better effects analysis for calls to lexically bound procedures
[bpt/guile.git] / module / language / tree-il / cse.scm
CommitLineData
f66cbb99
AW
1;;; Common Subexpression Elimination (CSE) on Tree-IL
2
3;; Copyright (C) 2011, 2012 Free Software Foundation, Inc.
4
5;;;; This library is free software; you can redistribute it and/or
6;;;; modify it under the terms of the GNU Lesser General Public
7;;;; License as published by the Free Software Foundation; either
8;;;; version 3 of the License, or (at your option) any later version.
9;;;;
10;;;; This library is distributed in the hope that it will be useful,
11;;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
12;;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13;;;; Lesser General Public License for more details.
14;;;;
15;;;; You should have received a copy of the GNU Lesser General Public
16;;;; License along with this library; if not, write to the Free Software
17;;;; Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
18
19(define-module (language tree-il cse)
20 #:use-module (language tree-il)
21 #:use-module (language tree-il primitives)
22 #:use-module (language tree-il effects)
23 #:use-module (ice-9 vlist)
24 #:use-module (ice-9 match)
25 #:use-module (srfi srfi-1)
26 #:use-module (srfi srfi-9)
27 #:use-module (srfi srfi-11)
28 #:use-module (srfi srfi-26)
29 #:export (cse))
30
31;;;
32;;; This pass eliminates common subexpressions in Tree-IL. It works
33;;; best locally -- within a function -- so it is meant to be run after
34;;; partial evaluation, which usually inlines functions and so opens up
35;;; a bigger space for CSE to work.
36;;;
37;;; The algorithm traverses the tree of expressions, returning two
38;;; values: the newly rebuilt tree, and a "database". The database is
39;;; the set of expressions that will have been evaluated as part of
40;;; evaluating an expression. For example, in:
41;;;
42;;; (1- (+ (if a b c) (* x y)))
43;;;
44;;; We can say that when it comes time to evaluate (1- <>), that the
45;;; subexpressions +, x, y, and (* x y) must have been evaluated in
46;;; values context. We know that a was evaluated in test context, but
47;;; we don't know if it was true or false.
48;;;
49;;; The expressions in the database /dominate/ any subsequent
50;;; expression: FOO dominates BAR if evaluation of BAR implies that any
51;;; effects associated with FOO have already occured.
52;;;
53;;; When adding expressions to the database, we record the context in
54;;; which they are evaluated. We treat expressions in test context
55;;; specially: the presence of such an expression indicates that the
56;;; expression is true. In this way we can elide duplicate predicates.
57;;;
58;;; Duplicate predicates are not common in code that users write, but
59;;; can occur quite frequently in macro-generated code.
60;;;
61;;; For example:
62;;;
63;;; (and (foo? x) (foo-bar x))
64;;; => (if (and (struct? x) (eq? (struct-vtable x) <foo>))
65;;; (if (and (struct? x) (eq? (struct-vtable x) <foo>))
66;;; (struct-ref x 1)
67;;; (throw 'not-a-foo))
68;;; #f))
69;;; => (if (and (struct? x) (eq? (struct-vtable x) <foo>))
70;;; (struct-ref x 1)
71;;; #f)
72;;;
73;;; A conditional bailout in effect context also has the effect of
74;;; adding predicates to the database:
75;;;
76;;; (begin (foo-bar x) (foo-baz x))
77;;; => (begin
78;;; (if (and (struct? x) (eq? (struct-vtable x) <foo>))
79;;; (struct-ref x 1)
80;;; (throw 'not-a-foo))
81;;; (if (and (struct? x) (eq? (struct-vtable x) <foo>))
82;;; (struct-ref x 2)
83;;; (throw 'not-a-foo)))
84;;; => (begin
85;;; (if (and (struct? x) (eq? (struct-vtable x) <foo>))
86;;; (struct-ref x 1)
87;;; (throw 'not-a-foo))
88;;; (struct-ref x 2))
89;;;
90;;; When removing code, we have to ensure that the semantics of the
91;;; source program and the residual program are the same. It's easy to
92;;; ensure that they have the same value, because those manipulations
93;;; are just algebraic, but the tricky thing is to ensure that the
94;;; expressions exhibit the same ordering of effects. For that, we use
95;;; the effects analysis of (language tree-il effects). We only
96;;; eliminate code if the duplicate code commutes with all of the
97;;; dominators on the path from the duplicate to the original.
98;;;
99;;; The implementation uses vhashes as the fundamental data structure.
100;;; This can be seen as a form of global value numbering. This
101;;; algorithm currently spends most of its time in vhash-assoc. I'm not
102;;; sure whether that is due to our bad hash function in Guile 2.0, an
103;;; inefficiency in vhashes, or what. Overall though the complexity
104;;; should be linear, or N log N -- whatever vhash-assoc's complexity
105;;; is. Walking the dominators is nonlinear, but that only happens when
106;;; we've actually found a common subexpression so that should be OK.
107;;;
108
109;; Logging helpers, as in peval.
110;;
111(define-syntax *logging* (identifier-syntax #f))
112;; (define %logging #f)
113;; (define-syntax *logging* (identifier-syntax %logging))
114(define-syntax log
115 (syntax-rules (quote)
116 ((log 'event arg ...)
117 (if (and *logging*
118 (or (eq? *logging* #t)
119 (memq 'event *logging*)))
120 (log* 'event arg ...)))))
121(define (log* event . args)
122 (let ((pp (module-ref (resolve-interface '(ice-9 pretty-print))
123 'pretty-print)))
124 (pp `(log ,event . ,args))
125 (newline)
126 (values)))
127
128;; A pre-pass on the source program to determine the set of assigned
129;; lexicals.
130;;
131(define* (build-assigned-var-table exp #:optional (table vlist-null))
132 (tree-il-fold
133 (lambda (exp res)
134 res)
135 (lambda (exp res)
136 (match exp
137 (($ <lexical-set> src name gensym exp)
138 (vhash-consq gensym #t res))
139 (_ res)))
140 (lambda (exp res) res)
141 table exp))
142
143(define (boolean-valued-primitive? primitive)
144 (or (negate-primitive primitive)
145 (eq? primitive 'not)
146 (let ((chars (symbol->string primitive)))
147 (eqv? (string-ref chars (1- (string-length chars)))
148 #\?))))
149
150(define (boolean-valued-expression? x ctx)
151 (match x
152 (($ <application> _
153 ($ <primitive-ref> _ (? boolean-valued-primitive?))) #t)
154 (($ <const> _ (? boolean?)) #t)
155 (_ (eq? ctx 'test))))
156
dc1ee620
AW
157(define (singly-valued-expression? x ctx)
158 (match x
159 (($ <const>) #t)
160 (($ <lexical-ref>) #t)
161 (($ <void>) #t)
162 (($ <lexical-ref>) #t)
163 (($ <primitive-ref>) #t)
164 (($ <module-ref>) #t)
165 (($ <toplevel-ref>) #t)
166 (($ <application> _
167 ($ <primitive-ref> _ (? singly-valued-primitive?))) #t)
168 (($ <application> _ ($ <primitive-ref> _ 'values) (val)) #t)
169 (($ <lambda>) #t)
170 (_ (eq? ctx 'value))))
171
f66cbb99
AW
172(define* (cse exp)
173 "Eliminate common subexpressions in EXP."
174
175 (define assigned-lexical?
176 (let ((table (build-assigned-var-table exp)))
177 (lambda (sym)
178 (vhash-assq sym table))))
179
180 (define compute-effects
181 (make-effects-analyzer assigned-lexical?))
182
183 (define (negate exp ctx)
184 (match exp
185 (($ <const> src x)
186 (make-const src (not x)))
187 (($ <void> src)
188 (make-const src #f))
189 (($ <conditional> src test consequent alternate)
190 (make-conditional src test (negate consequent ctx) (negate alternate ctx)))
191 (($ <application> _ ($ <primitive-ref> _ 'not)
192 ((and x (? (cut boolean-valued-expression? <> ctx)))))
193 x)
194 (($ <application> src
195 ($ <primitive-ref> _ (and pred (? negate-primitive)))
196 args)
197 (make-application src
198 (make-primitive-ref #f (negate-primitive pred))
199 args))
200 (_
201 (make-application #f (make-primitive-ref #f 'not) (list exp)))))
202
203
204 (define (bailout? exp)
205 (causes-effects? (compute-effects exp) &definite-bailout))
206
f66cbb99
AW
207 (define (hasher n)
208 (lambda (x size) (modulo n size)))
209
210 (define (add-to-db exp effects ctx db)
211 (let ((v (vector exp effects ctx))
1fb39dc5 212 (h (tree-il-hash exp)))
f66cbb99
AW
213 (vhash-cons v h db (hasher h))))
214
215 (define (control-flow-boundary db)
216 (let ((h (hashq 'lambda most-positive-fixnum)))
217 (vhash-cons 'lambda h db (hasher h))))
218
219 (define (find-dominating-expression exp effects ctx db)
220 (define (entry-matches? v1 v2)
221 (match (if (vector? v1) v1 v2)
222 (#(exp* effects* ctx*)
1fb39dc5 223 (and (tree-il=? exp exp*)
f66cbb99
AW
224 (or (not ctx) (eq? ctx* ctx))))
225 (_ #f)))
226
227 (let ((len (vlist-length db))
1fb39dc5 228 (h (tree-il-hash exp)))
f66cbb99
AW
229 (and (vhash-assoc #t db entry-matches? (hasher h))
230 (let lp ((n 0))
231 (and (< n len)
232 (match (vlist-ref db n)
233 (('lambda . h*)
234 ;; We assume that lambdas can escape and thus be
235 ;; called from anywhere. Thus code inside a lambda
236 ;; only has a dominating expression if it does not
237 ;; depend on any effects.
238 (and (not (depends-on-effects? effects &all-effects))
239 (lp (1+ n))))
240 ((#(exp* effects* ctx*) . h*)
241 (log 'walk (unparse-tree-il exp) effects
242 (unparse-tree-il exp*) effects* ctx*)
243 (or (and (= h h*)
244 (or (not ctx) (eq? ctx ctx*))
1fb39dc5 245 (tree-il=? exp exp*))
f66cbb99
AW
246 (and (effects-commute? effects effects*)
247 (lp (1+ n)))))))))))
248
249 ;; Return #t if EXP is dominated by an instance of itself. In that
250 ;; case, we can exclude *type-check* effects, because the first
251 ;; expression already caused them if needed.
252 (define (has-dominating-effect? exp effects db)
253 (or (constant? effects)
254 (and
255 (effect-free?
256 (exclude-effects effects
257 (logior &zero-values
258 &allocation
259 &type-check)))
260 (find-dominating-expression exp effects #f db))))
261
262 (define (find-dominating-test exp effects db)
263 (and
264 (effect-free?
265 (exclude-effects effects (logior &allocation
266 &type-check)))
267 (match exp
268 (($ <const> src val)
269 (if (boolean? val)
270 exp
271 (make-const src (not (not val)))))
272 ;; For (not FOO), try to prove FOO, then negate the result.
273 (($ <application> src ($ <primitive-ref> _ 'not) (exp*))
274 (match (find-dominating-test exp* effects db)
275 (($ <const> _ val)
276 (log 'inferring exp (not val))
277 (make-const src (not val)))
278 (_
279 #f)))
280 (_
281 (cond
282 ((find-dominating-expression exp effects #f db)
283 ;; We have an EXP fact, so we infer #t.
284 (log 'inferring exp #t)
285 (make-const (tree-il-src exp) #t))
286 ((find-dominating-expression (negate exp 'test) effects #f db)
287 ;; We have a (not EXP) fact, so we infer #f.
288 (log 'inferring exp #f)
289 (make-const (tree-il-src exp) #f))
290 (else
291 ;; Otherwise we don't know.
292 #f))))))
293
294 (define (add-to-env exp name sym db env)
295 (let* ((v (vector exp name sym (vlist-length db)))
1fb39dc5 296 (h (tree-il-hash exp)))
f66cbb99
AW
297 (vhash-cons v h env (hasher h))))
298
299 (define (augment-env env names syms exps db)
300 (if (null? names)
301 env
302 (let ((name (car names)) (sym (car syms)) (exp (car exps)))
303 (augment-env (if (or (assigned-lexical? sym)
304 (lexical-ref? exp))
305 env
306 (add-to-env exp name sym db env))
307 (cdr names) (cdr syms) (cdr exps) db))))
308
309 (define (find-dominating-lexical exp effects env db)
310 (define (entry-matches? v1 v2)
311 (match (if (vector? v1) v1 v2)
312 (#(exp* name sym db)
1fb39dc5 313 (tree-il=? exp exp*))
f66cbb99
AW
314 (_ #f)))
315
73001b06
AW
316 (define (unroll db base n)
317 (or (zero? n)
318 (match (vlist-ref db base)
f66cbb99
AW
319 (('lambda . h*)
320 ;; See note in find-dominating-expression.
321 (and (not (depends-on-effects? effects &all-effects))
73001b06 322 (unroll db (1+ base) (1- n))))
f66cbb99
AW
323 ((#(exp* effects* ctx*) . h*)
324 (and (effects-commute? effects effects*)
73001b06 325 (unroll db (1+ base) (1- n)))))))
f66cbb99 326
1fb39dc5 327 (let ((h (tree-il-hash exp)))
f66cbb99
AW
328 (and (effect-free? (exclude-effects effects &type-check))
329 (vhash-assoc exp env entry-matches? (hasher h))
73001b06
AW
330 (let ((env-len (vlist-length env))
331 (db-len (vlist-length db)))
332 (let lp ((n 0) (m 0))
f66cbb99
AW
333 (and (< n env-len)
334 (match (vlist-ref env n)
335 ((#(exp* name sym db-len*) . h*)
73001b06 336 (and (unroll db m (- db-len db-len*))
1fb39dc5 337 (if (and (= h h*) (tree-il=? exp* exp))
f66cbb99 338 (make-lexical-ref (tree-il-src exp) name sym)
73001b06 339 (lp (1+ n) (- db-len db-len*))))))))))))
f66cbb99
AW
340
341 (define (intersection db+ db-)
342 (vhash-fold-right
343 (lambda (k h out)
344 (if (vhash-assoc k db- equal? (hasher h))
345 (vhash-cons k h out (hasher h))
346 out))
347 vlist-null
348 db+))
349
350 (define (concat db1 db2)
351 (vhash-fold-right (lambda (k h tail)
352 (vhash-cons k h tail (hasher h)))
353 db2 db1))
354
355 (let visit ((exp exp)
356 (db vlist-null) ; dominating expressions: #(exp effects ctx) -> hash
357 (env vlist-null) ; named expressions: #(exp name sym db) -> hash
358 (ctx 'values)) ; test, effect, value, or values
359
360 (define (parallel-visit exps db env ctx)
361 (let lp ((in exps) (out '()) (db* vlist-null))
362 (if (pair? in)
363 (call-with-values (lambda () (visit (car in) db env ctx))
364 (lambda (x db**)
365 (lp (cdr in) (cons x out) (concat db** db*))))
366 (values (reverse out) db*))))
367
368 (define (return exp db*)
369 (let ((effects (compute-effects exp)))
370 (cond
371 ((and (eq? ctx 'effect)
372 (not (lambda-case? exp))
373 (or (effect-free?
374 (exclude-effects effects
375 (logior &zero-values
376 &allocation)))
377 (has-dominating-effect? exp effects db)))
73001b06
AW
378 (cond
379 ((void? exp)
380 (values exp db*))
381 (else
382 (log 'elide ctx (unparse-tree-il exp))
383 (values (make-void #f) db*))))
f66cbb99
AW
384 ((and (boolean-valued-expression? exp ctx)
385 (find-dominating-test exp effects db))
386 => (lambda (exp)
387 (log 'propagate-test ctx (unparse-tree-il exp))
388 (values exp db*)))
dc1ee620 389 ((and (singly-valued-expression? exp ctx)
f66cbb99
AW
390 (find-dominating-lexical exp effects env db))
391 => (lambda (exp)
392 (log 'propagate-value ctx (unparse-tree-il exp))
393 (values exp db*)))
394 ((and (constant? effects) (memq ctx '(value values)))
395 ;; Adds nothing to the db.
396 (values exp db*))
397 (else
398 (log 'return ctx effects (unparse-tree-il exp) db*)
399 (values exp
400 (add-to-db exp effects ctx db*))))))
401
402 (log 'visit ctx (unparse-tree-il exp) db env)
403
404 (match exp
405 (($ <const>)
406 (return exp vlist-null))
407 (($ <void>)
408 (return exp vlist-null))
409 (($ <lexical-ref> _ _ gensym)
410 (return exp vlist-null))
411 (($ <lexical-set> src name gensym exp)
412 (let*-values (((exp db*) (visit exp db env 'value)))
413 (return (make-lexical-set src name gensym exp)
414 db*)))
415 (($ <let> src names gensyms vals body)
416 (let*-values (((vals db*) (parallel-visit vals db env 'value))
417 ((body db**) (visit body (concat db* db)
418 (augment-env env names gensyms vals db)
419 ctx)))
420 (return (make-let src names gensyms vals body)
421 (concat db** db*))))
422 (($ <letrec> src in-order? names gensyms vals body)
423 (let*-values (((vals db*) (parallel-visit vals db env 'value))
424 ((body db**) (visit body (concat db* db)
425 (augment-env env names gensyms vals db)
426 ctx)))
427 (return (make-letrec src in-order? names gensyms vals body)
428 (concat db** db*))))
429 (($ <fix> src names gensyms vals body)
430 (let*-values (((vals db*) (parallel-visit vals db env 'value))
431 ((body db**) (visit body (concat db* db) env ctx)))
432 (return (make-fix src names gensyms vals body)
433 (concat db** db*))))
434 (($ <let-values> src producer consumer)
435 (let*-values (((producer db*) (visit producer db env 'values))
436 ((consumer db**) (visit consumer (concat db* db) env ctx)))
437 (return (make-let-values src producer consumer)
438 (concat db** db*))))
439 (($ <dynwind> src winder body unwinder)
440 (let*-values (((pre db*) (visit winder db env 'value))
441 ((body db**) (visit body (concat db* db) env ctx))
442 ((post db***) (visit unwinder db env 'value)))
443 (return (make-dynwind src pre body post)
444 (concat db* (concat db** db***)))))
445 (($ <dynlet> src fluids vals body)
446 (let*-values (((fluids db*) (parallel-visit fluids db env 'value))
447 ((vals db**) (parallel-visit vals db env 'value))
448 ((body db***) (visit body (concat db** (concat db* db))
449 env ctx)))
450 (return (make-dynlet src fluids vals body)
451 (concat db*** (concat db** db*)))))
452 (($ <dynref> src fluid)
453 (let*-values (((fluid db*) (visit fluid db env 'value)))
454 (return (make-dynref src fluid)
455 db*)))
456 (($ <dynset> src fluid exp)
457 (let*-values (((fluid db*) (visit fluid db env 'value))
458 ((exp db**) (visit exp db env 'value)))
459 (return (make-dynset src fluid exp)
460 (concat db** db*))))
461 (($ <toplevel-ref>)
462 (return exp vlist-null))
463 (($ <module-ref>)
464 (return exp vlist-null))
465 (($ <module-set> src mod name public? exp)
466 (let*-values (((exp db*) (visit exp db env 'value)))
467 (return (make-module-set src mod name public? exp)
468 db*)))
469 (($ <toplevel-define> src name exp)
470 (let*-values (((exp db*) (visit exp db env 'value)))
471 (return (make-toplevel-define src name exp)
472 db*)))
473 (($ <toplevel-set> src name exp)
474 (let*-values (((exp db*) (visit exp db env 'value)))
475 (return (make-toplevel-set src name exp)
476 db*)))
477 (($ <primitive-ref>)
478 (return exp vlist-null))
479 (($ <conditional> src test consequent alternate)
480 (let*-values
481 (((test db+) (visit test db env 'test))
482 ((converse db-) (visit (negate test 'test) db env 'test))
483 ((consequent db++) (visit consequent (concat db+ db) env ctx))
484 ((alternate db--) (visit alternate (concat db- db) env ctx)))
485 (match (make-conditional src test consequent alternate)
486 (($ <conditional> _ ($ <const> _ exp))
487 (if exp
488 (return consequent (concat db++ db+))
489 (return alternate (concat db-- db-))))
490 ;; (if FOO A A) => (begin FOO A)
491 (($ <conditional> src _
492 ($ <const> _ a) ($ <const> _ (? (cut equal? a <>))))
493 (visit (make-sequence #f (list test (make-const #f a)))
494 db env ctx))
495 ;; (if FOO #t #f) => FOO for boolean-valued FOO.
496 (($ <conditional> src
497 (? (cut boolean-valued-expression? <> ctx))
498 ($ <const> _ #t) ($ <const> _ #f))
499 (return test db+))
500 ;; (if FOO #f #t) => (not FOO)
501 (($ <conditional> src _ ($ <const> _ #f) ($ <const> _ #t))
502 (visit (negate test ctx) db env ctx))
503
504 ;; Allow "and"-like conditions to accumulate in test context.
505 ((and c ($ <conditional> _ _ _ ($ <const> _ #f)))
506 (return c (if (eq? ctx 'test) (concat db++ db+) vlist-null)))
507 ((and c ($ <conditional> _ _ ($ <const> _ #f) _))
508 (return c (if (eq? ctx 'test) (concat db-- db-) vlist-null)))
509
510 ;; Conditional bailouts turn expressions into predicates.
511 ((and c ($ <conditional> _ _ _ (? bailout?)))
512 (return c (concat db++ db+)))
513 ((and c ($ <conditional> _ _ (? bailout?) _))
514 (return c (concat db-- db-)))
515
516 (c
517 (return c (intersection (concat db++ db+) (concat db-- db-)))))))
518 (($ <application> src proc args)
519 (let*-values (((proc db*) (visit proc db env 'value))
520 ((args db**) (parallel-visit args db env 'value)))
521 (return (make-application src proc args)
522 (concat db** db*))))
523 (($ <lambda> src meta body)
524 (let*-values (((body _) (visit body (control-flow-boundary db)
525 env 'values)))
526 (return (make-lambda src meta body)
527 vlist-null)))
528 (($ <lambda-case> src req opt rest kw inits gensyms body alt)
529 (let*-values (((inits _) (parallel-visit inits db env 'value))
530 ((body db*) (visit body db env ctx))
531 ((alt _) (if alt
532 (visit alt db env ctx)
533 (values #f #f))))
534 (return (make-lambda-case src req opt rest kw inits gensyms body alt)
535 (if alt vlist-null db*))))
536 (($ <sequence> src exps)
537 (let lp ((in exps) (out '()) (db* vlist-null))
538 (match in
539 ((last)
540 (let*-values (((last db**) (visit last (concat db* db) env ctx)))
541 (if (null? out)
542 (return last (concat db** db*))
543 (return (make-sequence src (reverse (cons last out)))
544 (concat db** db*)))))
545 ((head . rest)
546 (let*-values (((head db**) (visit head (concat db* db) env 'effect)))
547 (cond
548 ((sequence? head)
549 (lp (append (sequence-exps head) rest) out db*))
550 ((void? head)
551 (lp rest out db*))
552 (else
553 (lp rest (cons head out) (concat db** db*)))))))))
554 (($ <prompt> src tag body handler)
555 (let*-values (((tag db*) (visit tag db env 'value))
556 ((body _) (visit body (concat db* db) env ctx))
557 ((handler _) (visit handler (concat db* db) env ctx)))
558 (return (make-prompt src tag body handler)
559 db*)))
560 (($ <abort> src tag args tail)
561 (let*-values (((tag db*) (visit tag db env 'value))
562 ((args db**) (parallel-visit args db env 'value))
563 ((tail db***) (visit tail db env 'value)))
564 (return (make-abort src tag args tail)
565 (concat db* (concat db** db***))))))))