VM_ASSERT (FRAME_LOCALS_COUNT () == expected,
1412 vm_error_wrong_num_args (SCM_FRAME_PROGRAM (fp)));
1413 NEXT (1);
1414 }
af95414f 1415 VM_DEFINE_OP (17, assert_nargs_ge, "assert-nargs-ge", OP1 (U8_U24))
510ca126
AW
1416 {
1417 scm_t_uint32 expected;
1418 SCM_UNPACK_RTL_24 (op, expected);
1419 VM_ASSERT (FRAME_LOCALS_COUNT () >= expected,
1420 vm_error_wrong_num_args (SCM_FRAME_PROGRAM (fp)));
1421 NEXT (1);
1422 }
af95414f 1423 VM_DEFINE_OP (18, assert_nargs_le, "assert-nargs-le", OP1 (U8_U24))
510ca126
AW
1424 {
1425 scm_t_uint32 expected;
1426 SCM_UNPACK_RTL_24 (op, expected);
1427 VM_ASSERT (FRAME_LOCALS_COUNT () <= expected,
1428 vm_error_wrong_num_args (SCM_FRAME_PROGRAM (fp)));
1429 NEXT (1);
1430 }
1431
af95414f 1432 /* alloc-frame nlocals:24
510ca126
AW
1433 *
1434 * Ensure that there is space on the stack for NLOCALS local variables,
1435 * setting them all to SCM_UNDEFINED, except those nargs values that
7396d216 1436 * were passed as arguments and procedure.
510ca126 1437 */
af95414f 1438 VM_DEFINE_OP (19, alloc_frame, "alloc-frame", OP1 (U8_U24))
510ca126
AW
1439 {
1440 scm_t_uint32 nlocals, nargs;
1441 SCM_UNPACK_RTL_24 (op, nlocals);
1442
1443 nargs = FRAME_LOCALS_COUNT ();
1444 ALLOC_FRAME (nlocals);
1445 while (nlocals-- > nargs)
1446 LOCAL_SET (nlocals, SCM_UNDEFINED);
1447
1448 NEXT (1);
1449 }
1450
af95414f
AW
1451 /* reset-frame nlocals:24
1452 *
1453 * Like alloc-frame, but doesn't check that the stack is big enough.
1454 * Used to reset the frame size to something less than the size that
1455 * was previously set via alloc-frame.
1456 */
1457 VM_DEFINE_OP (20, reset_frame, "reset-frame", OP1 (U8_U24))
1458 {
1459 scm_t_uint32 nlocals;
1460 SCM_UNPACK_RTL_24 (op, nlocals);
1461 RESET_FRAME (nlocals);
1462 NEXT (1);
1463 }
1464
510ca126
AW
1465 /* assert-nargs-ee/locals expected:12 nlocals:12
1466 *
1467 * Equivalent to a sequence of assert-nargs-ee and reserve-locals. The
1468 * number of locals reserved is EXPECTED + NLOCALS.
1469 */
af95414f 1470 VM_DEFINE_OP (21, assert_nargs_ee_locals, "assert-nargs-ee/locals", OP1 (U8_U12_U12))
510ca126
AW
1471 {
1472 scm_t_uint16 expected, nlocals;
1473 SCM_UNPACK_RTL_12_12 (op, expected, nlocals);
1474 VM_ASSERT (FRAME_LOCALS_COUNT () == expected,
1475 vm_error_wrong_num_args (SCM_FRAME_PROGRAM (fp)));
1476 ALLOC_FRAME (expected + nlocals);
1477 while (nlocals--)
1478 LOCAL_SET (expected + nlocals, SCM_UNDEFINED);
1479
1480 NEXT (1);
1481 }
1482
1483 /* bind-kwargs nreq:24 allow-other-keys:1 has-rest:1 _:6 nreq-and-opt:24
1484 * _:8 ntotal:24 kw-offset:32
1485 *
1486 * Find the last positional argument, and shuffle all the rest above
1487 * NTOTAL. Initialize the intervening locals to SCM_UNDEFINED. Then
1488 * load the constant at KW-OFFSET words from the current IP, and use it
1489 * to bind keyword arguments. If HAS-REST, collect all shuffled
1490 * arguments into a list, and store it in NREQ-AND-OPT. Finally, clear
1491 * the arguments that we shuffled up.
1492 *
1493 * A macro-mega-instruction.
1494 */
af95414f 1495 VM_DEFINE_OP (22, bind_kwargs, "bind-kwargs", OP4 (U8_U24, U8_U24, X8_U24, N32))
510ca126
AW
1496 {
1497 scm_t_uint32 nreq, nreq_and_opt, ntotal, npositional, nkw, n, nargs;
1498 scm_t_int32 kw_offset;
1499 scm_t_bits kw_bits;
1500 SCM kw;
1501 char allow_other_keys, has_rest;
1502
1503 SCM_UNPACK_RTL_24 (op, nreq);
1504 allow_other_keys = ip[1] & 0x1;
1505 has_rest = ip[1] & 0x2;
1506 SCM_UNPACK_RTL_24 (ip[1], nreq_and_opt);
1507 SCM_UNPACK_RTL_24 (ip[2], ntotal);
1508 kw_offset = ip[3];
1509 kw_bits = (scm_t_bits) (ip + kw_offset);
1510 VM_ASSERT (!(kw_bits & 0x7), abort());
1511 kw = SCM_PACK (kw_bits);
1512
1513 nargs = FRAME_LOCALS_COUNT ();
1514
1515 /* look in optionals for first keyword or last positional */
1516 /* starting after the last required positional arg */
1517 npositional = nreq;
1518 while (/* while we have args */
1519 npositional < nargs
1520 /* and we still have positionals to fill */
1521 && npositional < nreq_and_opt
1522 /* and we haven't reached a keyword yet */
1523 && !scm_is_keyword (LOCAL_REF (npositional)))
1524 /* bind this optional arg (by leaving it in place) */
1525 npositional++;
1526 nkw = nargs - npositional;
1527 /* shuffle non-positional arguments above ntotal */
1528 ALLOC_FRAME (ntotal + nkw);
1529 n = nkw;
1530 while (n--)
1531 LOCAL_SET (ntotal + n, LOCAL_REF (npositional + n));
1532 /* and fill optionals & keyword args with SCM_UNDEFINED */
1533 n = npositional;
1534 while (n < ntotal)
1535 LOCAL_SET (n++, SCM_UNDEFINED);
1536
1537 VM_ASSERT (has_rest || (nkw % 2) == 0,
1538 vm_error_kwargs_length_not_even (SCM_FRAME_PROGRAM (fp)));
1539
1540 /* Now bind keywords, in the order given. */
1541 for (n = 0; n < nkw; n++)
1542 if (scm_is_keyword (LOCAL_REF (ntotal + n)))
1543 {
1544 SCM walk;
1545 for (walk = kw; scm_is_pair (walk); walk = SCM_CDR (walk))
1546 if (scm_is_eq (SCM_CAAR (walk), LOCAL_REF (ntotal + n)))
1547 {
1548 SCM si = SCM_CDAR (walk);
1549 LOCAL_SET (SCM_I_INUMP (si) ? SCM_I_INUM (si) : scm_to_uint32 (si),
1550 LOCAL_REF (ntotal + n + 1));
1551 break;
1552 }
1553 VM_ASSERT (scm_is_pair (walk) || allow_other_keys,
28d5d253
MW
1554 vm_error_kwargs_unrecognized_keyword (SCM_FRAME_PROGRAM (fp),
1555 LOCAL_REF (ntotal + n)));
510ca126
AW
1556 n++;
1557 }
1558 else
28d5d253
MW
1559 VM_ASSERT (has_rest, vm_error_kwargs_invalid_keyword (SCM_FRAME_PROGRAM (fp),
1560 LOCAL_REF (ntotal + n)));
510ca126
AW
1561
1562 if (has_rest)
1563 {
1564 SCM rest = SCM_EOL;
1565 n = nkw;
1566 while (n--)
1567 rest = scm_cons (LOCAL_REF (ntotal + n), rest);
1568 LOCAL_SET (nreq_and_opt, rest);
1569 }
1570
1571 RESET_FRAME (ntotal);
1572
1573 NEXT (4);
1574 }
1575
1576 /* bind-rest dst:24
1577 *
1578 * Collect any arguments at or above DST into a list, and store that
1579 * list at DST.
1580 */
af95414f 1581 VM_DEFINE_OP (23, bind_rest, "bind-rest", OP1 (U8_U24) | OP_DST)
510ca126
AW
1582 {
1583 scm_t_uint32 dst, nargs;
1584 SCM rest = SCM_EOL;
1585
1586 SCM_UNPACK_RTL_24 (op, dst);
1587 nargs = FRAME_LOCALS_COUNT ();
1588
1589 while (nargs-- > dst)
1590 {
1591 rest = scm_cons (LOCAL_REF (nargs), rest);
1592 LOCAL_SET (nargs, SCM_UNDEFINED);
1593 }
1594
1595 LOCAL_SET (dst, rest);
1596
1597 RESET_FRAME (dst + 1);
1598
1599 NEXT (1);
1600 }
1601
510ca126
AW
1602
1603 \f
1604
1605 /*
1606 * Branching instructions
1607 */
1608
1609 /* br offset:24
1610 *
1611 * Add OFFSET, a signed 24-bit number, to the current instruction
1612 * pointer.
1613 */
af95414f 1614 VM_DEFINE_OP (24, br, "br", OP1 (U8_L24))
510ca126
AW
1615 {
1616 scm_t_int32 offset = op;
1617 offset >>= 8; /* Sign-extending shift. */
1618 NEXT (offset);
1619 }
1620
1621 /* br-if-true test:24 invert:1 _:7 offset:24
1622 *
1623 * If the value in TEST is true for the purposes of Scheme, add
1624 * OFFSET, a signed 24-bit number, to the current instruction pointer.
1625 */
af95414f 1626 VM_DEFINE_OP (25, br_if_true, "br-if-true", OP2 (U8_U24, B1_X7_L24))
510ca126
AW
1627 {
1628 BR_UNARY (x, scm_is_true (x));
1629 }
1630
1631 /* br-if-null test:24 invert:1 _:7 offset:24
1632 *
1633 * If the value in TEST is the end-of-list or Lisp nil, add OFFSET, a
1634 * signed 24-bit number, to the current instruction pointer.
1635 */
af95414f 1636 VM_DEFINE_OP (26, br_if_null, "br-if-null", OP2 (U8_U24, B1_X7_L24))
510ca126
AW
1637 {
1638 BR_UNARY (x, scm_is_null (x));
1639 }
1640
1641 /* br-if-nil test:24 invert:1 _:7 offset:24
1642 *
1643 * If the value in TEST is false to Lisp, add OFFSET, a signed 24-bit
1644 * number, to the current instruction pointer.
1645 */
af95414f 1646 VM_DEFINE_OP (27, br_if_nil, "br-if-nil", OP2 (U8_U24, B1_X7_L24))
510ca126
AW
1647 {
1648 BR_UNARY (x, scm_is_lisp_false (x));
1649 }
1650
1651 /* br-if-pair test:24 invert:1 _:7 offset:24
1652 *
1653 * If the value in TEST is a pair, add OFFSET, a signed 24-bit number,
1654 * to the current instruction pointer.
1655 */
af95414f 1656 VM_DEFINE_OP (28, br_if_pair, "br-if-pair", OP2 (U8_U24, B1_X7_L24))
510ca126
AW
1657 {
1658 BR_UNARY (x, scm_is_pair (x));
1659 }
1660
1661 /* br-if-struct test:24 invert:1 _:7 offset:24
1662 *
1663 * If the value in TEST is a struct, add OFFSET, a signed 24-bit
1664 * number, to the current instruction pointer.
1665 */
af95414f 1666 VM_DEFINE_OP (29, br_if_struct, "br-if-struct", OP2 (U8_U24, B1_X7_L24))
510ca126
AW
1667 {
1668 BR_UNARY (x, SCM_STRUCTP (x));
1669 }
1670
1671 /* br-if-char test:24 invert:1 _:7 offset:24
1672 *
1673 * If the value in TEST is a char, add OFFSET, a signed 24-bit number,
1674 * to the current instruction pointer.
1675 */
af95414f 1676 VM_DEFINE_OP (30, br_if_char, "br-if-char", OP2 (U8_U24, B1_X7_L24))
510ca126
AW
1677 {
1678 BR_UNARY (x, SCM_CHARP (x));
1679 }
1680
1681 /* br-if-tc7 test:24 invert:1 tc7:7 offset:24
1682 *
1683 * If the value in TEST has the TC7 given in the second word, add
1684 * OFFSET, a signed 24-bit number, to the current instruction pointer.
1685 */
af95414f 1686 VM_DEFINE_OP (31, br_if_tc7, "br-if-tc7", OP2 (U8_U24, B1_U7_L24))
510ca126
AW
1687 {
1688 BR_UNARY (x, SCM_HAS_TYP7 (x, (ip[1] >> 1) & 0x7f));
1689 }
1690
1691 /* br-if-eq a:12 b:12 invert:1 _:7 offset:24
1692 *
1693 * If the value in A is eq? to the value in B, add OFFSET, a signed
1694 * 24-bit number, to the current instruction pointer.
1695 */
af95414f 1696 VM_DEFINE_OP (32, br_if_eq, "br-if-eq", OP2 (U8_U12_U12, B1_X7_L24))
510ca126
AW
1697 {
1698 BR_BINARY (x, y, scm_is_eq (x, y));
1699 }
1700
1701 /* br-if-eqv a:12 b:12 invert:1 _:7 offset:24
1702 *
1703 * If the value in A is eqv? to the value in B, add OFFSET, a signed
1704 * 24-bit number, to the current instruction pointer.
1705 */
af95414f 1706 VM_DEFINE_OP (33, br_if_eqv, "br-if-eqv", OP2 (U8_U12_U12, B1_X7_L24))
510ca126
AW
1707 {
1708 BR_BINARY (x, y,
1709 scm_is_eq (x, y)
1710 || (SCM_NIMP (x) && SCM_NIMP (y)
1711 && scm_is_true (scm_eqv_p (x, y))));
1712 }
1713
af95414f 1714 // FIXME: remove, have compiler inline eqv test instead
510ca126
AW
1715 /* br-if-equal a:12 b:12 invert:1 _:7 offset:24
1716 *
1717 * If the value in A is equal? to the value in B, add OFFSET, a signed
1718 * 24-bit number, to the current instruction pointer.
1719 */
1720 // FIXME: should sync_ip before calling out?
af95414f 1721 VM_DEFINE_OP (34, br_if_equal, "br-if-equal", OP2 (U8_U12_U12, B1_X7_L24))
510ca126
AW
1722 {
1723 BR_BINARY (x, y,
1724 scm_is_eq (x, y)
1725 || (SCM_NIMP (x) && SCM_NIMP (y)
1726 && scm_is_true (scm_equal_p (x, y))));
1727 }
1728
af95414f 1729 /* br-if-= a:12 b:12 invert:1 _:7 offset:24
510ca126
AW
1730 *
1731 * If the value in A is = to the value in B, add OFFSET, a signed
1732 * 24-bit number, to the current instruction pointer.
1733 */
af95414f 1734 VM_DEFINE_OP (35, br_if_ee, "br-if-=", OP2 (U8_U12_U12, B1_X7_L24))
510ca126
AW
1735 {
1736 BR_ARITHMETIC (==, scm_num_eq_p);
1737 }
1738
1739 /* br-if-< a:12 b:12 _:8 offset:24
1740 *
1741 * If the value in A is < to the value in B, add OFFSET, a signed
1742 * 24-bit number, to the current instruction pointer.
1743 */
af95414f 1744 VM_DEFINE_OP (36, br_if_lt, "br-if-<", OP2 (U8_U12_U12, B1_X7_L24))
510ca126
AW
1745 {
1746 BR_ARITHMETIC (<, scm_less_p);
1747 }
1748
1749 /* br-if-<= a:12 b:12 _:8 offset:24
1750 *
1751 * If the value in A is <= to the value in B, add OFFSET, a signed
1752 * 24-bit number, to the current instruction pointer.
1753 */
af95414f 1754 VM_DEFINE_OP (37, br_if_le, "br-if-<=", OP2 (U8_U12_U12, B1_X7_L24))
510ca126
AW
1755 {
1756 BR_ARITHMETIC (<=, scm_leq_p);
1757 }
1758
510ca126
AW
1759
1760 \f
1761
1762 /*
1763 * Lexical binding instructions
1764 */
1765
1766 /* mov dst:12 src:12
1767 *
1768 * Copy a value from one local slot to another.
1769 */
af95414f 1770 VM_DEFINE_OP (38, mov, "mov", OP1 (U8_U12_U12) | OP_DST)
510ca126
AW
1771 {
1772 scm_t_uint16 dst;
1773 scm_t_uint16 src;
1774
1775 SCM_UNPACK_RTL_12_12 (op, dst, src);
1776 LOCAL_SET (dst, LOCAL_REF (src));
1777
1778 NEXT (1);
1779 }
1780
1781 /* long-mov dst:24 _:8 src:24
1782 *
1783 * Copy a value from one local slot to another.
1784 */
af95414f 1785 VM_DEFINE_OP (39, long_mov, "long-mov", OP2 (U8_U24, X8_U24) | OP_DST)
510ca126
AW
1786 {
1787 scm_t_uint32 dst;
1788 scm_t_uint32 src;
1789
1790 SCM_UNPACK_RTL_24 (op, dst);
1791 SCM_UNPACK_RTL_24 (ip[1], src);
1792 LOCAL_SET (dst, LOCAL_REF (src));
1793
1794 NEXT (2);
1795 }
1796
1797 /* box dst:12 src:12
1798 *
1799 * Create a new variable holding SRC, and place it in DST.
1800 */
af95414f 1801 VM_DEFINE_OP (40, box, "box", OP1 (U8_U12_U12) | OP_DST)
510ca126
AW
1802 {
1803 scm_t_uint16 dst, src;
1804 SCM_UNPACK_RTL_12_12 (op, dst, src);
1805 LOCAL_SET (dst, scm_cell (scm_tc7_variable, SCM_UNPACK (LOCAL_REF (src))));
1806 NEXT (1);
1807 }
1808
510ca126
AW
1809 /* box-ref dst:12 src:12
1810 *
1811 * Unpack the variable at SRC into DST, asserting that the variable is
1812 * actually bound.
1813 */
af95414f 1814 VM_DEFINE_OP (41, box_ref, "box-ref", OP1 (U8_U12_U12) | OP_DST)
510ca126
AW
1815 {
1816 scm_t_uint16 dst, src;
1817 SCM var;
1818 SCM_UNPACK_RTL_12_12 (op, dst, src);
1819 var = LOCAL_REF (src);
1820 VM_ASSERT (SCM_VARIABLEP (var), abort ());
af95414f
AW
1821 VM_ASSERT (VARIABLE_BOUNDP (var),
1822 vm_error_unbound (SCM_FRAME_PROGRAM (fp), var));
510ca126
AW
1823 LOCAL_SET (dst, VARIABLE_REF (var));
1824 NEXT (1);
1825 }
1826
1827 /* box-set! dst:12 src:12
1828 *
1829 * Set the contents of the variable at DST to SET.
1830 */
e063995d 1831 VM_DEFINE_OP (42, box_set, "box-set!", OP1 (U8_U12_U12))
510ca126
AW
1832 {
1833 scm_t_uint16 dst, src;
1834 SCM var;
1835 SCM_UNPACK_RTL_12_12 (op, dst, src);
1836 var = LOCAL_REF (dst);
1837 VM_ASSERT (SCM_VARIABLEP (var), abort ());
1838 VARIABLE_SET (var, LOCAL_REF (src));
1839 NEXT (1);
1840 }
1841
7396d216 1842 /* make-closure dst:24 offset:32 _:8 nfree:24
510ca126
AW
1843 *
1844 * Make a new closure, and write it to DST. The code for the closure
1845 * will be found at OFFSET words from the current IP. OFFSET is a
7396d216
AW
1846 * signed 32-bit integer. Space for NFREE free variables will be
1847 * allocated.
510ca126 1848 */
af95414f 1849 VM_DEFINE_OP (43, make_closure, "make-closure", OP3 (U8_U24, L32, X8_U24) | OP_DST)
510ca126
AW
1850 {
1851 scm_t_uint32 dst, nfree, n;
1852 scm_t_int32 offset;
1853 SCM closure;
1854
1855 SCM_UNPACK_RTL_24 (op, dst);
1856 offset = ip[1];
1857 SCM_UNPACK_RTL_24 (ip[2], nfree);
1858
1859 // FIXME: Assert range of nfree?
1860 closure = scm_words (scm_tc7_rtl_program | (nfree << 16), nfree + 2);
1861 SCM_SET_CELL_WORD_1 (closure, ip + offset);
7396d216 1862 // FIXME: Elide these initializations?
510ca126 1863 for (n = 0; n < nfree; n++)
7396d216 1864 SCM_RTL_PROGRAM_FREE_VARIABLE_SET (closure, n, SCM_BOOL_F);
510ca126 1865 LOCAL_SET (dst, closure);
7396d216 1866 NEXT (3);
510ca126
AW
1867 }
1868
7396d216 1869 /* free-ref dst:12 src:12 _:8 idx:24
510ca126 1870 *
7396d216 1871 * Load free variable IDX from the closure SRC into local slot DST.
510ca126 1872 */
af95414f 1873 VM_DEFINE_OP (44, free_ref, "free-ref", OP2 (U8_U12_U12, X8_U24) | OP_DST)
510ca126 1874 {
7396d216
AW
1875 scm_t_uint16 dst, src;
1876 scm_t_uint32 idx;
1877 SCM_UNPACK_RTL_12_12 (op, dst, src);
1878 SCM_UNPACK_RTL_24 (ip[1], idx);
1879 /* CHECK_FREE_VARIABLE (src); */
1880 LOCAL_SET (dst, SCM_RTL_PROGRAM_FREE_VARIABLE_REF (LOCAL_REF (src), idx));
1881 NEXT (2);
1882 }
510ca126 1883
7396d216
AW
1884 /* free-set! dst:12 src:12 _8 idx:24
1885 *
1886 * Set free variable IDX from the closure DST to SRC.
1887 */
af95414f 1888 VM_DEFINE_OP (45, free_set, "free-set!", OP2 (U8_U12_U12, X8_U24))
7396d216
AW
1889 {
1890 scm_t_uint16 dst, src;
1891 scm_t_uint32 idx;
1892 SCM_UNPACK_RTL_12_12 (op, dst, src);
1893 SCM_UNPACK_RTL_24 (ip[1], idx);
1894 /* CHECK_FREE_VARIABLE (src); */
1895 SCM_RTL_PROGRAM_FREE_VARIABLE_SET (LOCAL_REF (dst), idx, LOCAL_REF (src));
1896 NEXT (2);
510ca126
AW
1897 }
1898
1899
1900 \f
1901
1902 /*
1903 * Immediates and statically allocated non-immediates
1904 */
1905
1906 /* make-short-immediate dst:8 low-bits:16
1907 *
1908 * Make an immediate whose low bits are LOW-BITS, and whose top bits are
1909 * 0.
1910 */
af95414f 1911 VM_DEFINE_OP (46, make_short_immediate, "make-short-immediate", OP1 (U8_U8_I16) | OP_DST)
510ca126
AW
1912 {
1913 scm_t_uint8 dst;
1914 scm_t_bits val;
1915
1916 SCM_UNPACK_RTL_8_16 (op, dst, val);
1917 LOCAL_SET (dst, SCM_PACK (val));
1918 NEXT (1);
1919 }
1920
1921 /* make-long-immediate dst:24 low-bits:32
1922 *
1923 * Make an immediate whose low bits are LOW-BITS, and whose top bits are
1924 * 0.
1925 */
af95414f 1926 VM_DEFINE_OP (47, make_long_immediate, "make-long-immediate", OP2 (U8_U24, I32))
510ca126
AW
1927 {
1928 scm_t_uint8 dst;
1929 scm_t_bits val;
1930
1931 SCM_UNPACK_RTL_24 (op, dst);
1932 val = ip[1];
1933 LOCAL_SET (dst, SCM_PACK (val));
1934 NEXT (2);
1935 }
1936
1937 /* make-long-long-immediate dst:24 high-bits:32 low-bits:32
1938 *
1939 * Make an immediate with HIGH-BITS and LOW-BITS.
1940 */
af95414f 1941 VM_DEFINE_OP (48, make_long_long_immediate, "make-long-long-immediate", OP3 (U8_U24, A32, B32) | OP_DST)
510ca126
AW
1942 {
1943 scm_t_uint8 dst;
1944 scm_t_bits val;
1945
1946 SCM_UNPACK_RTL_24 (op, dst);
1947#if SIZEOF_SCM_T_BITS > 4
1948 val = ip[1];
1949 val <<= 32;
1950 val |= ip[2];
1951#else
1952 ASSERT (ip[1] == 0);
1953 val = ip[2];
1954#endif
1955 LOCAL_SET (dst, SCM_PACK (val));
1956 NEXT (3);
1957 }
1958
1959 /* make-non-immediate dst:24 offset:32
1960 *
1961 * Load a pointer to statically allocated memory into DST. The
1962 * object's memory is will be found OFFSET 32-bit words away from the
1963 * current instruction pointer. OFFSET is a signed value. The
1964 * intention here is that the compiler would produce an object file
1965 * containing the words of a non-immediate object, and this
1966 * instruction creates a pointer to that memory, effectively
1967 * resurrecting that object.
1968 *
1969 * Whether the object is mutable or immutable depends on where it was
1970 * allocated by the compiler, and loaded by the loader.
1971 */
af95414f 1972 VM_DEFINE_OP (49, make_non_immediate, "make-non-immediate", OP2 (U8_U24, N32) | OP_DST)
510ca126
AW
1973 {
1974 scm_t_uint32 dst;
1975 scm_t_int32 offset;
1976 scm_t_uint32* loc;
1977 scm_t_bits unpacked;
1978
1979 SCM_UNPACK_RTL_24 (op, dst);
1980 offset = ip[1];
1981 loc = ip + offset;
1982 unpacked = (scm_t_bits) loc;
1983
1984 VM_ASSERT (!(unpacked & 0x7), abort());
1985
1986 LOCAL_SET (dst, SCM_PACK (unpacked));
1987
1988 NEXT (2);
1989 }
1990
1991 /* static-ref dst:24 offset:32
1992 *
1993 * Load a SCM value into DST. The SCM value will be fetched from
1994 * memory, OFFSET 32-bit words away from the current instruction
1995 * pointer. OFFSET is a signed value.
1996 *
1997 * The intention is for this instruction to be used to load constants
1998 * that the compiler is unable to statically allocate, like symbols.
1999 * These values would be initialized when the object file loads.
2000 */
af95414f 2001 VM_DEFINE_OP (50, static_ref, "static-ref", OP2 (U8_U24, S32))
510ca126
AW
2002 {
2003 scm_t_uint32 dst;
2004 scm_t_int32 offset;
2005 scm_t_uint32* loc;
2006 scm_t_uintptr loc_bits;
2007
2008 SCM_UNPACK_RTL_24 (op, dst);
2009 offset = ip[1];
2010 loc = ip + offset;
2011 loc_bits = (scm_t_uintptr) loc;
2012 VM_ASSERT (ALIGNED_P (loc, SCM), abort());
2013
2014 LOCAL_SET (dst, *((SCM *) loc_bits));
2015
2016 NEXT (2);
2017 }
2018
2019 /* static-set! src:24 offset:32
2020 *
2021 * Store a SCM value into memory, OFFSET 32-bit words away from the
2022 * current instruction pointer. OFFSET is a signed value.
2023 */
af95414f 2024 VM_DEFINE_OP (51, static_set, "static-set!", OP2 (U8_U24, LO32))
510ca126
AW
2025 {
2026 scm_t_uint32 src;
2027 scm_t_int32 offset;
2028 scm_t_uint32* loc;
2029
2030 SCM_UNPACK_RTL_24 (op, src);
2031 offset = ip[1];
2032 loc = ip + offset;
2033 VM_ASSERT (ALIGNED_P (loc, SCM), abort());
2034
2035 *((SCM *) loc) = LOCAL_REF (src);
2036
2037 NEXT (2);
2038 }
2039
2040 /* link-procedure! src:24 offset:32
2041 *
2042 * Set the code pointer of the procedure in SRC to point OFFSET 32-bit
2043 * words away from the current instruction pointer. OFFSET is a
2044 * signed value.
2045 */
af95414f 2046 VM_DEFINE_OP (52, link_procedure, "link-procedure!", OP2 (U8_U24, L32))
510ca126
AW
2047 {
2048 scm_t_uint32 src;
2049 scm_t_int32 offset;
2050 scm_t_uint32* loc;
2051
2052 SCM_UNPACK_RTL_24 (op, src);
2053 offset = ip[1];
2054 loc = ip + offset;
2055
2056 SCM_SET_CELL_WORD_1 (LOCAL_REF (src), (scm_t_bits) loc);
2057
2058 NEXT (2);
2059 }
2060
2061 \f
2062
2063 /*
2064 * Mutable top-level bindings
2065 */
2066
2067 /* There are three slightly different ways to resolve toplevel
2068 variables.
2069
2070 1. A toplevel reference outside of a function. These need to be
2071 looked up when the expression is evaluated -- no later, and no
2072 before. They are looked up relative to the module that is
2073 current when the expression is evaluated. For example:
2074
2075 (if (foo) a b)
2076
2077 The "resolve" instruction resolves the variable (box), and then
2078 access is via box-ref or box-set!.
2079
2080 2. A toplevel reference inside a function. These are looked up
2081 relative to the module that was current when the function was
2082 defined. Unlike code at the toplevel, which is usually run only
2083 once, these bindings benefit from memoized lookup, in which the
2084 variable resulting from the lookup is cached in the function.
2085
2086 (lambda () (if (foo) a b))
2087
af95414f
AW
2088 The toplevel-box instruction is equivalent to "resolve", but
2089 caches the resulting variable in statically allocated memory.
510ca126
AW
2090
2091 3. A reference to an identifier with respect to a particular
2092 module. This can happen for primitive references, and
af95414f
AW
2093 references residualized by macro expansions. These can always
2094 be cached. Use module-box for these.
510ca126
AW
2095 */
2096
2097 /* current-module dst:24
2098 *
2099 * Store the current module in DST.
2100 */
af95414f 2101 VM_DEFINE_OP (53, current_module, "current-module", OP1 (U8_U24) | OP_DST)
510ca126
AW
2102 {
2103 scm_t_uint32 dst;
2104
2105 SCM_UNPACK_RTL_24 (op, dst);
2106
2107 SYNC_IP ();
2108 LOCAL_SET (dst, scm_current_module ());
2109
2110 NEXT (1);
2111 }
2112
af95414f 2113 /* resolve dst:24 bound?:1 _:7 sym:24
510ca126 2114 *
af95414f
AW
2115 * Resolve SYM in the current module, and place the resulting variable
2116 * in DST.
510ca126 2117 */
af95414f 2118 VM_DEFINE_OP (54, resolve, "resolve", OP2 (U8_U24, B1_X7_U24) | OP_DST)
510ca126 2119 {
af95414f
AW
2120 scm_t_uint32 dst;
2121 scm_t_uint32 sym;
2122 SCM var;
510ca126 2123
af95414f
AW
2124 SCM_UNPACK_RTL_24 (op, dst);
2125 SCM_UNPACK_RTL_24 (ip[1], sym);
510ca126
AW
2126
2127 SYNC_IP ();
af95414f
AW
2128 var = scm_lookup (LOCAL_REF (sym));
2129 if (ip[1] & 0x1)
2130 VM_ASSERT (VARIABLE_BOUNDP (var),
2131 vm_error_unbound (fp[-1], LOCAL_REF (sym)));
2132 LOCAL_SET (dst, var);
510ca126 2133
af95414f 2134 NEXT (2);
510ca126
AW
2135 }
2136
2137 /* define sym:12 val:12
2138 *
2139 * Look up a binding for SYM in the current module, creating it if
2140 * necessary. Set its value to VAL.
2141 */
af95414f 2142 VM_DEFINE_OP (55, define, "define", OP1 (U8_U12_U12))
510ca126
AW
2143 {
2144 scm_t_uint16 sym, val;
2145 SCM_UNPACK_RTL_12_12 (op, sym, val);
2146 SYNC_IP ();
2147 scm_define (LOCAL_REF (sym), LOCAL_REF (val));
2148 NEXT (1);
2149 }
2150
af95414f 2151 /* toplevel-box dst:24 var-offset:32 mod-offset:32 sym-offset:32 bound?:1 _:31
510ca126
AW
2152 *
2153 * Load a SCM value. The SCM value will be fetched from memory,
2154 * VAR-OFFSET 32-bit words away from the current instruction pointer.
af95414f 2155 * VAR-OFFSET is a signed value. Up to here, toplevel-box is like
510ca126
AW
2156 * static-ref.
2157 *
af95414f
AW
2158 * Then, if the loaded value is a variable, it is placed in DST, and control
2159 * flow continues.
510ca126
AW
2160 *
2161 * Otherwise, we have to resolve the variable. In that case we load
2162 * the module from MOD-OFFSET, just as we loaded the variable.
2163 * Usually the module gets set when the closure is created. The name
2164 * is an offset to a symbol.
2165 *
af95414f
AW
2166 * We use the module and the symbol to resolve the variable, placing it in
2167 * DST, and caching the resolved variable so that we will hit the cache next
2168 * time.
510ca126 2169 */
af95414f 2170 VM_DEFINE_OP (56, toplevel_box, "toplevel-box", OP5 (U8_U24, S32, S32, N32, B1_X31) | OP_DST)
510ca126
AW
2171 {
2172 scm_t_uint32 dst;
2173 scm_t_int32 var_offset;
2174 scm_t_uint32* var_loc_u32;
2175 SCM *var_loc;
2176 SCM var;
2177
2178 SCM_UNPACK_RTL_24 (op, dst);
2179 var_offset = ip[1];
2180 var_loc_u32 = ip + var_offset;
2181 VM_ASSERT (ALIGNED_P (var_loc_u32, SCM), abort());
2182 var_loc = (SCM *) var_loc_u32;
2183 var = *var_loc;
2184
2185 if (SCM_UNLIKELY (!SCM_VARIABLEP (var)))
2186 {
2187 SCM mod, sym;
2188 scm_t_int32 mod_offset = ip[2]; /* signed */
2189 scm_t_int32 sym_offset = ip[3]; /* signed */
2190 scm_t_uint32 *mod_loc = ip + mod_offset;
2191 scm_t_uint32 *sym_loc = ip + sym_offset;
2192
2193 SYNC_IP ();
2194
2195 VM_ASSERT (ALIGNED_P (mod_loc, SCM), abort());
2196 VM_ASSERT (ALIGNED_P (sym_loc, SCM), abort());
2197
2198 mod = *((SCM *) mod_loc);
2199 sym = *((SCM *) sym_loc);
2200
2201 var = scm_module_lookup (mod, sym);
af95414f
AW
2202 if (ip[4] & 0x1)
2203 VM_ASSERT (VARIABLE_BOUNDP (var), vm_error_unbound (fp[-1], sym));
510ca126
AW
2204
2205 *var_loc = var;
2206 }
2207
af95414f
AW
2208 LOCAL_SET (dst, var);
2209 NEXT (5);
510ca126
AW
2210 }
2211
af95414f 2212 /* module-box dst:24 var-offset:32 mod-offset:32 sym-offset:32 bound?:1 _:31
510ca126 2213 *
af95414f 2214 * Like toplevel-box, except MOD-OFFSET points at the name of a module
510ca126
AW
2215 * instead of the module itself.
2216 */
af95414f 2217 VM_DEFINE_OP (57, module_box, "module-box", OP5 (U8_U24, S32, N32, N32, B1_X31) | OP_DST)
510ca126
AW
2218 {
2219 scm_t_uint32 dst;
2220 scm_t_int32 var_offset;
2221 scm_t_uint32* var_loc_u32;
2222 SCM *var_loc;
2223 SCM var;
2224
2225 SCM_UNPACK_RTL_24 (op, dst);
2226 var_offset = ip[1];
2227 var_loc_u32 = ip + var_offset;
2228 VM_ASSERT (ALIGNED_P (var_loc_u32, SCM), abort());
2229 var_loc = (SCM *) var_loc_u32;
2230 var = *var_loc;
2231
2232 if (SCM_UNLIKELY (!SCM_VARIABLEP (var)))
2233 {
2234 SCM modname, sym;
2235 scm_t_int32 modname_offset = ip[2]; /* signed */
2236 scm_t_int32 sym_offset = ip[3]; /* signed */
2237 scm_t_uint32 *modname_words = ip + modname_offset;
2238 scm_t_uint32 *sym_loc = ip + sym_offset;
2239
2240 SYNC_IP ();
2241
2242 VM_ASSERT (!(((scm_t_uintptr) modname_words) & 0x7), abort());
2243 VM_ASSERT (ALIGNED_P (sym_loc, SCM), abort());
2244
2245 modname = SCM_PACK ((scm_t_bits) modname_words);
2246 sym = *((SCM *) sym_loc);
2247
2248 if (scm_is_true (SCM_CAR (modname)))
2249 var = scm_public_lookup (SCM_CDR (modname), sym);
2250 else
2251 var = scm_private_lookup (SCM_CDR (modname), sym);
2252
af95414f
AW
2253 if (ip[4] & 0x1)
2254 VM_ASSERT (VARIABLE_BOUNDP (var), vm_error_unbound (fp[-1], sym));
510ca126
AW
2255
2256 *var_loc = var;
2257 }
2258
af95414f
AW
2259 LOCAL_SET (dst, var);
2260 NEXT (5);
510ca126
AW
2261 }
2262
2263 \f
2264
2265 /*
2266 * The dynamic environment
2267 */
2268
8d59d55e 2269 /* prompt tag:24 escape-only?:1 _:7 proc-slot:24 _:8 handler-offset:24
510ca126
AW
2270 *
2271 * Push a new prompt on the dynamic stack, with a tag from TAG and a
2272 * handler at HANDLER-OFFSET words from the current IP. The handler
8d59d55e
AW
2273 * will expect a multiple-value return as if from a call with the
2274 * procedure at PROC-SLOT.
510ca126 2275 */
8d59d55e 2276 VM_DEFINE_OP (58, prompt, "prompt", OP3 (U8_U24, B1_X7_U24, X8_L24))
510ca126 2277 {
8d59d55e 2278 scm_t_uint32 tag, proc_slot;
510ca126
AW
2279 scm_t_int32 offset;
2280 scm_t_uint8 escape_only_p;
2281 scm_t_dynstack_prompt_flags flags;
2282
2283 SCM_UNPACK_RTL_24 (op, tag);
8d59d55e
AW
2284 escape_only_p = ip[1] & 0x1;
2285 SCM_UNPACK_RTL_24 (ip[1], proc_slot);
2286 offset = ip[2];
510ca126
AW
2287 offset >>= 8; /* Sign extension */
2288
2289 /* Push the prompt onto the dynamic stack. */
2290 flags = escape_only_p ? SCM_F_DYNSTACK_PROMPT_ESCAPE_ONLY : 0;
2291 scm_dynstack_push_prompt (&current_thread->dynstack, flags,
2292 LOCAL_REF (tag),
8d59d55e
AW
2293 fp,
2294 &LOCAL_REF (proc_slot),
2295 (scm_t_uint8 *)(ip + offset),
2296 &registers);
2297 NEXT (3);
510ca126 2298 }
510ca126
AW
2299
2300 /* wind winder:12 unwinder:12
2301 *
2302 * Push wind and unwind procedures onto the dynamic stack. Note that
2303 * neither are actually called; the compiler should emit calls to wind
2304 * and unwind for the normal dynamic-wind control flow. Also note that
2305 * the compiler should have inserted checks that they wind and unwind
2306 * procs are thunks, if it could not prove that to be the case.
2307 */
af95414f 2308 VM_DEFINE_OP (59, wind, "wind", OP1 (U8_U12_U12))
510ca126
AW
2309 {
2310 scm_t_uint16 winder, unwinder;
2311 SCM_UNPACK_RTL_12_12 (op, winder, unwinder);
2312 scm_dynstack_push_dynwind (&current_thread->dynstack,
2313 LOCAL_REF (winder), LOCAL_REF (unwinder));
2314 NEXT (1);
2315 }
2316
af95414f 2317 /* abort tag:24 _:8 proc:24
510ca126 2318 *
b2171312 2319 * Return a number of values to a prompt handler. The values are
af95414f 2320 * expected in a frame pushed on at PROC.
510ca126 2321 */
af95414f 2322 VM_DEFINE_OP (60, abort, "abort", OP2 (U8_U24, X8_U24))
510ca126
AW
2323#if 0
2324 {
b2171312
AW
2325 scm_t_uint32 tag, from, nvalues;
2326 SCM *base;
510ca126
AW
2327
2328 SCM_UNPACK_RTL_24 (op, tag);
b2171312
AW
2329 SCM_UNPACK_RTL_24 (ip[1], from);
2330 base = (fp - 1) + from + 3;
2331 nvalues = FRAME_LOCALS_COUNT () - from - 3;
510ca126
AW
2332
2333 SYNC_IP ();
b2171312 2334 vm_abort (vm, LOCAL_REF (tag), base, nvalues, &registers);
510ca126
AW
2335
2336 /* vm_abort should not return */
2337 abort ();
2338 }
2339#else
2340 abort();
2341#endif
2342
2343 /* unwind _:24
2344 *
2345 * A normal exit from the dynamic extent of an expression. Pop the top
2346 * entry off of the dynamic stack.
2347 */
af95414f 2348 VM_DEFINE_OP (61, unwind, "unwind", OP1 (U8_X24))
510ca126
AW
2349 {
2350 scm_dynstack_pop (&current_thread->dynstack);
2351 NEXT (1);
2352 }
2353
98eaef1b 2354 /* push-fluid fluid:12 value:12
510ca126
AW
2355 *
2356 * Dynamically bind N fluids to values. The fluids are expected to be
2357 * allocated in a continguous range on the stack, starting from
2358 * FLUID-BASE. The values do not have this restriction.
2359 */
af95414f 2360 VM_DEFINE_OP (62, push_fluid, "push-fluid", OP1 (U8_U12_U12))
510ca126 2361 {
98eaef1b 2362 scm_t_uint32 fluid, value;
510ca126 2363
98eaef1b 2364 SCM_UNPACK_RTL_12_12 (op, fluid, value);
510ca126 2365
98eaef1b
AW
2366 scm_dynstack_push_fluid (&current_thread->dynstack,
2367 fp[fluid], fp[value],
2368 current_thread->dynamic_state);
2369 NEXT (1);
510ca126 2370 }
510ca126 2371
98eaef1b 2372 /* pop-fluid _:24
510ca126
AW
2373 *
2374 * Leave the dynamic extent of a with-fluids expression, restoring the
2375 * fluids to their previous values.
2376 */
af95414f 2377 VM_DEFINE_OP (63, pop_fluid, "pop-fluid", OP1 (U8_X24))
510ca126
AW
2378 {
2379 /* This function must not allocate. */
98eaef1b
AW
2380 scm_dynstack_unwind_fluid (&current_thread->dynstack,
2381 current_thread->dynamic_state);
510ca126
AW
2382 NEXT (1);
2383 }
2384
2385 /* fluid-ref dst:12 src:12
2386 *
2387 * Reference the fluid in SRC, and place the value in DST.
2388 */
af95414f 2389 VM_DEFINE_OP (64, fluid_ref, "fluid-ref", OP1 (U8_U12_U12) | OP_DST)
510ca126
AW
2390 {
2391 scm_t_uint16 dst, src;
2392 size_t num;
2393 SCM fluid, fluids;
2394
2395 SCM_UNPACK_RTL_12_12 (op, dst, src);
2396 fluid = LOCAL_REF (src);
2397 fluids = SCM_I_DYNAMIC_STATE_FLUIDS (current_thread->dynamic_state);
2398 if (SCM_UNLIKELY (!SCM_FLUID_P (fluid))
2399 || ((num = SCM_I_FLUID_NUM (fluid)) >= SCM_SIMPLE_VECTOR_LENGTH (fluids)))
2400 {
2401 /* Punt dynstate expansion and error handling to the C proc. */
2402 SYNC_IP ();
2403 LOCAL_SET (dst, scm_fluid_ref (fluid));
2404 }
2405 else
2406 {
2407 SCM val = SCM_SIMPLE_VECTOR_REF (fluids, num);
2408 if (scm_is_eq (val, SCM_UNDEFINED))
2409 val = SCM_I_FLUID_DEFAULT (fluid);
2410 VM_ASSERT (!scm_is_eq (val, SCM_UNDEFINED),
2411 vm_error_unbound_fluid (program, fluid));
2412 LOCAL_SET (dst, val);
2413 }
2414
2415 NEXT (1);
2416 }
2417
2418 /* fluid-set fluid:12 val:12
2419 *
2420 * Set the value of the fluid in DST to the value in SRC.
2421 */
af95414f 2422 VM_DEFINE_OP (65, fluid_set, "fluid-set", OP1 (U8_U12_U12))
510ca126
AW
2423 {
2424 scm_t_uint16 a, b;
2425 size_t num;
2426 SCM fluid, fluids;
2427
2428 SCM_UNPACK_RTL_12_12 (op, a, b);
2429 fluid = LOCAL_REF (a);
2430 fluids = SCM_I_DYNAMIC_STATE_FLUIDS (current_thread->dynamic_state);
2431 if (SCM_UNLIKELY (!SCM_FLUID_P (fluid))
2432 || ((num = SCM_I_FLUID_NUM (fluid)) >= SCM_SIMPLE_VECTOR_LENGTH (fluids)))
2433 {
2434 /* Punt dynstate expansion and error handling to the C proc. */
2435 SYNC_IP ();
2436 scm_fluid_set_x (fluid, LOCAL_REF (b));
2437 }
2438 else
2439 SCM_SIMPLE_VECTOR_SET (fluids, num, LOCAL_REF (b));
2440
2441 NEXT (1);
2442 }
2443
2444
2445 \f
2446
2447 /*
2448 * Strings, symbols, and keywords
2449 */
2450
2451 /* string-length dst:12 src:12
2452 *
2453 * Store the length of the string in SRC in DST.
2454 */
af95414f 2455 VM_DEFINE_OP (66, string_length, "string-length", OP1 (U8_U12_U12) | OP_DST)
510ca126
AW
2456 {
2457 ARGS1 (str);
2458 if (SCM_LIKELY (scm_is_string (str)))
2459 RETURN (SCM_I_MAKINUM (scm_i_string_length (str)));
2460 else
2461 {
2462 SYNC_IP ();
2463 RETURN (scm_string_length (str));
2464 }
2465 }
2466
2467 /* string-ref dst:8 src:8 idx:8
2468 *
2469 * Fetch the character at position IDX in the string in SRC, and store
2470 * it in DST.
2471 */
af95414f 2472 VM_DEFINE_OP (67, string_ref, "string-ref", OP1 (U8_U8_U8_U8) | OP_DST)
510ca126
AW
2473 {
2474 scm_t_signed_bits i = 0;
2475 ARGS2 (str, idx);
2476 if (SCM_LIKELY (scm_is_string (str)
2477 && SCM_I_INUMP (idx)
2478 && ((i = SCM_I_INUM (idx)) >= 0)
2479 && i < scm_i_string_length (str)))
2480 RETURN (SCM_MAKE_CHAR (scm_i_string_ref (str, i)));
2481 else
2482 {
2483 SYNC_IP ();
2484 RETURN (scm_string_ref (str, idx));
2485 }
2486 }
2487
2488 /* No string-set! instruction, as there is no good fast path there. */
2489
2490 /* string-to-number dst:12 src:12
2491 *
2492 * Parse a string in SRC to a number, and store in DST.
2493 */
af95414f 2494 VM_DEFINE_OP (68, string_to_number, "string->number", OP1 (U8_U12_U12) | OP_DST)
510ca126
AW
2495 {
2496 scm_t_uint16 dst, src;
2497
2498 SCM_UNPACK_RTL_12_12 (op, dst, src);
2499 SYNC_IP ();
2500 LOCAL_SET (dst,
2501 scm_string_to_number (LOCAL_REF (src),
2502 SCM_UNDEFINED /* radix = 10 */));
2503 NEXT (1);
2504 }
2505
2506 /* string-to-symbol dst:12 src:12
2507 *
2508 * Parse a string in SRC to a symbol, and store in DST.
2509 */
af95414f 2510 VM_DEFINE_OP (69, string_to_symbol, "string->symbol", OP1 (U8_U12_U12) | OP_DST)
510ca126
AW
2511 {
2512 scm_t_uint16 dst, src;
2513
2514 SCM_UNPACK_RTL_12_12 (op, dst, src);
2515 SYNC_IP ();
2516 LOCAL_SET (dst, scm_string_to_symbol (LOCAL_REF (src)));
2517 NEXT (1);
2518 }
2519
2520 /* symbol->keyword dst:12 src:12
2521 *
2522 * Make a keyword from the symbol in SRC, and store it in DST.
2523 */
af95414f 2524 VM_DEFINE_OP (70, symbol_to_keyword, "symbol->keyword", OP1 (U8_U12_U12) | OP_DST)
510ca126
AW
2525 {
2526 scm_t_uint16 dst, src;
2527 SCM_UNPACK_RTL_12_12 (op, dst, src);
2528 SYNC_IP ();
2529 LOCAL_SET (dst, scm_symbol_to_keyword (LOCAL_REF (src)));
2530 NEXT (1);
2531 }
2532
2533 \f
2534
2535 /*
2536 * Pairs
2537 */
2538
2539 /* cons dst:8 car:8 cdr:8
2540 *
2541 * Cons CAR and CDR, and store the result in DST.
2542 */
af95414f 2543 VM_DEFINE_OP (71, cons, "cons", OP1 (U8_U8_U8_U8) | OP_DST)
510ca126
AW
2544 {
2545 ARGS2 (x, y);
2546 RETURN (scm_cons (x, y));
2547 }
2548
2549 /* car dst:12 src:12
2550 *
2551 * Place the car of SRC in DST.
2552 */
af95414f 2553 VM_DEFINE_OP (72, car, "car", OP1 (U8_U12_U12) | OP_DST)
510ca126
AW
2554 {
2555 ARGS1 (x);
2556 VM_VALIDATE_PAIR (x, "car");
2557 RETURN (SCM_CAR (x));
2558 }
2559
2560 /* cdr dst:12 src:12
2561 *
2562 * Place the cdr of SRC in DST.
2563 */
af95414f 2564 VM_DEFINE_OP (73, cdr, "cdr", OP1 (U8_U12_U12) | OP_DST)
510ca126
AW
2565 {
2566 ARGS1 (x);
2567 VM_VALIDATE_PAIR (x, "cdr");
2568 RETURN (SCM_CDR (x));
2569 }
2570
2571 /* set-car! pair:12 car:12
2572 *
2573 * Set the car of DST to SRC.
2574 */
af95414f 2575 VM_DEFINE_OP (74, set_car, "set-car!", OP1 (U8_U12_U12))
510ca126
AW
2576 {
2577 scm_t_uint16 a, b;
2578 SCM x, y;
2579 SCM_UNPACK_RTL_12_12 (op, a, b);
2580 x = LOCAL_REF (a);
2581 y = LOCAL_REF (b);
2582 VM_VALIDATE_PAIR (x, "set-car!");
2583 SCM_SETCAR (x, y);
2584 NEXT (1);
2585 }
2586
2587 /* set-cdr! pair:12 cdr:12
2588 *
2589 * Set the cdr of DST to SRC.
2590 */
af95414f 2591 VM_DEFINE_OP (75, set_cdr, "set-cdr!", OP1 (U8_U12_U12))
510ca126
AW
2592 {
2593 scm_t_uint16 a, b;
2594 SCM x, y;
2595 SCM_UNPACK_RTL_12_12 (op, a, b);
2596 x = LOCAL_REF (a);
2597 y = LOCAL_REF (b);
2598 VM_VALIDATE_PAIR (x, "set-car!");
2599 SCM_SETCDR (x, y);
2600 NEXT (1);
2601 }
2602
2603
2604 \f
2605
2606 /*
2607 * Numeric operations
2608 */
2609
2610 /* add dst:8 a:8 b:8
2611 *
2612 * Add A to B, and place the result in DST.
2613 */
af95414f 2614 VM_DEFINE_OP (76, add, "add", OP1 (U8_U8_U8_U8) | OP_DST)
510ca126
AW
2615 {
2616 BINARY_INTEGER_OP (+, scm_sum);
2617 }
2618
2619 /* add1 dst:12 src:12
2620 *
2621 * Add 1 to the value in SRC, and place the result in DST.
2622 */
af95414f 2623 VM_DEFINE_OP (77, add1, "add1", OP1 (U8_U12_U12) | OP_DST)
510ca126
AW
2624 {
2625 ARGS1 (x);
2626
d2295ba5
MW
2627 /* Check for overflow. We must avoid overflow in the signed
2628 addition below, even if X is not an inum. */
2629 if (SCM_LIKELY ((scm_t_signed_bits) SCM_UNPACK (x) <= INUM_MAX - INUM_STEP))
510ca126
AW
2630 {
2631 SCM result;
2632
d2295ba5
MW
2633 /* Add 1 to the integer without untagging. */
2634 result = SCM_PACK ((scm_t_signed_bits) SCM_UNPACK (x) + INUM_STEP);
510ca126
AW
2635
2636 if (SCM_LIKELY (SCM_I_INUMP (result)))
2637 RETURN (result);
2638 }
2639
2640 SYNC_IP ();
2641 RETURN (scm_sum (x, SCM_I_MAKINUM (1)));
2642 }
2643
2644 /* sub dst:8 a:8 b:8
2645 *
2646 * Subtract B from A, and place the result in DST.
2647 */
af95414f 2648 VM_DEFINE_OP (78, sub, "sub", OP1 (U8_U8_U8_U8) | OP_DST)
510ca126
AW
2649 {
2650 BINARY_INTEGER_OP (-, scm_difference);
2651 }
2652
2653 /* sub1 dst:12 src:12
2654 *
2655 * Subtract 1 from SRC, and place the result in DST.
2656 */
af95414f 2657 VM_DEFINE_OP (79, sub1, "sub1", OP1 (U8_U12_U12) | OP_DST)
510ca126
AW
2658 {
2659 ARGS1 (x);
2660
d2295ba5
MW
2661 /* Check for overflow. We must avoid overflow in the signed
2662 subtraction below, even if X is not an inum. */
2663 if (SCM_LIKELY ((scm_t_signed_bits) SCM_UNPACK (x) >= INUM_MIN + INUM_STEP))
510ca126
AW
2664 {
2665 SCM result;
2666
d2295ba5
MW
2667 /* Substract 1 from the integer without untagging. */
2668 result = SCM_PACK ((scm_t_signed_bits) SCM_UNPACK (x) - INUM_STEP);
510ca126
AW
2669
2670 if (SCM_LIKELY (SCM_I_INUMP (result)))
2671 RETURN (result);
2672 }
2673
2674 SYNC_IP ();
2675 RETURN (scm_difference (x, SCM_I_MAKINUM (1)));
2676 }
2677
2678 /* mul dst:8 a:8 b:8
2679 *
2680 * Multiply A and B, and place the result in DST.
2681 */
af95414f 2682 VM_DEFINE_OP (80, mul, "mul", OP1 (U8_U8_U8_U8) | OP_DST)
510ca126
AW
2683 {
2684 ARGS2 (x, y);
2685 SYNC_IP ();
2686 RETURN (scm_product (x, y));
2687 }
2688
2689 /* div dst:8 a:8 b:8
2690 *
2691 * Divide A by B, and place the result in DST.
2692 */
af95414f 2693 VM_DEFINE_OP (81, div, "div", OP1 (U8_U8_U8_U8) | OP_DST)
510ca126
AW
2694 {
2695 ARGS2 (x, y);
2696 SYNC_IP ();
2697 RETURN (scm_divide (x, y));
2698 }
2699
2700 /* quo dst:8 a:8 b:8
2701 *
2702 * Divide A by B, and place the quotient in DST.
2703 */
af95414f 2704 VM_DEFINE_OP (82, quo, "quo", OP1 (U8_U8_U8_U8) | OP_DST)
510ca126
AW
2705 {
2706 ARGS2 (x, y);
2707 SYNC_IP ();
2708 RETURN (scm_quotient (x, y));
2709 }
2710
2711 /* rem dst:8 a:8 b:8
2712 *
2713 * Divide A by B, and place the remainder in DST.
2714 */
af95414f 2715 VM_DEFINE_OP (83, rem, "rem", OP1 (U8_U8_U8_U8) | OP_DST)
510ca126
AW
2716 {
2717 ARGS2 (x, y);
2718 SYNC_IP ();
2719 RETURN (scm_remainder (x, y));
2720 }
2721
2722 /* mod dst:8 a:8 b:8
2723 *
2724 * Place the modulo of A by B in DST.
2725 */
af95414f 2726 VM_DEFINE_OP (84, mod, "mod", OP1 (U8_U8_U8_U8) | OP_DST)
510ca126
AW
2727 {
2728 ARGS2 (x, y);
2729 SYNC_IP ();
2730 RETURN (scm_modulo (x, y));
2731 }
2732
2733 /* ash dst:8 a:8 b:8
2734 *
2735 * Shift A arithmetically by B bits, and place the result in DST.
2736 */
af95414f 2737 VM_DEFINE_OP (85, ash, "ash", OP1 (U8_U8_U8_U8) | OP_DST)
510ca126
AW
2738 {
2739 ARGS2 (x, y);
2740 if (SCM_I_INUMP (x) && SCM_I_INUMP (y))
2741 {
2742 if (SCM_I_INUM (y) < 0)
2743 /* Right shift, will be a fixnum. */
0bd65965
MW
2744 RETURN (SCM_I_MAKINUM
2745 (SCM_SRS (SCM_I_INUM (x),
2746 (-SCM_I_INUM (y) <= SCM_I_FIXNUM_BIT-1)
2747 ? -SCM_I_INUM (y) : SCM_I_FIXNUM_BIT-1)));
510ca126
AW
2748 else
2749 /* Left shift. See comments in scm_ash. */
2750 {
2751 scm_t_signed_bits nn, bits_to_shift;
2752
2753 nn = SCM_I_INUM (x);
2754 bits_to_shift = SCM_I_INUM (y);
2755
2756 if (bits_to_shift < SCM_I_FIXNUM_BIT-1
2757 && ((scm_t_bits)
2758 (SCM_SRS (nn, (SCM_I_FIXNUM_BIT-1 - bits_to_shift)) + 1)
2759 <= 1))
2760 RETURN (SCM_I_MAKINUM (nn << bits_to_shift));
2761 /* fall through */
2762 }
2763 /* fall through */
2764 }
2765 SYNC_IP ();
2766 RETURN (scm_ash (x, y));
2767 }
2768
2769 /* logand dst:8 a:8 b:8
2770 *
2771 * Place the bitwise AND of A and B into DST.
2772 */
af95414f 2773 VM_DEFINE_OP (86, logand, "logand", OP1 (U8_U8_U8_U8) | OP_DST)
510ca126
AW
2774 {
2775 ARGS2 (x, y);
2776 if (SCM_I_INUMP (x) && SCM_I_INUMP (y))
e7f64971
MW
2777 /* Compute bitwise AND without untagging */
2778 RETURN (SCM_PACK (SCM_UNPACK (x) & SCM_UNPACK (y)));
510ca126
AW
2779 SYNC_IP ();
2780 RETURN (scm_logand (x, y));
2781 }
2782
2783 /* logior dst:8 a:8 b:8
2784 *
2785 * Place the bitwise inclusive OR of A with B in DST.
2786 */
af95414f 2787 VM_DEFINE_OP (87, logior, "logior", OP1 (U8_U8_U8_U8) | OP_DST)
510ca126
AW
2788 {
2789 ARGS2 (x, y);
2790 if (SCM_I_INUMP (x) && SCM_I_INUMP (y))
e7f64971
MW
2791 /* Compute bitwise OR without untagging */
2792 RETURN (SCM_PACK (SCM_UNPACK (x) | SCM_UNPACK (y)));
510ca126
AW
2793 SYNC_IP ();
2794 RETURN (scm_logior (x, y));
2795 }
2796
2797 /* logxor dst:8 a:8 b:8
2798 *
2799 * Place the bitwise exclusive OR of A with B in DST.
2800 */
af95414f 2801 VM_DEFINE_OP (88, logxor, "logxor", OP1 (U8_U8_U8_U8) | OP_DST)
510ca126
AW
2802 {
2803 ARGS2 (x, y);
2804 if (SCM_I_INUMP (x) && SCM_I_INUMP (y))
2805 RETURN (SCM_I_MAKINUM (SCM_I_INUM (x) ^ SCM_I_INUM (y)));
2806 SYNC_IP ();
2807 RETURN (scm_logxor (x, y));
2808 }
2809
2810 /* vector-length dst:12 src:12
2811 *
2812 * Store the length of the vector in SRC in DST.
2813 */
af95414f 2814 VM_DEFINE_OP (89, vector_length, "vector-length", OP1 (U8_U12_U12) | OP_DST)
510ca126
AW
2815 {
2816 ARGS1 (vect);
2817 if (SCM_LIKELY (SCM_I_IS_VECTOR (vect)))
2818 RETURN (SCM_I_MAKINUM (SCM_I_VECTOR_LENGTH (vect)));
2819 else
2820 {
2821 SYNC_IP ();
2822 RETURN (scm_vector_length (vect));
2823 }
2824 }
2825
2826 /* vector-ref dst:8 src:8 idx:8
2827 *
2828 * Fetch the item at position IDX in the vector in SRC, and store it
2829 * in DST.
2830 */
af95414f 2831 VM_DEFINE_OP (90, vector_ref, "vector-ref", OP1 (U8_U8_U8_U8) | OP_DST)
510ca126
AW
2832 {
2833 scm_t_signed_bits i = 0;
2834 ARGS2 (vect, idx);
2835 if (SCM_LIKELY (SCM_I_IS_NONWEAK_VECTOR (vect)
2836 && SCM_I_INUMP (idx)
2837 && ((i = SCM_I_INUM (idx)) >= 0)
2838 && i < SCM_I_VECTOR_LENGTH (vect)))
2839 RETURN (SCM_I_VECTOR_ELTS (vect)[i]);
2840 else
2841 {
2842 SYNC_IP ();
2843 RETURN (scm_vector_ref (vect, idx));
2844 }
2845 }
2846
2847 /* constant-vector-ref dst:8 src:8 idx:8
2848 *
2849 * Fill DST with the item IDX elements into the vector at SRC. Useful
2850 * for building data types using vectors.
2851 */
af95414f 2852 VM_DEFINE_OP (91, constant_vector_ref, "constant-vector-ref", OP1 (U8_U8_U8_U8) | OP_DST)
510ca126
AW
2853 {
2854 scm_t_uint8 dst, src, idx;
2855 SCM v;
2856
2857 SCM_UNPACK_RTL_8_8_8 (op, dst, src, idx);
2858 v = LOCAL_REF (src);
2859 if (SCM_LIKELY (SCM_I_IS_NONWEAK_VECTOR (v)
2860 && idx < SCM_I_VECTOR_LENGTH (v)))
2861 LOCAL_SET (dst, SCM_I_VECTOR_ELTS (LOCAL_REF (src))[idx]);
2862 else
2863 LOCAL_SET (dst, scm_c_vector_ref (v, idx));
2864 NEXT (1);
2865 }
2866
2867 /* vector-set! dst:8 idx:8 src:8
2868 *
2869 * Store SRC into the vector DST at index IDX.
2870 */
af95414f 2871 VM_DEFINE_OP (92, vector_set, "vector-set", OP1 (U8_U8_U8_U8))
510ca126
AW
2872 {
2873 scm_t_uint8 dst, idx_var, src;
2874 SCM vect, idx, val;
2875 scm_t_signed_bits i = 0;
2876
2877 SCM_UNPACK_RTL_8_8_8 (op, dst, idx_var, src);
2878 vect = LOCAL_REF (dst);
2879 idx = LOCAL_REF (idx_var);
2880 val = LOCAL_REF (src);
2881
2882 if (SCM_LIKELY (SCM_I_IS_NONWEAK_VECTOR (vect)
2883 && SCM_I_INUMP (idx)
2884 && ((i = SCM_I_INUM (idx)) >= 0)
2885 && i < SCM_I_VECTOR_LENGTH (vect)))
2886 SCM_I_VECTOR_WELTS (vect)[i] = val;
2887 else
2888 {
2889 SYNC_IP ();
2890 scm_vector_set_x (vect, idx, val);
2891 }
2892 NEXT (1);
2893 }
2894
2895
2896 \f
2897
2898 /*
2899 * Structs and GOOPS
2900 */
2901
2902 /* struct-vtable dst:12 src:12
2903 *
2904 * Store the vtable of SRC into DST.
2905 */
af95414f 2906 VM_DEFINE_OP (93, struct_vtable, "struct-vtable", OP1 (U8_U12_U12) | OP_DST)
510ca126
AW
2907 {
2908 ARGS1 (obj);
2909 VM_VALIDATE_STRUCT (obj, "struct_vtable");
2910 RETURN (SCM_STRUCT_VTABLE (obj));
2911 }
2912
14d10292 2913 /* allocate-struct dst:8 vtable:8 nfields:8
510ca126 2914 *
14d10292
AW
2915 * Allocate a new struct with VTABLE, and place it in DST. The struct
2916 * will be constructed with space for NFIELDS fields, which should
2917 * correspond to the field count of the VTABLE.
510ca126 2918 */
af95414f 2919 VM_DEFINE_OP (94, allocate_struct, "allocate-struct", OP1 (U8_U8_U8_U8) | OP_DST)
510ca126 2920 {
14d10292
AW
2921 scm_t_uint8 dst, vtable, nfields;
2922 SCM ret;
510ca126 2923
14d10292 2924 SCM_UNPACK_RTL_8_8_8 (op, dst, vtable, nfields);
510ca126
AW
2925
2926 SYNC_IP ();
14d10292 2927 ret = scm_allocate_struct (LOCAL_REF (vtable), SCM_I_MAKINUM (nfields));
510ca126 2928 LOCAL_SET (dst, ret);
14d10292
AW
2929
2930 NEXT (1);
510ca126 2931 }
510ca126
AW
2932
2933 /* struct-ref dst:8 src:8 idx:8
2934 *
2935 * Fetch the item at slot IDX in the struct in SRC, and store it
2936 * in DST.
2937 */
af95414f 2938 VM_DEFINE_OP (95, struct_ref, "struct-ref", OP1 (U8_U8_U8_U8) | OP_DST)
510ca126
AW
2939 {
2940 ARGS2 (obj, pos);
2941
2942 if (SCM_LIKELY (SCM_STRUCTP (obj)
2943 && SCM_STRUCT_VTABLE_FLAG_IS_SET (obj,
2944 SCM_VTABLE_FLAG_SIMPLE)
2945 && SCM_I_INUMP (pos)))
2946 {
2947 SCM vtable;
2948 scm_t_bits index, len;
2949
2950 /* True, an inum is a signed value, but cast to unsigned it will
2951 certainly be more than the length, so we will fall through if
2952 index is negative. */
2953 index = SCM_I_INUM (pos);
2954 vtable = SCM_STRUCT_VTABLE (obj);
2955 len = SCM_STRUCT_DATA_REF (vtable, scm_vtable_index_size);
2956
2957 if (SCM_LIKELY (index < len))
2958 {
2959 scm_t_bits *data = SCM_STRUCT_DATA (obj);
2960 RETURN (SCM_PACK (data[index]));
2961 }
2962 }
2963
2964 SYNC_IP ();
2965 RETURN (scm_struct_ref (obj, pos));
2966 }
2967
2968 /* struct-set! dst:8 idx:8 src:8
2969 *
2970 * Store SRC into the struct DST at slot IDX.
2971 */
af95414f 2972 VM_DEFINE_OP (96, struct_set, "struct-set!", OP1 (U8_U8_U8_U8))
510ca126
AW
2973 {
2974 scm_t_uint8 dst, idx, src;
2975 SCM obj, pos, val;
2976
2977 SCM_UNPACK_RTL_8_8_8 (op, dst, idx, src);
2978 obj = LOCAL_REF (dst);
2979 pos = LOCAL_REF (idx);
2980 val = LOCAL_REF (src);
2981
2982 if (SCM_LIKELY (SCM_STRUCTP (obj)
2983 && SCM_STRUCT_VTABLE_FLAG_IS_SET (obj,
2984 SCM_VTABLE_FLAG_SIMPLE)
2985 && SCM_STRUCT_VTABLE_FLAG_IS_SET (obj,
2986 SCM_VTABLE_FLAG_SIMPLE_RW)
2987 && SCM_I_INUMP (pos)))
2988 {
2989 SCM vtable;
2990 scm_t_bits index, len;
2991
2992 /* See above regarding index being >= 0. */
2993 index = SCM_I_INUM (pos);
2994 vtable = SCM_STRUCT_VTABLE (obj);
2995 len = SCM_STRUCT_DATA_REF (vtable, scm_vtable_index_size);
2996 if (SCM_LIKELY (index < len))
2997 {
2998 scm_t_bits *data = SCM_STRUCT_DATA (obj);
2999 data[index] = SCM_UNPACK (val);
3000 NEXT (1);
3001 }
3002 }
3003
3004 SYNC_IP ();
3005 scm_struct_set_x (obj, pos, val);
3006 NEXT (1);
3007 }
3008
3009 /* class-of dst:12 type:12
3010 *
3011 * Store the vtable of SRC into DST.
3012 */
af95414f 3013 VM_DEFINE_OP (97, class_of, "class-of", OP1 (U8_U12_U12) | OP_DST)
510ca126
AW
3014 {
3015 ARGS1 (obj);
3016 if (SCM_INSTANCEP (obj))
3017 RETURN (SCM_CLASS_OF (obj));
3018 SYNC_IP ();
3019 RETURN (scm_class_of (obj));
3020 }
3021
3022 /* slot-ref dst:8 src:8 idx:8
3023 *
3024 * Fetch the item at slot IDX in the struct in SRC, and store it in
3025 * DST. Unlike struct-ref, IDX is an 8-bit immediate value, not an
3026 * index into the stack.
3027 */
af95414f 3028 VM_DEFINE_OP (98, slot_ref, "slot-ref", OP1 (U8_U8_U8_U8) | OP_DST)
510ca126
AW
3029 {
3030 scm_t_uint8 dst, src, idx;
3031 SCM_UNPACK_RTL_8_8_8 (op, dst, src, idx);
3032 LOCAL_SET (dst,
3033 SCM_PACK (SCM_STRUCT_DATA (LOCAL_REF (src))[idx]));
3034 NEXT (1);
3035 }
3036
3037 /* slot-set! dst:8 idx:8 src:8
3038 *
3039 * Store SRC into slot IDX of the struct in DST. Unlike struct-set!,
3040 * IDX is an 8-bit immediate value, not an index into the stack.
3041 */
af95414f 3042 VM_DEFINE_OP (99, slot_set, "slot-set!", OP1 (U8_U8_U8_U8))
510ca126
AW
3043 {
3044 scm_t_uint8 dst, idx, src;
3045 SCM_UNPACK_RTL_8_8_8 (op, dst, idx, src);
3046 SCM_STRUCT_DATA (LOCAL_REF (dst))[idx] = SCM_UNPACK (LOCAL_REF (src));
3047 NEXT (1);
3048 }
3049
3050
3051 \f
3052
3053 /*
3054 * Arrays, packed uniform arrays, and bytevectors.
3055 */
3056
3057 /* load-typed-array dst:8 type:8 shape:8 offset:32 len:32
3058 *
3059 * Load the contiguous typed array located at OFFSET 32-bit words away
3060 * from the instruction pointer, and store into DST. LEN is a byte
3061 * length. OFFSET is signed.
3062 */
af95414f 3063 VM_DEFINE_OP (100, load_typed_array, "load-typed-array", OP3 (U8_U8_U8_U8, N32, U32) | OP_DST)
510ca126
AW
3064 {
3065 scm_t_uint8 dst, type, shape;
3066 scm_t_int32 offset;
3067 scm_t_uint32 len;
3068
3069 SCM_UNPACK_RTL_8_8_8 (op, dst, type, shape);
3070 offset = ip[1];
3071 len = ip[2];
3072 SYNC_IP ();
3073 LOCAL_SET (dst, scm_from_contiguous_typed_array (LOCAL_REF (type),
3074 LOCAL_REF (shape),
3075 ip + offset, len));
3076 NEXT (3);
3077 }
3078
3079 /* make-array dst:12 type:12 _:8 fill:12 bounds:12
3080 *
3081 * Make a new array with TYPE, FILL, and BOUNDS, storing it in DST.
3082 */
af95414f 3083 VM_DEFINE_OP (101, make_array, "make-array", OP2 (U8_U12_U12, X8_U12_U12) | OP_DST)
510ca126
AW
3084 {
3085 scm_t_uint16 dst, type, fill, bounds;
3086 SCM_UNPACK_RTL_12_12 (op, dst, type);
3087 SCM_UNPACK_RTL_12_12 (ip[1], fill, bounds);
3088 SYNC_IP ();
3089 LOCAL_SET (dst, scm_make_typed_array (LOCAL_REF (type), LOCAL_REF (fill),
3090 LOCAL_REF (bounds)));
3091 NEXT (2);
3092 }
3093
3094 /* bv-u8-ref dst:8 src:8 idx:8
3095 * bv-s8-ref dst:8 src:8 idx:8
3096 * bv-u16-ref dst:8 src:8 idx:8
3097 * bv-s16-ref dst:8 src:8 idx:8
3098 * bv-u32-ref dst:8 src:8 idx:8
3099 * bv-s32-ref dst:8 src:8 idx:8
3100 * bv-u64-ref dst:8 src:8 idx:8
3101 * bv-s64-ref dst:8 src:8 idx:8
3102 * bv-f32-ref dst:8 src:8 idx:8
3103 * bv-f64-ref dst:8 src:8 idx:8
3104 *
3105 * Fetch the item at byte offset IDX in the bytevector SRC, and store
3106 * it in DST. All accesses use native endianness.
3107 */
3108#define BV_FIXABLE_INT_REF(stem, fn_stem, type, size) \
3109 do { \
3110 scm_t_signed_bits i; \
3111 const scm_t_ ## type *int_ptr; \
3112 ARGS2 (bv, idx); \
3113 \
3114 VM_VALIDATE_BYTEVECTOR (bv, "bv-" #stem "-ref"); \
3115 i = SCM_I_INUM (idx); \
3116 int_ptr = (scm_t_ ## type *) (SCM_BYTEVECTOR_CONTENTS (bv) + i); \
3117 \
3118 if (SCM_LIKELY (SCM_I_INUMP (idx) \
3119 && (i >= 0) \
3120 && (i + size <= SCM_BYTEVECTOR_LENGTH (bv)) \
3121 && (ALIGNED_P (int_ptr, scm_t_ ## type)))) \
3122 RETURN (SCM_I_MAKINUM (*int_ptr)); \
3123 else \
3124 { \
3125 SYNC_IP (); \
3126 RETURN (scm_bytevector_ ## fn_stem ## _ref (bv, idx)); \
3127 } \
3128 } while (0)
3129
3130#define BV_INT_REF(stem, type, size) \
3131 do { \
3132 scm_t_signed_bits i; \
3133 const scm_t_ ## type *int_ptr; \
3134 ARGS2 (bv, idx); \
3135 \
3136 VM_VALIDATE_BYTEVECTOR (bv, "bv-" #stem "-ref"); \
3137 i = SCM_I_INUM (idx); \
3138 int_ptr = (scm_t_ ## type *) (SCM_BYTEVECTOR_CONTENTS (bv) + i); \
3139 \
3140 if (SCM_LIKELY (SCM_I_INUMP (idx) \
3141 && (i >= 0) \
3142 && (i + size <= SCM_BYTEVECTOR_LENGTH (bv)) \
3143 && (ALIGNED_P (int_ptr, scm_t_ ## type)))) \
3144 { \
3145 scm_t_ ## type x = *int_ptr; \
3146 if (SCM_FIXABLE (x)) \
3147 RETURN (SCM_I_MAKINUM (x)); \
3148 else \
3149 { \
3150 SYNC_IP (); \
3151 RETURN (scm_from_ ## type (x)); \
3152 } \
3153 } \
3154 else \
3155 { \
3156 SYNC_IP (); \
3157 RETURN (scm_bytevector_ ## stem ## _native_ref (bv, idx)); \
3158 } \
3159 } while (0)
3160
3161#define BV_FLOAT_REF(stem, fn_stem, type, size) \
3162 do { \
3163 scm_t_signed_bits i; \
3164 const type *float_ptr; \
3165 ARGS2 (bv, idx); \
3166 \
3167 VM_VALIDATE_BYTEVECTOR (bv, "bv-" #stem "-ref"); \
3168 i = SCM_I_INUM (idx); \
3169 float_ptr = (type *) (SCM_BYTEVECTOR_CONTENTS (bv) + i); \
3170 \
3171 SYNC_IP (); \
3172 if (SCM_LIKELY (SCM_I_INUMP (idx) \
3173 && (i >= 0) \
3174 && (i + size <= SCM_BYTEVECTOR_LENGTH (bv)) \
3175 && (ALIGNED_P (float_ptr, type)))) \
3176 RETURN (scm_from_double (*float_ptr)); \
3177 else \
3178 RETURN (scm_bytevector_ ## fn_stem ## _native_ref (bv, idx)); \
3179 } while (0)
3180
af95414f 3181 VM_DEFINE_OP (102, bv_u8_ref, "bv-u8-ref", OP1 (U8_U8_U8_U8) | OP_DST)
510ca126
AW
3182 BV_FIXABLE_INT_REF (u8, u8, uint8, 1);
3183
af95414f 3184 VM_DEFINE_OP (103, bv_s8_ref, "bv-s8-ref", OP1 (U8_U8_U8_U8) | OP_DST)
510ca126
AW
3185 BV_FIXABLE_INT_REF (s8, s8, int8, 1);
3186
af95414f 3187 VM_DEFINE_OP (104, bv_u16_ref, "bv-u16-ref", OP1 (U8_U8_U8_U8) | OP_DST)
510ca126
AW
3188 BV_FIXABLE_INT_REF (u16, u16_native, uint16, 2);
3189
af95414f 3190 VM_DEFINE_OP (105, bv_s16_ref, "bv-s16-ref", OP1 (U8_U8_U8_U8) | OP_DST)
510ca126
AW
3191 BV_FIXABLE_INT_REF (s16, s16_native, int16, 2);
3192
af95414f 3193 VM_DEFINE_OP (106, bv_u32_ref, "bv-u32-ref", OP1 (U8_U8_U8_U8) | OP_DST)
510ca126
AW
3194#if SIZEOF_VOID_P > 4
3195 BV_FIXABLE_INT_REF (u32, u32_native, uint32, 4);
3196#else
3197 BV_INT_REF (u32, uint32, 4);
3198#endif
3199
af95414f 3200 VM_DEFINE_OP (107, bv_s32_ref, "bv-s32-ref", OP1 (U8_U8_U8_U8) | OP_DST)
510ca126
AW
3201#if SIZEOF_VOID_P > 4
3202 BV_FIXABLE_INT_REF (s32, s32_native, int32, 4);
3203#else
3204 BV_INT_REF (s32, int32, 4);
3205#endif
3206
af95414f 3207 VM_DEFINE_OP (108, bv_u64_ref, "bv-u64-ref", OP1 (U8_U8_U8_U8) | OP_DST)
510ca126
AW
3208 BV_INT_REF (u64, uint64, 8);
3209
af95414f 3210 VM_DEFINE_OP (109, bv_s64_ref, "bv-s64-ref", OP1 (U8_U8_U8_U8) | OP_DST)
510ca126
AW
3211 BV_INT_REF (s64, int64, 8);
3212
af95414f 3213 VM_DEFINE_OP (110, bv_f32_ref, "bv-f32-ref", OP1 (U8_U8_U8_U8) | OP_DST)
510ca126
AW
3214 BV_FLOAT_REF (f32, ieee_single, float, 4);
3215
af95414f 3216 VM_DEFINE_OP (111, bv_f64_ref, "bv-f64-ref", OP1 (U8_U8_U8_U8) | OP_DST)
510ca126
AW
3217 BV_FLOAT_REF (f64, ieee_double, double, 8);
3218
3219 /* bv-u8-set! dst:8 idx:8 src:8
3220 * bv-s8-set! dst:8 idx:8 src:8
3221 * bv-u16-set! dst:8 idx:8 src:8
3222 * bv-s16-set! dst:8 idx:8 src:8
3223 * bv-u32-set! dst:8 idx:8 src:8
3224 * bv-s32-set! dst:8 idx:8 src:8
3225 * bv-u64-set! dst:8 idx:8 src:8
3226 * bv-s64-set! dst:8 idx:8 src:8
3227 * bv-f32-set! dst:8 idx:8 src:8
3228 * bv-f64-set! dst:8 idx:8 src:8
3229 *
3230 * Store SRC into the bytevector DST at byte offset IDX. Multibyte
3231 * values are written using native endianness.
3232 */
3233#define BV_FIXABLE_INT_SET(stem, fn_stem, type, min, max, size) \
3234 do { \
3235 scm_t_uint8 dst, idx, src; \
3236 scm_t_signed_bits i, j = 0; \
3237 SCM bv, scm_idx, val; \
3238 scm_t_ ## type *int_ptr; \
3239 \
3240 SCM_UNPACK_RTL_8_8_8 (op, dst, idx, src); \
3241 bv = LOCAL_REF (dst); \
3242 scm_idx = LOCAL_REF (idx); \
3243 val = LOCAL_REF (src); \
3244 VM_VALIDATE_BYTEVECTOR (bv, "bv-" #stem "-set"); \
3245 i = SCM_I_INUM (scm_idx); \
3246 int_ptr = (scm_t_ ## type *) (SCM_BYTEVECTOR_CONTENTS (bv) + i); \
3247 \
3248 if (SCM_LIKELY (SCM_I_INUMP (scm_idx) \
3249 && (i >= 0) \
3250 && (i + size <= SCM_BYTEVECTOR_LENGTH (bv)) \
3251 && (ALIGNED_P (int_ptr, scm_t_ ## type)) \
3252 && (SCM_I_INUMP (val)) \
3253 && ((j = SCM_I_INUM (val)) >= min) \
3254 && (j <= max))) \
3255 *int_ptr = (scm_t_ ## type) j; \
3256 else \
3257 { \
3258 SYNC_IP (); \
3259 scm_bytevector_ ## fn_stem ## _set_x (bv, scm_idx, val); \
3260 } \
3261 NEXT (1); \
3262 } while (0)
3263
3264#define BV_INT_SET(stem, type, size) \
3265 do { \
3266 scm_t_uint8 dst, idx, src; \
3267 scm_t_signed_bits i; \
3268 SCM bv, scm_idx, val; \
3269 scm_t_ ## type *int_ptr; \
3270 \
3271 SCM_UNPACK_RTL_8_8_8 (op, dst, idx, src); \
3272 bv = LOCAL_REF (dst); \
3273 scm_idx = LOCAL_REF (idx); \
3274 val = LOCAL_REF (src); \
3275 VM_VALIDATE_BYTEVECTOR (bv, "bv-" #stem "-set"); \
3276 i = SCM_I_INUM (scm_idx); \
3277 int_ptr = (scm_t_ ## type *) (SCM_BYTEVECTOR_CONTENTS (bv) + i); \
3278 \
3279 if (SCM_LIKELY (SCM_I_INUMP (scm_idx) \
3280 && (i >= 0) \
3281 && (i + size <= SCM_BYTEVECTOR_LENGTH (bv)) \
3282 && (ALIGNED_P (int_ptr, scm_t_ ## type)))) \
3283 *int_ptr = scm_to_ ## type (val); \
3284 else \
3285 { \
3286 SYNC_IP (); \
3287 scm_bytevector_ ## stem ## _native_set_x (bv, scm_idx, val); \
3288 } \
3289 NEXT (1); \
3290 } while (0)
3291
3292#define BV_FLOAT_SET(stem, fn_stem, type, size) \
3293 do { \
3294 scm_t_uint8 dst, idx, src; \
3295 scm_t_signed_bits i; \
3296 SCM bv, scm_idx, val; \
3297 type *float_ptr; \
3298 \
3299 SCM_UNPACK_RTL_8_8_8 (op, dst, idx, src); \
3300 bv = LOCAL_REF (dst); \
3301 scm_idx = LOCAL_REF (idx); \
3302 val = LOCAL_REF (src); \
3303 VM_VALIDATE_BYTEVECTOR (bv, "bv-" #stem "-set"); \
3304 i = SCM_I_INUM (scm_idx); \
3305 float_ptr = (type *) (SCM_BYTEVECTOR_CONTENTS (bv) + i); \
3306 \
3307 if (SCM_LIKELY (SCM_I_INUMP (scm_idx) \
3308 && (i >= 0) \
3309 && (i + size <= SCM_BYTEVECTOR_LENGTH (bv)) \
3310 && (ALIGNED_P (float_ptr, type)))) \
3311 *float_ptr = scm_to_double (val); \
3312 else \
3313 { \
3314 SYNC_IP (); \
3315 scm_bytevector_ ## fn_stem ## _native_set_x (bv, scm_idx, val); \
3316 } \
3317 NEXT (1); \
3318 } while (0)
3319
af95414f 3320 VM_DEFINE_OP (112, bv_u8_set, "bv-u8-set!", OP1 (U8_U8_U8_U8))
510ca126
AW
3321 BV_FIXABLE_INT_SET (u8, u8, uint8, 0, SCM_T_UINT8_MAX, 1);
3322
af95414f 3323 VM_DEFINE_OP (113, bv_s8_set, "bv-s8-set!", OP1 (U8_U8_U8_U8))
510ca126
AW
3324 BV_FIXABLE_INT_SET (s8, s8, int8, SCM_T_INT8_MIN, SCM_T_INT8_MAX, 1);
3325
af95414f 3326 VM_DEFINE_OP (114, bv_u16_set, "bv-u16-set!", OP1 (U8_U8_U8_U8))
510ca126
AW
3327 BV_FIXABLE_INT_SET (u16, u16_native, uint16, 0, SCM_T_UINT16_MAX, 2);
3328
af95414f 3329 VM_DEFINE_OP (115, bv_s16_set, "bv-s16-set!", OP1 (U8_U8_U8_U8))
510ca126
AW
3330 BV_FIXABLE_INT_SET (s16, s16_native, int16, SCM_T_INT16_MIN, SCM_T_INT16_MAX, 2);
3331
af95414f 3332 VM_DEFINE_OP (116, bv_u32_set, "bv-u32-set!", OP1 (U8_U8_U8_U8))
510ca126
AW
3333#if SIZEOF_VOID_P > 4
3334 BV_FIXABLE_INT_SET (u32, u32_native, uint32, 0, SCM_T_UINT32_MAX, 4);
3335#else
3336 BV_INT_SET (u32, uint32, 4);
3337#endif
3338
af95414f 3339 VM_DEFINE_OP (117, bv_s32_set, "bv-s32-set!", OP1 (U8_U8_U8_U8))
510ca126
AW
3340#if SIZEOF_VOID_P > 4
3341 BV_FIXABLE_INT_SET (s32, s32_native, int32, SCM_T_INT32_MIN, SCM_T_INT32_MAX, 4);
3342#else
3343 BV_INT_SET (s32, int32, 4);
3344#endif
3345
af95414f 3346 VM_DEFINE_OP (118, bv_u64_set, "bv-u64-set!", OP1 (U8_U8_U8_U8))
510ca126
AW
3347 BV_INT_SET (u64, uint64, 8);
3348
af95414f 3349 VM_DEFINE_OP (119, bv_s64_set, "bv-s64-set!", OP1 (U8_U8_U8_U8))
510ca126
AW
3350 BV_INT_SET (s64, int64, 8);
3351
af95414f 3352 VM_DEFINE_OP (120, bv_f32_set, "bv-f32-set!", OP1 (U8_U8_U8_U8))
510ca126
AW
3353 BV_FLOAT_SET (f32, ieee_single, float, 4);
3354
af95414f 3355 VM_DEFINE_OP (121, bv_f64_set, "bv-f64-set!", OP1 (U8_U8_U8_U8))
510ca126
AW
3356 BV_FLOAT_SET (f64, ieee_double, double, 8);
3357
3358 END_DISPATCH_SWITCH;
3359
3360 vm_error_bad_instruction:
3361 vm_error_bad_instruction (op);
3362
3363 abort (); /* never reached */
3364}
3365
3366
3367#undef ABORT_CONTINUATION_HOOK
3368#undef ALIGNED_P
3369#undef APPLY_HOOK
3370#undef ARGS1
3371#undef ARGS2
3372#undef BEGIN_DISPATCH_SWITCH
3373#undef BINARY_INTEGER_OP
3374#undef BR_ARITHMETIC
3375#undef BR_BINARY
3376#undef BR_NARGS
3377#undef BR_UNARY
3378#undef BV_FIXABLE_INT_REF
3379#undef BV_FIXABLE_INT_SET
3380#undef BV_FLOAT_REF
3381#undef BV_FLOAT_SET
3382#undef BV_INT_REF
3383#undef BV_INT_SET
3384#undef CACHE_REGISTER
3385#undef CHECK_OVERFLOW
3386#undef END_DISPATCH_SWITCH
3387#undef FREE_VARIABLE_REF
3388#undef INIT
3389#undef INUM_MAX
3390#undef INUM_MIN
3391#undef LOCAL_REF
3392#undef LOCAL_SET
3393#undef NEXT
3394#undef NEXT_HOOK
3395#undef NEXT_JUMP
3396#undef POP_CONTINUATION_HOOK
3397#undef PUSH_CONTINUATION_HOOK
3398#undef RESTORE_CONTINUATION_HOOK
3399#undef RETURN
3400#undef RETURN_ONE_VALUE
3401#undef RETURN_VALUE_LIST
3402#undef RUN_HOOK
3403#undef RUN_HOOK0
3404#undef SYNC_ALL
3405#undef SYNC_BEFORE_GC
3406#undef SYNC_IP
3407#undef SYNC_REGISTER
3408#undef VARIABLE_BOUNDP
3409#undef VARIABLE_REF
3410#undef VARIABLE_SET
3411#undef VM_CHECK_FREE_VARIABLE
3412#undef VM_CHECK_OBJECT
3413#undef VM_CHECK_UNDERFLOW
3414#undef VM_DEFINE_OP
3415#undef VM_INSTRUCTION_TO_LABEL
3416#undef VM_USE_HOOKS
3417#undef VM_VALIDATE_BYTEVECTOR
3418#undef VM_VALIDATE_PAIR
3419#undef VM_VALIDATE_STRUCT
3420
3421/*
3422(defun renumber-ops ()
3423 "start from top of buffer and renumber 'VM_DEFINE_FOO (\n' sequences"
3424 (interactive "")
3425 (save-excursion
3426 (let ((counter -1)) (goto-char (point-min))
3427 (while (re-search-forward "^ *VM_DEFINE_[^ ]+ (\\([^,]+\\)," (point-max) t)
3428 (replace-match
3429 (number-to-string (setq counter (1+ counter)))
3430 t t nil 1)))))
3431(renumber-ops)
3432*/
17e90c5e
KN
3433/*
3434 Local Variables:
3435 c-file-style: "gnu"
3436 End:
3437*/