coverage: Add test with `eval'.
[bpt/guile.git] / doc / ref / api-procedures.texi
CommitLineData
07d83abe
MV
1@c -*-texinfo-*-
2@c This is part of the GNU Guile Reference Manual.
165b10dd 3@c Copyright (C) 1996, 1997, 2000, 2001, 2002, 2003, 2004, 2009, 2010, 2011
07d83abe
MV
4@c Free Software Foundation, Inc.
5@c See the file guile.texi for copying conditions.
6
e4955559
AW
7@node Procedures
8@section Procedures
07d83abe
MV
9
10@menu
11* Lambda:: Basic procedure creation using lambda.
12* Primitive Procedures:: Procedures defined in C.
00ce5125 13* Compiled Procedures:: Scheme procedures can be compiled.
07d83abe 14* Optional Arguments:: Handling keyword, optional and rest arguments.
f916cbc4 15* Case-lambda:: One function, multiple arities.
18f06db9 16* Higher-Order Functions:: Function that take or return functions.
07d83abe
MV
17* Procedure Properties:: Procedure properties and meta-information.
18* Procedures with Setters:: Procedures with setters.
165b10dd 19* Inlinable Procedures:: Procedures that can be inlined.
07d83abe
MV
20@end menu
21
22
23@node Lambda
24@subsection Lambda: Basic Procedure Creation
25@cindex lambda
26
07d83abe
MV
27A @code{lambda} expression evaluates to a procedure. The environment
28which is in effect when a @code{lambda} expression is evaluated is
29enclosed in the newly created procedure, this is referred to as a
30@dfn{closure} (@pxref{About Closure}).
31
32When a procedure created by @code{lambda} is called with some actual
33arguments, the environment enclosed in the procedure is extended by
34binding the variables named in the formal argument list to new locations
35and storing the actual arguments into these locations. Then the body of
2e4ef7ed 36the @code{lambda} expression is evaluated sequentially. The result of
07d83abe
MV
37the last expression in the procedure body is then the result of the
38procedure invocation.
39
40The following examples will show how procedures can be created using
41@code{lambda}, and what you can do with these procedures.
42
43@lisp
44(lambda (x) (+ x x)) @result{} @r{a procedure}
45((lambda (x) (+ x x)) 4) @result{} 8
46@end lisp
47
48The fact that the environment in effect when creating a procedure is
49enclosed in the procedure is shown with this example:
50
51@lisp
52(define add4
53 (let ((x 4))
54 (lambda (y) (+ x y))))
55(add4 6) @result{} 10
56@end lisp
57
58
59@deffn syntax lambda formals body
60@var{formals} should be a formal argument list as described in the
61following table.
62
63@table @code
64@item (@var{variable1} @dots{})
65The procedure takes a fixed number of arguments; when the procedure is
66called, the arguments will be stored into the newly created location for
67the formal variables.
68@item @var{variable}
69The procedure takes any number of arguments; when the procedure is
70called, the sequence of actual arguments will converted into a list and
71stored into the newly created location for the formal variable.
72@item (@var{variable1} @dots{} @var{variablen} . @var{variablen+1})
73If a space-delimited period precedes the last variable, then the
74procedure takes @var{n} or more variables where @var{n} is the number
75of formal arguments before the period. There must be at least one
76argument before the period. The first @var{n} actual arguments will be
77stored into the newly allocated locations for the first @var{n} formal
78arguments and the sequence of the remaining actual arguments is
79converted into a list and the stored into the location for the last
80formal argument. If there are exactly @var{n} actual arguments, the
81empty list is stored into the location of the last formal argument.
82@end table
83
84The list in @var{variable} or @var{variablen+1} is always newly
85created and the procedure can modify it if desired. This is the case
86even when the procedure is invoked via @code{apply}, the required part
87of the list argument there will be copied (@pxref{Fly Evaluation,,
88Procedures for On the Fly Evaluation}).
89
90@var{body} is a sequence of Scheme expressions which are evaluated in
91order when the procedure is invoked.
92@end deffn
93
94@node Primitive Procedures
95@subsection Primitive Procedures
96@cindex primitives
97@cindex primitive procedures
98
99Procedures written in C can be registered for use from Scheme,
100provided they take only arguments of type @code{SCM} and return
101@code{SCM} values. @code{scm_c_define_gsubr} is likely to be the most
102useful mechanism, combining the process of registration
103(@code{scm_c_make_gsubr}) and definition (@code{scm_define}).
104
105@deftypefun SCM scm_c_make_gsubr (const char *name, int req, int opt, int rst, fcn)
106Register a C procedure @var{FCN} as a ``subr'' --- a primitive
107subroutine that can be called from Scheme. It will be associated with
108the given @var{name} but no environment binding will be created. The
109arguments @var{req}, @var{opt} and @var{rst} specify the number of
110required, optional and ``rest'' arguments respectively. The total
111number of these arguments should match the actual number of arguments
4adf9a7e 112to @var{fcn}, but may not exceed 10. The number of rest arguments should be 0 or 1.
07d83abe
MV
113@code{scm_c_make_gsubr} returns a value of type @code{SCM} which is a
114``handle'' for the procedure.
115@end deftypefun
116
117@deftypefun SCM scm_c_define_gsubr (const char *name, int req, int opt, int rst, fcn)
118Register a C procedure @var{FCN}, as for @code{scm_c_make_gsubr}
119above, and additionally create a top-level Scheme binding for the
120procedure in the ``current environment'' using @code{scm_define}.
121@code{scm_c_define_gsubr} returns a handle for the procedure in the
122same way as @code{scm_c_make_gsubr}, which is usually not further
123required.
124@end deftypefun
125
00ce5125
AW
126@node Compiled Procedures
127@subsection Compiled Procedures
128
7545ddd4
AW
129The evaluation strategy given in @ref{Lambda} describes how procedures
130are @dfn{interpreted}. Interpretation operates directly on expanded
131Scheme source code, recursively calling the evaluator to obtain the
132value of nested expressions.
f916cbc4
AW
133
134Most procedures are compiled, however. This means that Guile has done
7545ddd4
AW
135some pre-computation on the procedure, to determine what it will need to
136do each time the procedure runs. Compiled procedures run faster than
137interpreted procedures.
00ce5125 138
f916cbc4
AW
139Loading files is the normal way that compiled procedures come to
140being. If Guile sees that a file is uncompiled, or that its compiled
141file is out of date, it will attempt to compile the file when it is
142loaded, and save the result to disk. Procedures can be compiled at
143runtime as well. @xref{Read/Load/Eval/Compile}, for more information
144on runtime compilation.
00ce5125 145
5a069042
AW
146Compiled procedures, also known as @dfn{programs}, respond all
147procedures that operate on procedures. In addition, there are a few
46d666d4 148more accessors for low-level details on programs.
5a069042 149
46d666d4
AW
150Most people won't need to use the routines described in this section,
151but it's good to have them documented. You'll have to include the
152appropriate module first, though:
5a069042
AW
153
154@example
155(use-modules (system vm program))
156@end example
157
46d666d4
AW
158@deffn {Scheme Procedure} program? obj
159@deffnx {C Function} scm_program_p (obj)
160Returns @code{#t} iff @var{obj} is a compiled procedure.
161@end deffn
162
81fd3152
AW
163@deffn {Scheme Procedure} program-objcode program
164@deffnx {C Function} scm_program_objcode (program)
73643339
AW
165Returns the object code associated with this program. @xref{Bytecode
166and Objcode}, for more information.
46d666d4
AW
167@end deffn
168
169@deffn {Scheme Procedure} program-objects program
170@deffnx {C Function} scm_program_objects (program)
171Returns the ``object table'' associated with this program, as a
172vector. @xref{VM Programs}, for more information.
5a069042
AW
173@end deffn
174
46d666d4
AW
175@deffn {Scheme Procedure} program-module program
176@deffnx {C Function} scm_program_module (program)
81fd3152
AW
177Returns the module that was current when this program was created. Can
178return @code{#f} if the compiler could determine that this information
179was unnecessary.
46d666d4
AW
180@end deffn
181
f916cbc4
AW
182@deffn {Scheme Procedure} program-free-variables program
183@deffnx {C Function} scm_program_free_variables (program)
184Returns the set of free variables that this program captures in its
185closure, as a vector. If a closure is code with data, you can get the
186code from @code{program-objcode}, and the data via
187@code{program-free-variables}.
188
189Some of the values captured are actually in variable ``boxes''.
190@xref{Variables and the VM}, for more information.
46d666d4
AW
191
192Users must not modify the returned value unless they think they're
193really clever.
194@end deffn
195
46d666d4 196@deffn {Scheme Procedure} program-meta program
f916cbc4 197@deffnx {C Function} scm_program_meta (program)
46d666d4
AW
198Return the metadata thunk of @var{program}, or @code{#f} if it has no
199metadata.
200
201When called, a metadata thunk returns a list of the following form:
f916cbc4 202@code{(@var{bindings} @var{sources} @var{arities} . @var{properties})}. The format
46d666d4
AW
203of each of these elements is discussed below.
204@end deffn
205
5a069042 206@deffn {Scheme Procedure} program-bindings program
f916cbc4 207@deffnx {Scheme Procedure} make-binding name boxed? index start end
5a069042 208@deffnx {Scheme Procedure} binding:name binding
f916cbc4 209@deffnx {Scheme Procedure} binding:boxed? binding
5a069042
AW
210@deffnx {Scheme Procedure} binding:index binding
211@deffnx {Scheme Procedure} binding:start binding
212@deffnx {Scheme Procedure} binding:end binding
213Bindings annotations for programs, along with their accessors.
214
215Bindings declare names and liveness extents for block-local variables.
216The best way to see what these are is to play around with them at a
f916cbc4 217REPL. @xref{VM Concepts}, for more information.
5a069042 218
81fd3152
AW
219Note that bindings information is stored in a program as part of its
220metadata thunk, so including it in the generated object code does not
221impose a runtime performance penalty.
5a069042
AW
222@end deffn
223
224@deffn {Scheme Procedure} program-sources program
225@deffnx {Scheme Procedure} source:addr source
226@deffnx {Scheme Procedure} source:line source
227@deffnx {Scheme Procedure} source:column source
228@deffnx {Scheme Procedure} source:file source
229Source location annotations for programs, along with their accessors.
230
46d666d4
AW
231Source location information propagates through the compiler and ends
232up being serialized to the program's metadata. This information is
233keyed by the offset of the instruction pointer within the object code
234of the program. Specifically, it is keyed on the @code{ip} @emph{just
235following} an instruction, so that backtraces can find the source
236location of a call that is in progress.
5a069042
AW
237@end deffn
238
f916cbc4
AW
239@deffn {Scheme Procedure} program-arities program
240@deffnx {C Function} scm_program_arities (program)
241@deffnx {Scheme Procedure} program-arity program ip
242@deffnx {Scheme Procedure} arity:start arity
243@deffnx {Scheme Procedure} arity:end arity
244@deffnx {Scheme Procedure} arity:nreq arity
245@deffnx {Scheme Procedure} arity:nopt arity
246@deffnx {Scheme Procedure} arity:rest? arity
247@deffnx {Scheme Procedure} arity:kw arity
248@deffnx {Scheme Procedure} arity:allow-other-keys? arity
249Accessors for a representation of the ``arity'' of a program.
250
251The normal case is that a procedure has one arity. For example,
252@code{(lambda (x) x)}, takes one required argument, and that's it. One
253could access that number of required arguments via @code{(arity:nreq
254(program-arities (lambda (x) x)))}. Similarly, @code{arity:nopt} gets
255the number of optional arguments, and @code{arity:rest?} returns a true
256value if the procedure has a rest arg.
257
258@code{arity:kw} returns a list of @code{(@var{kw} . @var{idx})} pairs,
259if the procedure has keyword arguments. The @var{idx} refers to the
260@var{idx}th local variable; @xref{Variables and the VM}, for more
261information. Finally @code{arity:allow-other-keys?} returns a true
262value if other keys are allowed. @xref{Optional Arguments}, for more
263information.
264
265So what about @code{arity:start} and @code{arity:end}, then? They
266return the range of bytes in the program's bytecode for which a given
267arity is valid. You see, a procedure can actually have more than one
268arity. The question, ``what is a procedure's arity'' only really makes
269sense at certain points in the program, delimited by these
270@code{arity:start} and @code{arity:end} values.
271@end deffn
272
00ce5125 273
07d83abe
MV
274@node Optional Arguments
275@subsection Optional Arguments
276
07d83abe
MV
277Scheme procedures, as defined in R5RS, can either handle a fixed number
278of actual arguments, or a fixed number of actual arguments followed by
279arbitrarily many additional arguments. Writing procedures of variable
280arity can be useful, but unfortunately, the syntactic means for handling
281argument lists of varying length is a bit inconvenient. It is possible
f916cbc4 282to give names to the fixed number of arguments, but the remaining
07d83abe
MV
283(optional) arguments can be only referenced as a list of values
284(@pxref{Lambda}).
285
f916cbc4
AW
286For this reason, Guile provides an extension to @code{lambda},
287@code{lambda*}, which allows the user to define procedures with
288optional and keyword arguments. In addition, Guile's virtual machine
289has low-level support for optional and keyword argument dispatch.
290Calls to procedures with optional and keyword arguments can be made
291cheaply, without allocating a rest list.
07d83abe
MV
292
293@menu
f916cbc4
AW
294* lambda* and define*:: Creating advanced argument handling procedures.
295* ice-9 optargs:: (ice-9 optargs) provides some utilities.
07d83abe
MV
296@end menu
297
298
f916cbc4
AW
299@node lambda* and define*
300@subsubsection lambda* and define*.
07d83abe 301
f916cbc4
AW
302@code{lambda*} is like @code{lambda}, except with some extensions to
303allow optional and keyword arguments.
07d83abe 304
edcd3e83
KR
305@deffn {library syntax} lambda* ([var@dots{}] @* [#:optional vardef@dots{}] @* [#:key vardef@dots{} [#:allow-other-keys]] @* [#:rest var | . var]) @* body
306@sp 1
307Create a procedure which takes optional and/or keyword arguments
308specified with @code{#:optional} and @code{#:key}. For example,
07d83abe
MV
309
310@lisp
311(lambda* (a b #:optional c d . e) '())
312@end lisp
313
edcd3e83
KR
314is a procedure with fixed arguments @var{a} and @var{b}, optional
315arguments @var{c} and @var{d}, and rest argument @var{e}. If the
07d83abe
MV
316optional arguments are omitted in a call, the variables for them are
317bound to @code{#f}.
318
f916cbc4
AW
319@fnindex define*
320Likewise, @code{define*} is syntactic sugar for defining procedures
321using @code{lambda*}.
322
323@code{lambda*} can also make procedures with keyword arguments. For
324example, a procedure defined like this:
07d83abe
MV
325
326@lisp
f916cbc4
AW
327(define* (sir-yes-sir #:key action how-high)
328 (list action how-high))
07d83abe
MV
329@end lisp
330
f916cbc4
AW
331can be called as @code{(sir-yes-sir #:action 'jump)},
332@code{(sir-yes-sir #:how-high 13)}, @code{(sir-yes-sir #:action
333'lay-down #:how-high 0)}, or just @code{(sir-yes-sir)}. Whichever
334arguments are given as keywords are bound to values (and those not
335given are @code{#f}).
07d83abe 336
edcd3e83
KR
337Optional and keyword arguments can also have default values to take
338when not present in a call, by giving a two-element list of variable
339name and expression. For example in
07d83abe
MV
340
341@lisp
f916cbc4
AW
342(define* (frob foo #:optional (bar 42) #:key (baz 73))
343 (list foo bar baz))
07d83abe
MV
344@end lisp
345
346@var{foo} is a fixed argument, @var{bar} is an optional argument with
347default value 42, and baz is a keyword argument with default value 73.
edcd3e83
KR
348Default value expressions are not evaluated unless they are needed,
349and until the procedure is called.
07d83abe 350
edcd3e83
KR
351Normally it's an error if a call has keywords other than those
352specified by @code{#:key}, but adding @code{#:allow-other-keys} to the
353definition (after the keyword argument declarations) will ignore
354unknown keywords.
07d83abe 355
edcd3e83
KR
356If a call has a keyword given twice, the last value is used. For
357example,
07d83abe
MV
358
359@lisp
f916cbc4
AW
360(define* (flips #:key (heads 0) (tails 0))
361 (display (list heads tails)))
362
363(flips #:heads 37 #:tails 42 #:heads 99)
edcd3e83 364@print{} (99 42)
07d83abe
MV
365@end lisp
366
edcd3e83
KR
367@code{#:rest} is a synonym for the dotted syntax rest argument. The
368argument lists @code{(a . b)} and @code{(a #:rest b)} are equivalent
369in all respects. This is provided for more similarity to DSSSL,
370MIT-Scheme and Kawa among others, as well as for refugees from other
371Lisp dialects.
372
373When @code{#:key} is used together with a rest argument, the keyword
374parameters in a call all remain in the rest list. This is the same as
375Common Lisp. For example,
07d83abe 376
edcd3e83
KR
377@lisp
378((lambda* (#:key (x 0) #:allow-other-keys #:rest r)
379 (display r))
380 #:x 123 #:y 456)
381@print{} (#:x 123 #:y 456)
382@end lisp
383
384@code{#:optional} and @code{#:key} establish their bindings
f916cbc4
AW
385successively, from left to right. This means default expressions can
386refer back to prior parameters, for example
edcd3e83
KR
387
388@lisp
389(lambda* (start #:optional (end (+ 10 start)))
390 (do ((i start (1+ i)))
391 ((> i end))
392 (display i)))
393@end lisp
f916cbc4
AW
394
395The exception to this left-to-right scoping rule is the rest argument.
396If there is a rest argument, it is bound after the optional arguments,
397but before the keyword arguments.
07d83abe
MV
398@end deffn
399
400
f916cbc4
AW
401@node ice-9 optargs
402@subsubsection (ice-9 optargs)
07d83abe 403
f916cbc4
AW
404Before Guile 2.0, @code{lambda*} and @code{define*} were implemented
405using macros that processed rest list arguments. This was not optimal,
406as calling procedures with optional arguments had to allocate rest
407lists at every procedure invocation. Guile 2.0 improved this
408situation by bringing optional and keyword arguments into Guile's
409core.
07d83abe 410
f916cbc4
AW
411However there are occasions in which you have a list and want to parse
412it for optional or keyword arguments. Guile's @code{(ice-9 optargs)}
413provides some macros to help with that task.
07d83abe 414
f916cbc4
AW
415The syntax @code{let-optional} and @code{let-optional*} are for
416destructuring rest argument lists and giving names to the various list
417elements. @code{let-optional} binds all variables simultaneously, while
418@code{let-optional*} binds them sequentially, consistent with @code{let}
419and @code{let*} (@pxref{Local Bindings}).
420
421@deffn {library syntax} let-optional rest-arg (binding @dots{}) expr @dots{}
422@deffnx {library syntax} let-optional* rest-arg (binding @dots{}) expr @dots{}
423These two macros give you an optional argument interface that is very
424@dfn{Schemey} and introduces no fancy syntax. They are compatible with
425the scsh macros of the same name, but are slightly extended. Each of
426@var{binding} may be of one of the forms @var{var} or @code{(@var{var}
427@var{default-value})}. @var{rest-arg} should be the rest-argument of the
428procedures these are used from. The items in @var{rest-arg} are
429sequentially bound to the variable names are given. When @var{rest-arg}
430runs out, the remaining vars are bound either to the default values or
431@code{#f} if no default value was specified. @var{rest-arg} remains
432bound to whatever may have been left of @var{rest-arg}.
07d83abe 433
f916cbc4
AW
434After binding the variables, the expressions @var{expr} @dots{} are
435evaluated in order.
436@end deffn
07d83abe 437
f916cbc4
AW
438Similarly, @code{let-keywords} and @code{let-keywords*} extract values
439from keyword style argument lists, binding local variables to those
440values or to defaults.
07d83abe 441
f916cbc4
AW
442@deffn {library syntax} let-keywords args allow-other-keys? (binding @dots{}) body @dots{}
443@deffnx {library syntax} let-keywords* args allow-other-keys? (binding @dots{}) body @dots{}
444@var{args} is evaluated and should give a list of the form
445@code{(#:keyword1 value1 #:keyword2 value2 @dots{})}. The
446@var{binding}s are variables and default expressions, with the
447variables to be set (by name) from the keyword values. The @var{body}
448forms are then evaluated and the last is the result. An example will
449make the syntax clearest,
450
451@example
452(define args '(#:xyzzy "hello" #:foo "world"))
07d83abe 453
f916cbc4
AW
454(let-keywords args #t
455 ((foo "default for foo")
456 (bar (string-append "default" "for" "bar")))
457 (display foo)
458 (display ", ")
459 (display bar))
460@print{} world, defaultforbar
461@end example
07d83abe 462
f916cbc4
AW
463The binding for @code{foo} comes from the @code{#:foo} keyword in
464@code{args}. But the binding for @code{bar} is the default in the
465@code{let-keywords}, since there's no @code{#:bar} in the args.
466
467@var{allow-other-keys?} is evaluated and controls whether unknown
468keywords are allowed in the @var{args} list. When true other keys are
469ignored (such as @code{#:xyzzy} in the example), when @code{#f} an
470error is thrown for anything unknown.
471@end deffn
472
473@code{(ice-9 optargs)} also provides some more @code{define*} sugar,
474which is not so useful with modern Guile coding, but still supported:
475@code{define*-public} is the @code{lambda*} version of
476@code{define-public}; @code{defmacro*} and @code{defmacro*-public}
477exist for defining macros with the improved argument list handling
478possibilities. The @code{-public} versions not only define the
479procedures/macros, but also export them from the current module.
480
481@deffn {library syntax} define*-public formals body
482Like a mix of @code{define*} and @code{define-public}.
07d83abe
MV
483@end deffn
484
485@deffn {library syntax} defmacro* name formals body
486@deffnx {library syntax} defmacro*-public name formals body
487These are just like @code{defmacro} and @code{defmacro-public} except that they
488take @code{lambda*}-style extended parameter lists, where @code{#:optional},
489@code{#:key}, @code{#:allow-other-keys} and @code{#:rest} are allowed with the usual
490semantics. Here is an example of a macro with an optional argument:
491
492@lisp
ecb87335 493(defmacro* transmogrify (a #:optional b)
f916cbc4 494 (a 1))
07d83abe
MV
495@end lisp
496@end deffn
497
f916cbc4
AW
498@node Case-lambda
499@subsection Case-lambda
500@cindex SRFI-16
501@cindex variable arity
502@cindex arity, variable
503
504R5RS's rest arguments are indeed useful and very general, but they
505often aren't the most appropriate or efficient means to get the job
506done. For example, @code{lambda*} is a much better solution to the
507optional argument problem than @code{lambda} with rest arguments.
508
509@fnindex case-lambda
510Likewise, @code{case-lambda} works well for when you want one
511procedure to do double duty (or triple, or ...), without the penalty
512of consing a rest list.
513
514For example:
515
516@lisp
517(define (make-accum n)
518 (case-lambda
519 (() n)
520 ((m) (set! n (+ n m)) n)))
521
522(define a (make-accum 20))
523(a) @result{} 20
524(a 10) @result{} 30
525(a) @result{} 30
526@end lisp
527
528The value returned by a @code{case-lambda} form is a procedure which
529matches the number of actual arguments against the formals in the
530various clauses, in order. The first matching clause is selected, the
531corresponding values from the actual parameter list are bound to the
532variable names in the clauses and the body of the clause is evaluated.
533If no clause matches, an error is signalled.
534
535The syntax of the @code{case-lambda} form is defined in the following
536EBNF grammar. @dfn{Formals} means a formal argument list just like
537with @code{lambda} (@pxref{Lambda}).
538
539@example
540@group
541<case-lambda>
542 --> (case-lambda <case-lambda-clause>)
543<case-lambda-clause>
544 --> (<formals> <definition-or-command>*)
545<formals>
546 --> (<identifier>*)
547 | (<identifier>* . <identifier>)
548 | <identifier>
549@end group
550@end example
551
552Rest lists can be useful with @code{case-lambda}:
553
554@lisp
555(define plus
556 (case-lambda
557 (() 0)
558 ((a) a)
559 ((a b) (+ a b))
560 ((a b . rest) (apply plus (+ a b) rest))))
561(plus 1 2 3) @result{} 6
562@end lisp
563
564@fnindex case-lambda*
565Also, for completeness. Guile defines @code{case-lambda*} as well,
566which is like @code{case-lambda}, except with @code{lambda*} clauses.
567A @code{case-lambda*} clause matches if the arguments fill the
568required arguments, but are not too many for the optional and/or rest
569arguments.
570
f916cbc4
AW
571Keyword arguments are possible with @code{case-lambda*}, but they do
572not contribute to the ``matching'' behavior. That is to say,
573@code{case-lambda*} matches only on required, optional, and rest
574arguments, and on the predicate; keyword arguments may be present but
575do not contribute to the ``success'' of a match. In fact a bad keyword
576argument list may cause an error to be raised.
07d83abe 577
18f06db9
LC
578@node Higher-Order Functions
579@subsection Higher-Order Functions
580
581@cindex higher-order functions
582
583As a functional programming language, Scheme allows the definition of
584@dfn{higher-order functions}, i.e., functions that take functions as
585arguments and/or return functions. Utilities to derive procedures from
586other procedures are provided and described below.
587
588@deffn {Scheme Procedure} const value
589Return a procedure that accepts any number of arguments and returns
590@var{value}.
591
592@lisp
593(procedure? (const 3)) @result{} #t
594((const 'hello)) @result{} hello
595((const 'hello) 'world) @result{} hello
596@end lisp
597@end deffn
598
599@deffn {Scheme Procedure} negate proc
600Return a procedure with the same arity as @var{proc} that returns the
601@code{not} of @var{proc}'s result.
602
603@lisp
604(procedure? (negate number?)) @result{} #t
605((negate odd?) 2) @result{} #t
606((negate real?) 'dream) @result{} #t
607((negate string-prefix?) "GNU" "GNU Guile")
608 @result{} #f
609(filter (negate number?) '(a 2 "b"))
610 @result{} (a "b")
611@end lisp
612@end deffn
613
614@deffn {Scheme Procedure} compose proc rest ...
615Compose @var{proc} with the procedures in @var{rest}, such that the last
616one in @var{rest} is applied first and @var{proc} last, and return the
617resulting procedure. The given procedures must have compatible arity.
618
619@lisp
620(procedure? (compose 1+ 1-)) @result{} #t
621((compose sqrt 1+ 1+) 2) @result{} 2.0
622((compose 1+ sqrt) 3) @result{} 2.73205080756888
623(eq? (compose 1+) 1+) @result{} #t
624
625((compose zip unzip2) '((1 2) (a b)))
626 @result{} ((1 2) (a b))
627@end lisp
628@end deffn
629
630@deffn {Scheme Procedure} identity x
631Return X.
632@end deffn
633
07d83abe
MV
634@node Procedure Properties
635@subsection Procedure Properties and Meta-information
636
f916cbc4
AW
637In addition to the information that is strictly necessary to run,
638procedures may have other associated information. For example, the
639name of a procedure is information not for the procedure, but about
640the procedure. This meta-information can be accessed via the procedure
641properties interface.
07d83abe 642
f916cbc4
AW
643The first group of procedures in this meta-interface are predicates to
644test whether a Scheme object is a procedure, or a special procedure,
645respectively. @code{procedure?} is the most general predicates, it
646returns @code{#t} for any kind of procedure. @code{closure?} does not
647return @code{#t} for primitive procedures, and @code{thunk?} only
648returns @code{#t} for procedures which do not accept any arguments.
07d83abe
MV
649
650@rnindex procedure?
651@deffn {Scheme Procedure} procedure? obj
652@deffnx {C Function} scm_procedure_p (obj)
653Return @code{#t} if @var{obj} is a procedure.
654@end deffn
655
07d83abe
MV
656@deffn {Scheme Procedure} thunk? obj
657@deffnx {C Function} scm_thunk_p (obj)
658Return @code{#t} if @var{obj} is a thunk.
659@end deffn
660
07d83abe 661@cindex procedure properties
f916cbc4
AW
662Procedure properties are general properties associated with
663procedures. These can be the name of a procedure or other relevant
07d83abe
MV
664information, such as debug hints.
665
666@deffn {Scheme Procedure} procedure-name proc
667@deffnx {C Function} scm_procedure_name (proc)
668Return the name of the procedure @var{proc}
669@end deffn
670
671@deffn {Scheme Procedure} procedure-source proc
672@deffnx {C Function} scm_procedure_source (proc)
f916cbc4
AW
673Return the source of the procedure @var{proc}. Returns @code{#f} if
674the source code is not available.
07d83abe
MV
675@end deffn
676
677@deffn {Scheme Procedure} procedure-environment proc
678@deffnx {C Function} scm_procedure_environment (proc)
f916cbc4 679Return the environment of the procedure @var{proc}. Very deprecated.
07d83abe
MV
680@end deffn
681
682@deffn {Scheme Procedure} procedure-properties proc
683@deffnx {C Function} scm_procedure_properties (proc)
f916cbc4
AW
684Return the properties associated with @var{proc}, as an association
685list.
07d83abe
MV
686@end deffn
687
f916cbc4
AW
688@deffn {Scheme Procedure} procedure-property proc key
689@deffnx {C Function} scm_procedure_property (proc, key)
690Return the property of @var{proc} with name @var{key}.
07d83abe
MV
691@end deffn
692
693@deffn {Scheme Procedure} set-procedure-properties! proc alist
694@deffnx {C Function} scm_set_procedure_properties_x (proc, alist)
f916cbc4 695Set @var{proc}'s property list to @var{alist}.
07d83abe
MV
696@end deffn
697
f916cbc4
AW
698@deffn {Scheme Procedure} set-procedure-property! proc key value
699@deffnx {C Function} scm_set_procedure_property_x (proc, key, value)
700In @var{proc}'s property list, set the property named @var{key} to
07d83abe
MV
701@var{value}.
702@end deffn
703
704@cindex procedure documentation
705Documentation for a procedure can be accessed with the procedure
706@code{procedure-documentation}.
707
708@deffn {Scheme Procedure} procedure-documentation proc
709@deffnx {C Function} scm_procedure_documentation (proc)
710Return the documentation string associated with @code{proc}. By
711convention, if a procedure contains more than one expression and the
712first expression is a string constant, that string is assumed to contain
713documentation for that procedure.
714@end deffn
715
07d83abe
MV
716
717@node Procedures with Setters
718@subsection Procedures with Setters
719
720@c FIXME::martin: Review me!
721
722@c FIXME::martin: Document `operator struct'.
723
724@cindex procedure with setter
725@cindex setter
726A @dfn{procedure with setter} is a special kind of procedure which
727normally behaves like any accessor procedure, that is a procedure which
728accesses a data structure. The difference is that this kind of
729procedure has a so-called @dfn{setter} attached, which is a procedure
730for storing something into a data structure.
731
732Procedures with setters are treated specially when the procedure appears
733in the special form @code{set!} (REFFIXME). How it works is best shown
734by example.
735
736Suppose we have a procedure called @code{foo-ref}, which accepts two
737arguments, a value of type @code{foo} and an integer. The procedure
738returns the value stored at the given index in the @code{foo} object.
739Let @code{f} be a variable containing such a @code{foo} data
740structure.@footnote{Working definitions would be:
741@lisp
742(define foo-ref vector-ref)
743(define foo-set! vector-set!)
744(define f (make-vector 2 #f))
745@end lisp
746}
747
748@lisp
749(foo-ref f 0) @result{} bar
750(foo-ref f 1) @result{} braz
751@end lisp
752
753Also suppose that a corresponding setter procedure called
754@code{foo-set!} does exist.
755
756@lisp
757(foo-set! f 0 'bla)
758(foo-ref f 0) @result{} bla
759@end lisp
760
761Now we could create a new procedure called @code{foo}, which is a
762procedure with setter, by calling @code{make-procedure-with-setter} with
763the accessor and setter procedures @code{foo-ref} and @code{foo-set!}.
764Let us call this new procedure @code{foo}.
765
766@lisp
767(define foo (make-procedure-with-setter foo-ref foo-set!))
768@end lisp
769
770@code{foo} can from now an be used to either read from the data
771structure stored in @code{f}, or to write into the structure.
772
773@lisp
774(set! (foo f 0) 'dum)
775(foo f 0) @result{} dum
776@end lisp
777
778@deffn {Scheme Procedure} make-procedure-with-setter procedure setter
779@deffnx {C Function} scm_make_procedure_with_setter (procedure, setter)
780Create a new procedure which behaves like @var{procedure}, but
781with the associated setter @var{setter}.
782@end deffn
783
784@deffn {Scheme Procedure} procedure-with-setter? obj
785@deffnx {C Function} scm_procedure_with_setter_p (obj)
786Return @code{#t} if @var{obj} is a procedure with an
787associated setter procedure.
788@end deffn
789
790@deffn {Scheme Procedure} procedure proc
791@deffnx {C Function} scm_procedure (proc)
3323ec06
NJ
792Return the procedure of @var{proc}, which must be an
793applicable struct.
07d83abe
MV
794@end deffn
795
796@deffn {Scheme Procedure} setter proc
797Return the setter of @var{proc}, which must be either a procedure with
798setter or an operator struct.
799@end deffn
800
165b10dd
AR
801@node Inlinable Procedures
802@subsection Inlinable Procedures
803
804You can define an @dfn{inlinable procedure} by using
805@code{define-inlinable} instead of @code{define}. An inlinable
806procedure behaves the same as a regular procedure, but direct calls will
807result in the procedure body being inlined into the caller.
808
809Procedures defined with @code{define-inlinable} are @emph{always}
810inlined, at all direct call sites. This eliminates function call
811overhead at the expense of an increase in code size. Additionally, the
812caller will not transparently use the new definition if the inline
813procedure is redefined. It is not possible to trace an inlined
814procedures or install a breakpoint in it (@pxref{Traps}). For these
815reasons, you should not make a procedure inlinable unless it
816demonstrably improves performance in a crucial way.
817
818In general, only small procedures should be considered for inlining, as
819making large procedures inlinable will probably result in an increase in
820code size. Additionally, the elimination of the call overhead rarely
821matters for for large procedures.
822
823@deffn {Scheme Syntax} define-inlinable (name parameter ...) body ...
824Define @var{name} as a procedure with parameters @var{parameter}s and
825body @var{body}.
826@end deffn
07d83abe 827
07d83abe
MV
828@c Local Variables:
829@c TeX-master: "guile.texi"
830@c End: