rename <control> to <abort>
[bpt/guile.git] / module / language / tree-il / analyze.scm
CommitLineData
cf10678f
AW
1;;; TREE-IL -> GLIL compiler
2
795ab688 3;; Copyright (C) 2001,2008,2009,2010 Free Software Foundation, Inc.
cf10678f 4
53befeb7
NJ
5;;;; This library is free software; you can redistribute it and/or
6;;;; modify it under the terms of the GNU Lesser General Public
7;;;; License as published by the Free Software Foundation; either
8;;;; version 3 of the License, or (at your option) any later version.
bcae9a98 9;;;;
53befeb7
NJ
10;;;; This library is distributed in the hope that it will be useful,
11;;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
12;;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13;;;; Lesser General Public License for more details.
bcae9a98 14;;;;
53befeb7
NJ
15;;;; You should have received a copy of the GNU Lesser General Public
16;;;; License along with this library; if not, write to the Free Software
17;;;; Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cf10678f
AW
18
19;;; Code:
20
21(define-module (language tree-il analyze)
66d3e9a3 22 #:use-module (srfi srfi-1)
4b856371 23 #:use-module (srfi srfi-9)
bcae9a98 24 #:use-module (srfi srfi-11)
5cbf2e1d 25 #:use-module (ice-9 vlist)
cf10678f 26 #:use-module (system base syntax)
4b856371 27 #:use-module (system base message)
af5ed549 28 #:use-module (system vm program)
cf10678f 29 #:use-module (language tree-il)
99480e11 30 #:use-module (system base pmatch)
4b856371 31 #:export (analyze-lexicals
48b1db75
LC
32 analyze-tree
33 unused-variable-analysis
bcae9a98 34 unused-toplevel-analysis
ae03cf1f
LC
35 unbound-variable-analysis
36 arity-analysis))
cf10678f 37
66d3e9a3
AW
38;; Allocation is the process of assigning storage locations for lexical
39;; variables. A lexical variable has a distinct "address", or storage
40;; location, for each procedure in which it is referenced.
41;;
42;; A variable is "local", i.e., allocated on the stack, if it is
43;; referenced from within the procedure that defined it. Otherwise it is
44;; a "closure" variable. For example:
45;;
46;; (lambda (a) a) ; a will be local
47;; `a' is local to the procedure.
48;;
49;; (lambda (a) (lambda () a))
50;; `a' is local to the outer procedure, but a closure variable with
51;; respect to the inner procedure.
52;;
53;; If a variable is ever assigned, it needs to be heap-allocated
54;; ("boxed"). This is so that closures and continuations capture the
55;; variable's identity, not just one of the values it may have over the
56;; course of program execution. If the variable is never assigned, there
57;; is no distinction between value and identity, so closing over its
58;; identity (whether through closures or continuations) can make a copy
59;; of its value instead.
60;;
61;; Local variables are stored on the stack within a procedure's call
62;; frame. Their index into the stack is determined from their linear
63;; postion within a procedure's binding path:
cf10678f
AW
64;; (let (0 1)
65;; (let (2 3) ...)
66;; (let (2) ...))
67;; (let (2 3 4) ...))
68;; etc.
69;;
5af166bd
AW
70;; This algorithm has the problem that variables are only allocated
71;; indices at the end of the binding path. If variables bound early in
72;; the path are not used in later portions of the path, their indices
73;; will not be recycled. This problem is particularly egregious in the
74;; expansion of `or':
75;;
76;; (or x y z)
77;; -> (let ((a x)) (if a a (let ((b y)) (if b b z))))
78;;
b6d93b11
AW
79;; As you can see, the `a' binding is only used in the ephemeral
80;; `consequent' clause of the first `if', but its index would be
81;; reserved for the whole of the `or' expansion. So we have a hack for
82;; this specific case. A proper solution would be some sort of liveness
83;; analysis, and not our linear allocation algorithm.
5af166bd 84;;
282d128c
AW
85;; Closure variables are captured when a closure is created, and stored in a
86;; vector inline to the closure object itself. Each closure variable has a
87;; unique index into that vector.
66d3e9a3 88;;
9059993f
AW
89;; There is one more complication. Procedures bound by <fix> may, in
90;; some cases, be rendered inline to their parent procedure. That is to
91;; say,
92;;
93;; (letrec ((lp (lambda () (lp)))) (lp))
94;; => (fix ((lp (lambda () (lp)))) (lp))
95;; => goto FIX-BODY; LP: goto LP; FIX-BODY: goto LP;
96;; ^ jump over the loop ^ the fixpoint lp ^ starting off the loop
97;;
98;; The upshot is that we don't have to allocate any space for the `lp'
99;; closure at all, as it can be rendered inline as a loop. So there is
100;; another kind of allocation, "label allocation", in which the
101;; procedure is simply a label, placed at the start of the lambda body.
102;; The label is the gensym under which the lambda expression is bound.
103;;
104;; The analyzer checks to see that the label is called with the correct
105;; number of arguments. Calls to labels compile to rename + goto.
106;; Lambda, the ultimate goto!
107;;
66d3e9a3
AW
108;;
109;; The return value of `analyze-lexicals' is a hash table, the
110;; "allocation".
111;;
112;; The allocation maps gensyms -- recall that each lexically bound
113;; variable has a unique gensym -- to storage locations ("addresses").
114;; Since one gensym may have many storage locations, if it is referenced
115;; in many procedures, it is a two-level map.
116;;
117;; The allocation also stored information on how many local variables
9059993f
AW
118;; need to be allocated for each procedure, lexicals that have been
119;; translated into labels, and information on what free variables to
120;; capture from its lexical parent procedure.
66d3e9a3 121;;
8a4ca0ea
AW
122;; In addition, we have a conflation: while we're traversing the code,
123;; recording information to pass to the compiler, we take the
124;; opportunity to generate labels for each lambda-case clause, so that
125;; generated code can skip argument checks at runtime if they match at
126;; compile-time.
127;;
282d128c
AW
128;; Also, while we're a-traversing and an-allocating, we check prompt
129;; handlers to see if the "continuation" argument is used. If not, we
130;; mark the prompt as being "escape-only". This allows us to implement
131;; `catch' and `throw' using `prompt' and `control', but without causing
132;; a continuation to be reified. Heh heh.
133;;
66d3e9a3
AW
134;; That is:
135;;
136;; sym -> {lambda -> address}
8a4ca0ea
AW
137;; lambda -> (labels . free-locs)
138;; lambda-case -> (gensym . nlocs)
282d128c 139;; prompt -> escape-only?
66d3e9a3 140;;
9059993f 141;; address ::= (local? boxed? . index)
8a4ca0ea 142;; labels ::= ((sym . lambda) ...)
66d3e9a3
AW
143;; free-locs ::= ((sym0 . address0) (sym1 . address1) ...)
144;; free variable addresses are relative to parent proc.
145
146(define (make-hashq k v)
147 (let ((res (make-hash-table)))
148 (hashq-set! res k v)
149 res))
cf10678f
AW
150
151(define (analyze-lexicals x)
66d3e9a3
AW
152 ;; bound-vars: lambda -> (sym ...)
153 ;; all identifiers bound within a lambda
9059993f 154 (define bound-vars (make-hash-table))
66d3e9a3
AW
155 ;; free-vars: lambda -> (sym ...)
156 ;; all identifiers referenced in a lambda, but not bound
157 ;; NB, this includes identifiers referenced by contained lambdas
9059993f 158 (define free-vars (make-hash-table))
66d3e9a3
AW
159 ;; assigned: sym -> #t
160 ;; variables that are assigned
d97b69d9 161 (define assigned (make-hash-table))
5af166bd 162 ;; refcounts: sym -> count
66d3e9a3 163 ;; allows us to detect the or-expansion in O(1) time
9059993f 164 (define refcounts (make-hash-table))
8a4ca0ea 165 ;; labels: sym -> lambda
9059993f 166 ;; for determining if fixed-point procedures can be rendered as
8a4ca0ea 167 ;; labels.
9059993f
AW
168 (define labels (make-hash-table))
169
66d3e9a3 170 ;; returns variables referenced in expr
d97b69d9
AW
171 (define (analyze! x proc labels-in-proc tail? tail-call-args)
172 (define (step y) (analyze! y proc labels-in-proc #f #f))
173 (define (step-tail y) (analyze! y proc labels-in-proc tail? #f))
174 (define (step-tail-call y args) (analyze! y proc labels-in-proc #f
175 (and tail? args)))
176 (define (recur/labels x new-proc labels)
177 (analyze! x new-proc (append labels labels-in-proc) #t #f))
178 (define (recur x new-proc) (analyze! x new-proc '() tail? #f))
cf10678f
AW
179 (record-case x
180 ((<application> proc args)
d97b69d9
AW
181 (apply lset-union eq? (step-tail-call proc args)
182 (map step args)))
cf10678f 183
b6d93b11
AW
184 ((<conditional> test consequent alternate)
185 (lset-union eq? (step test) (step-tail consequent) (step-tail alternate)))
cf10678f 186
e5f5113c 187 ((<lexical-ref> gensym)
5af166bd 188 (hashq-set! refcounts gensym (1+ (hashq-ref refcounts gensym 0)))
d97b69d9
AW
189 (if (not (and tail-call-args
190 (memq gensym labels-in-proc)
8a4ca0ea
AW
191 (let ((p (hashq-ref labels gensym)))
192 (and p
193 (let lp ((c (lambda-body p)))
194 (and c (lambda-case? c)
195 (or
196 ;; for now prohibit optional &
197 ;; keyword arguments; can relax this
198 ;; restriction later
199 (and (= (length (lambda-case-req c))
200 (length tail-call-args))
201 (not (lambda-case-opt c))
202 (not (lambda-case-kw c))
1e2a8edb 203 (not (lambda-case-rest c)))
3a88cb3b 204 (lp (lambda-case-alternate c)))))))))
d97b69d9 205 (hashq-set! labels gensym #f))
66d3e9a3 206 (list gensym))
cf10678f 207
e5f5113c 208 ((<lexical-set> gensym exp)
66d3e9a3 209 (hashq-set! assigned gensym #t)
d97b69d9 210 (hashq-set! labels gensym #f)
66d3e9a3 211 (lset-adjoin eq? (step exp) gensym))
cf10678f 212
e5f5113c 213 ((<module-set> exp)
cf10678f
AW
214 (step exp))
215
e5f5113c 216 ((<toplevel-set> exp)
cf10678f
AW
217 (step exp))
218
e5f5113c 219 ((<toplevel-define> exp)
cf10678f
AW
220 (step exp))
221
222 ((<sequence> exps)
d97b69d9
AW
223 (let lp ((exps exps) (ret '()))
224 (cond ((null? exps) '())
225 ((null? (cdr exps))
226 (lset-union eq? ret (step-tail (car exps))))
227 (else
228 (lp (cdr exps) (lset-union eq? ret (step (car exps))))))))
cf10678f 229
8a4ca0ea
AW
230 ((<lambda> body)
231 ;; order is important here
232 (hashq-set! bound-vars x '())
233 (let ((free (recur body x)))
234 (hashq-set! bound-vars x (reverse! (hashq-ref bound-vars x)))
235 (hashq-set! free-vars x free)
236 free))
237
3a88cb3b 238 ((<lambda-case> opt kw inits vars body alternate)
8a4ca0ea
AW
239 (hashq-set! bound-vars proc
240 (append (reverse vars) (hashq-ref bound-vars proc)))
241 (lset-union
242 eq?
243 (lset-difference eq?
b0c8c187
AW
244 (lset-union eq?
245 (apply lset-union eq? (map step inits))
8a4ca0ea
AW
246 (step-tail body))
247 vars)
3a88cb3b 248 (if alternate (step-tail alternate) '())))
66d3e9a3 249
f4aa8d53 250 ((<let> vars vals body)
66d3e9a3
AW
251 (hashq-set! bound-vars proc
252 (append (reverse vars) (hashq-ref bound-vars proc)))
253 (lset-difference eq?
d97b69d9 254 (apply lset-union eq? (step-tail body) (map step vals))
66d3e9a3 255 vars))
cf10678f 256
f4aa8d53 257 ((<letrec> vars vals body)
66d3e9a3
AW
258 (hashq-set! bound-vars proc
259 (append (reverse vars) (hashq-ref bound-vars proc)))
260 (for-each (lambda (sym) (hashq-set! assigned sym #t)) vars)
261 (lset-difference eq?
d97b69d9 262 (apply lset-union eq? (step-tail body) (map step vals))
66d3e9a3
AW
263 vars))
264
c21c89b1 265 ((<fix> vars vals body)
d97b69d9 266 ;; Try to allocate these procedures as labels.
8a4ca0ea 267 (for-each (lambda (sym val) (hashq-set! labels sym val))
d97b69d9 268 vars vals)
c21c89b1
AW
269 (hashq-set! bound-vars proc
270 (append (reverse vars) (hashq-ref bound-vars proc)))
d97b69d9
AW
271 ;; Step into subexpressions.
272 (let* ((var-refs
273 (map
274 ;; Since we're trying to label-allocate the lambda,
275 ;; pretend it's not a closure, and just recurse into its
276 ;; body directly. (Otherwise, recursing on a closure
277 ;; that references one of the fix's bound vars would
278 ;; prevent label allocation.)
279 (lambda (x)
280 (record-case x
8a4ca0ea
AW
281 ((<lambda> body)
282 ;; just like the closure case, except here we use
283 ;; recur/labels instead of recur
284 (hashq-set! bound-vars x '())
285 (let ((free (recur/labels body x vars)))
286 (hashq-set! bound-vars x (reverse! (hashq-ref bound-vars x)))
287 (hashq-set! free-vars x free)
288 free))))
d97b69d9
AW
289 vals))
290 (vars-with-refs (map cons vars var-refs))
291 (body-refs (recur/labels body proc vars)))
292 (define (delabel-dependents! sym)
293 (let ((refs (assq-ref vars-with-refs sym)))
294 (if refs
295 (for-each (lambda (sym)
296 (if (hashq-ref labels sym)
297 (begin
298 (hashq-set! labels sym #f)
299 (delabel-dependents! sym))))
300 refs))))
301 ;; Stepping into the lambdas and the body might have made some
302 ;; procedures not label-allocatable -- which might have
303 ;; knock-on effects. For example:
304 ;; (fix ((a (lambda () (b)))
305 ;; (b (lambda () a)))
306 ;; (a))
307 ;; As far as `a' is concerned, both `a' and `b' are
308 ;; label-allocatable. But `b' references `a' not in a proc-tail
309 ;; position, which makes `a' not label-allocatable. The
310 ;; knock-on effect is that, when back-propagating this
311 ;; information to `a', `b' will also become not
312 ;; label-allocatable, as it is referenced within `a', which is
313 ;; allocated as a closure. This is a transitive relationship.
314 (for-each (lambda (sym)
315 (if (not (hashq-ref labels sym))
316 (delabel-dependents! sym)))
317 vars)
318 ;; Now lift bound variables with label-allocated lambdas to the
319 ;; parent procedure.
320 (for-each
321 (lambda (sym val)
322 (if (hashq-ref labels sym)
323 ;; Remove traces of the label-bound lambda. The free
324 ;; vars will propagate up via the return val.
325 (begin
326 (hashq-set! bound-vars proc
327 (append (hashq-ref bound-vars val)
328 (hashq-ref bound-vars proc)))
329 (hashq-remove! bound-vars val)
330 (hashq-remove! free-vars val))))
331 vars vals)
332 (lset-difference eq?
333 (apply lset-union eq? body-refs var-refs)
334 vars)))
c21c89b1 335
8a4ca0ea
AW
336 ((<let-values> exp body)
337 (lset-union eq? (step exp) (step body)))
66d3e9a3 338
8da6ab34 339 ((<dynwind> body winder unwinder)
282d128c
AW
340 (lset-union eq? (step body) (step winder) (step unwinder)))
341
d7c53a86
AW
342 ((<dynlet> fluids vals body)
343 (apply lset-union eq? (step body) (map step (append fluids vals))))
344
07a0c7d5
AW
345 ((<prompt> tag body handler)
346 (lset-union eq? (step tag) (step handler)))
282d128c 347
6e84cb95 348 ((<abort> tag args)
282d128c
AW
349 (apply lset-union eq? (step tag) (map step args)))
350
66d3e9a3
AW
351 (else '())))
352
9059993f
AW
353 ;; allocation: sym -> {lambda -> address}
354 ;; lambda -> (nlocs labels . free-locs)
355 (define allocation (make-hash-table))
356
66d3e9a3
AW
357 (define (allocate! x proc n)
358 (define (recur y) (allocate! y proc n))
359 (record-case x
360 ((<application> proc args)
361 (apply max (recur proc) (map recur args)))
cf10678f 362
b6d93b11
AW
363 ((<conditional> test consequent alternate)
364 (max (recur test) (recur consequent) (recur alternate)))
cf10678f 365
e5f5113c 366 ((<lexical-set> exp)
66d3e9a3
AW
367 (recur exp))
368
e5f5113c 369 ((<module-set> exp)
66d3e9a3
AW
370 (recur exp))
371
e5f5113c 372 ((<toplevel-set> exp)
66d3e9a3
AW
373 (recur exp))
374
e5f5113c 375 ((<toplevel-define> exp)
66d3e9a3
AW
376 (recur exp))
377
378 ((<sequence> exps)
379 (apply max (map recur exps)))
380
8a4ca0ea 381 ((<lambda> body)
66d3e9a3
AW
382 ;; allocate closure vars in order
383 (let lp ((c (hashq-ref free-vars x)) (n 0))
384 (if (pair? c)
385 (begin
386 (hashq-set! (hashq-ref allocation (car c))
387 x
388 `(#f ,(hashq-ref assigned (car c)) . ,n))
389 (lp (cdr c) (1+ n)))))
390
8a4ca0ea 391 (let ((nlocs (allocate! body x 0))
66d3e9a3
AW
392 (free-addresses
393 (map (lambda (v)
394 (hashq-ref (hashq-ref allocation v) proc))
9059993f
AW
395 (hashq-ref free-vars x)))
396 (labels (filter cdr
397 (map (lambda (sym)
398 (cons sym (hashq-ref labels sym)))
399 (hashq-ref bound-vars x)))))
66d3e9a3 400 ;; set procedure allocations
8a4ca0ea 401 (hashq-set! allocation x (cons labels free-addresses)))
66d3e9a3 402 n)
cf10678f 403
3a88cb3b 404 ((<lambda-case> opt kw inits vars body alternate)
8a4ca0ea
AW
405 (max
406 (let lp ((vars vars) (n n))
407 (if (null? vars)
b0c8c187
AW
408 (let ((nlocs (apply
409 max
b0c8c187
AW
410 (allocate! body proc n)
411 ;; inits not logically at the end, but they
412 ;; are the list...
9a9d82c2 413 (map (lambda (x) (allocate! x proc n)) inits))))
8a4ca0ea
AW
414 ;; label and nlocs for the case
415 (hashq-set! allocation x (cons (gensym ":LCASE") nlocs))
416 nlocs)
417 (begin
418 (hashq-set! allocation (car vars)
419 (make-hashq
420 proc `(#t ,(hashq-ref assigned (car vars)) . ,n)))
421 (lp (cdr vars) (1+ n)))))
3a88cb3b 422 (if alternate (allocate! alternate proc n) n)))
8a4ca0ea 423
66d3e9a3
AW
424 ((<let> vars vals body)
425 (let ((nmax (apply max (map recur vals))))
426 (cond
427 ;; the `or' hack
428 ((and (conditional? body)
429 (= (length vars) 1)
430 (let ((v (car vars)))
431 (and (not (hashq-ref assigned v))
432 (= (hashq-ref refcounts v 0) 2)
433 (lexical-ref? (conditional-test body))
434 (eq? (lexical-ref-gensym (conditional-test body)) v)
b6d93b11
AW
435 (lexical-ref? (conditional-consequent body))
436 (eq? (lexical-ref-gensym (conditional-consequent body)) v))))
66d3e9a3
AW
437 (hashq-set! allocation (car vars)
438 (make-hashq proc `(#t #f . ,n)))
439 ;; the 1+ for this var
b6d93b11 440 (max nmax (1+ n) (allocate! (conditional-alternate body) proc n)))
66d3e9a3
AW
441 (else
442 (let lp ((vars vars) (n n))
443 (if (null? vars)
444 (max nmax (allocate! body proc n))
445 (let ((v (car vars)))
cf10678f
AW
446 (hashq-set!
447 allocation v
66d3e9a3
AW
448 (make-hashq proc
449 `(#t ,(hashq-ref assigned v) . ,n)))
450 (lp (cdr vars) (1+ n)))))))))
451
452 ((<letrec> vars vals body)
453 (let lp ((vars vars) (n n))
454 (if (null? vars)
455 (let ((nmax (apply max
456 (map (lambda (x)
457 (allocate! x proc n))
458 vals))))
459 (max nmax (allocate! body proc n)))
460 (let ((v (car vars)))
461 (hashq-set!
462 allocation v
463 (make-hashq proc
464 `(#t ,(hashq-ref assigned v) . ,n)))
465 (lp (cdr vars) (1+ n))))))
cf10678f 466
c21c89b1 467 ((<fix> vars vals body)
d97b69d9
AW
468 (let lp ((in vars) (n n))
469 (if (null? in)
470 (let lp ((vars vars) (vals vals) (nmax n))
471 (cond
472 ((null? vars)
473 (max nmax (allocate! body proc n)))
474 ((hashq-ref labels (car vars))
8a4ca0ea 475 ;; allocate lambda body inline to proc
d97b69d9
AW
476 (lp (cdr vars)
477 (cdr vals)
478 (record-case (car vals)
8a4ca0ea
AW
479 ((<lambda> body)
480 (max nmax (allocate! body proc n))))))
d97b69d9
AW
481 (else
482 ;; allocate closure
483 (lp (cdr vars)
484 (cdr vals)
485 (max nmax (allocate! (car vals) proc n))))))
486
487 (let ((v (car in)))
488 (cond
489 ((hashq-ref assigned v)
490 (error "fixpoint procedures may not be assigned" x))
491 ((hashq-ref labels v)
492 ;; no binding, it's a label
493 (lp (cdr in) n))
494 (else
495 ;; allocate closure binding
496 (hashq-set! allocation v (make-hashq proc `(#t #f . ,n)))
497 (lp (cdr in) (1+ n))))))))
c21c89b1 498
8a4ca0ea
AW
499 ((<let-values> exp body)
500 (max (recur exp) (recur body)))
66d3e9a3 501
8da6ab34 502 ((<dynwind> body winder unwinder)
282d128c
AW
503 (max (recur body) (recur winder) (recur unwinder)))
504
d7c53a86
AW
505 ((<dynlet> fluids vals body)
506 (apply max (recur body) (map recur (append fluids vals))))
507
07a0c7d5 508 ((<prompt> tag body handler)
282d128c
AW
509 (let ((cont-var (and (lambda-case? handler)
510 (pair? (lambda-case-vars handler))
511 (car (lambda-case-vars handler)))))
512 (hashq-set! allocation x
513 (and cont-var (zero? (hashq-ref refcounts cont-var 0))))
07a0c7d5 514 (max (recur tag) (recur body) (recur handler))))
282d128c 515
6e84cb95 516 ((<abort> tag args)
282d128c
AW
517 (apply max (recur tag) (map recur args)))
518
66d3e9a3 519 (else n)))
cf10678f 520
d97b69d9 521 (analyze! x #f '() #t #f)
66d3e9a3 522 (allocate! x #f 0)
cf10678f
AW
523
524 allocation)
4b856371
LC
525
526\f
48b1db75
LC
527;;;
528;;; Tree analyses for warnings.
529;;;
530
531(define-record-type <tree-analysis>
532 (make-tree-analysis leaf down up post init)
533 tree-analysis?
795ab688
LC
534 (leaf tree-analysis-leaf) ;; (lambda (x result env locs) ...)
535 (down tree-analysis-down) ;; (lambda (x result env locs) ...)
536 (up tree-analysis-up) ;; (lambda (x result env locs) ...)
48b1db75
LC
537 (post tree-analysis-post) ;; (lambda (result env) ...)
538 (init tree-analysis-init)) ;; arbitrary value
539
540(define (analyze-tree analyses tree env)
541 "Run all tree analyses listed in ANALYSES on TREE for ENV, using
795ab688
LC
542`tree-il-fold'. Return TREE. The leaf/down/up procedures of each analysis are
543passed a ``location stack', which is the stack of `tree-il-src' values for each
544parent tree (a list); it can be used to approximate source location when
545accurate information is missing from a given `tree-il' element."
546
547 (define (traverse proc update-locs)
548 ;; Return a tree traversing procedure that returns a list of analysis
549 ;; results prepended by the location stack.
48b1db75 550 (lambda (x results)
795ab688
LC
551 (let ((locs (update-locs x (car results))))
552 (cons locs ;; the location stack
553 (map (lambda (analysis result)
554 ((proc analysis) x result env locs))
555 analyses
556 (cdr results))))))
557
558 ;; Keeping/extending/shrinking the location stack.
559 (define (keep-locs x locs) locs)
560 (define (extend-locs x locs) (cons (tree-il-src x) locs))
561 (define (shrink-locs x locs) (cdr locs))
48b1db75
LC
562
563 (let ((results
795ab688
LC
564 (tree-il-fold (traverse tree-analysis-leaf keep-locs)
565 (traverse tree-analysis-down extend-locs)
566 (traverse tree-analysis-up shrink-locs)
567 (cons '() ;; empty location stack
568 (map tree-analysis-init analyses))
48b1db75
LC
569 tree)))
570
571 (for-each (lambda (analysis result)
572 ((tree-analysis-post analysis) result env))
573 analyses
795ab688 574 (cdr results)))
48b1db75
LC
575
576 tree)
577
578\f
4b856371
LC
579;;;
580;;; Unused variable analysis.
581;;;
582
583;; <binding-info> records are used during tree traversals in
795ab688
LC
584;; `unused-variable-analysis'. They contain a list of the local vars
585;; currently in scope, and a list of locals vars that have been referenced.
4b856371 586(define-record-type <binding-info>
795ab688 587 (make-binding-info vars refs)
4b856371
LC
588 binding-info?
589 (vars binding-info-vars) ;; ((GENSYM NAME LOCATION) ...)
795ab688 590 (refs binding-info-refs)) ;; (GENSYM ...)
4b856371 591
48b1db75 592(define unused-variable-analysis
ae03cf1f 593 ;; Report unused variables in the given tree.
48b1db75 594 (make-tree-analysis
795ab688 595 (lambda (x info env locs)
48b1db75
LC
596 ;; X is a leaf: extend INFO's refs accordingly.
597 (let ((refs (binding-info-refs info))
795ab688 598 (vars (binding-info-vars info)))
48b1db75
LC
599 (record-case x
600 ((<lexical-ref> gensym)
a670e672 601 (make-binding-info vars (vhash-consq gensym #t refs)))
48b1db75
LC
602 (else info))))
603
795ab688 604 (lambda (x info env locs)
48b1db75
LC
605 ;; Going down into X: extend INFO's variable list
606 ;; accordingly.
607 (let ((refs (binding-info-refs info))
608 (vars (binding-info-vars info))
48b1db75
LC
609 (src (tree-il-src x)))
610 (define (extend inner-vars inner-names)
a670e672
LC
611 (fold (lambda (var name vars)
612 (vhash-consq var (list name src) vars))
613 vars
614 inner-vars
615 inner-names))
616
48b1db75
LC
617 (record-case x
618 ((<lexical-set> gensym)
a670e672 619 (make-binding-info vars (vhash-consq gensym #t refs)))
48b1db75 620 ((<lambda-case> req opt inits rest kw vars)
48b1db75 621 (let ((names `(,@req
632e7c32 622 ,@(or opt '())
48b1db75
LC
623 ,@(if rest (list rest) '())
624 ,@(if kw (map cadr (cdr kw)) '()))))
795ab688 625 (make-binding-info (extend vars names) refs)))
48b1db75 626 ((<let> vars names)
795ab688 627 (make-binding-info (extend vars names) refs))
48b1db75 628 ((<letrec> vars names)
795ab688 629 (make-binding-info (extend vars names) refs))
48b1db75 630 ((<fix> vars names)
795ab688 631 (make-binding-info (extend vars names) refs))
48b1db75
LC
632 (else info))))
633
795ab688 634 (lambda (x info env locs)
48b1db75
LC
635 ;; Leaving X's scope: shrink INFO's variable list
636 ;; accordingly and reported unused nested variables.
637 (let ((refs (binding-info-refs info))
795ab688 638 (vars (binding-info-vars info)))
48b1db75 639 (define (shrink inner-vars refs)
a670e672
LC
640 (vlist-for-each
641 (lambda (var)
642 (let ((gensym (car var)))
643 ;; Don't report lambda parameters as unused.
644 (if (and (memq gensym inner-vars)
645 (not (vhash-assq gensym refs))
646 (not (lambda-case? x)))
647 (let ((name (cadr var))
648 ;; We can get approximate source location by going up
649 ;; the LOCS location stack.
650 (loc (or (caddr var)
651 (find pair? locs))))
652 (warning 'unused-variable loc name)))))
653 vars)
654 (vlist-drop vars (length inner-vars)))
48b1db75
LC
655
656 ;; For simplicity, we leave REFS untouched, i.e., with
657 ;; names of variables that are now going out of scope.
658 ;; It doesn't hurt as these are unique names, it just
659 ;; makes REFS unnecessarily fat.
660 (record-case x
661 ((<lambda-case> vars)
795ab688 662 (make-binding-info (shrink vars refs) refs))
48b1db75 663 ((<let> vars)
795ab688 664 (make-binding-info (shrink vars refs) refs))
48b1db75 665 ((<letrec> vars)
795ab688 666 (make-binding-info (shrink vars refs) refs))
48b1db75 667 ((<fix> vars)
795ab688 668 (make-binding-info (shrink vars refs) refs))
48b1db75
LC
669 (else info))))
670
671 (lambda (result env) #t)
a670e672 672 (make-binding-info vlist-null vlist-null)))
f67ddf9d
LC
673
674\f
bcae9a98
LC
675;;;
676;;; Unused top-level variable analysis.
677;;;
678
628ddb80 679;; <reference-graph> record top-level definitions that are made, references to
bcae9a98
LC
680;; top-level definitions and their context (the top-level definition in which
681;; the reference appears), as well as the current context (the top-level
682;; definition we're currently in). The second part (`refs' below) is
628ddb80
LC
683;; effectively a graph from which we can determine unused top-level definitions.
684(define-record-type <reference-graph>
685 (make-reference-graph refs defs toplevel-context)
686 reference-graph?
687 (defs reference-graph-defs) ;; ((NAME . LOC) ...)
688 (refs reference-graph-refs) ;; ((REF-CONTEXT REF ...) ...)
689 (toplevel-context reference-graph-toplevel-context)) ;; NAME | #f
690
5cbf2e1d
LC
691(define (graph-reachable-nodes root refs reachable)
692 ;; Add to REACHABLE the nodes reachable from ROOT in graph REFS. REFS is a
693 ;; vhash mapping nodes to the list of their children: for instance,
694 ;; ((A -> (B C)) (B -> (A)) (C -> ())) corresponds to
bcae9a98
LC
695 ;;
696 ;; ,-------.
697 ;; v |
698 ;; A ----> B
699 ;; |
700 ;; v
701 ;; C
5cbf2e1d
LC
702 ;;
703 ;; REACHABLE is a vhash of nodes known to be otherwise reachable.
bcae9a98
LC
704
705 (let loop ((root root)
5cbf2e1d
LC
706 (path vlist-null)
707 (result reachable))
708 (if (or (vhash-assq root path)
709 (vhash-assq root result))
bcae9a98 710 result
5cbf2e1d
LC
711 (let* ((children (or (and=> (vhash-assq root refs) cdr) '()))
712 (path (vhash-consq root #t path))
713 (result (fold (lambda (kid result)
714 (loop kid path result))
715 result
716 children)))
717 (fold (lambda (kid result)
718 (vhash-consq kid #t result))
719 result
720 children)))))
bcae9a98 721
628ddb80 722(define (graph-reachable-nodes* roots refs)
bcae9a98 723 ;; Return the list of nodes in REFS reachable from the nodes listed in ROOTS.
5cbf2e1d
LC
724 (vlist-fold (lambda (root+true result)
725 (let* ((root (car root+true))
726 (reachable (graph-reachable-nodes root refs result)))
727 (vhash-consq root #t reachable)))
728 vlist-null
729 roots))
730
731(define (partition* pred vhash)
732 ;; Partition VHASH according to PRED. Return the two resulting vhashes.
733 (let ((result
734 (vlist-fold (lambda (k+v result)
735 (let ((k (car k+v))
736 (v (cdr k+v))
737 (r1 (car result))
738 (r2 (cdr result)))
739 (if (pred k)
740 (cons (vhash-consq k v r1) r2)
741 (cons r1 (vhash-consq k v r2)))))
742 (cons vlist-null vlist-null)
743 vhash)))
744 (values (car result) (cdr result))))
bcae9a98
LC
745
746(define unused-toplevel-analysis
747 ;; Report unused top-level definitions that are not exported.
748 (let ((add-ref-from-context
628ddb80
LC
749 (lambda (graph name)
750 ;; Add an edge CTX -> NAME in GRAPH.
751 (let* ((refs (reference-graph-refs graph))
752 (defs (reference-graph-defs graph))
753 (ctx (reference-graph-toplevel-context graph))
5cbf2e1d
LC
754 (ctx-refs (or (and=> (vhash-assq ctx refs) cdr) '())))
755 (make-reference-graph (vhash-consq ctx (cons name ctx-refs) refs)
628ddb80 756 defs ctx)))))
bcae9a98
LC
757 (define (macro-variable? name env)
758 (and (module? env)
759 (let ((var (module-variable env name)))
760 (and var (variable-bound? var)
761 (macro? (variable-ref var))))))
762
763 (make-tree-analysis
628ddb80 764 (lambda (x graph env locs)
bcae9a98 765 ;; X is a leaf.
628ddb80 766 (let ((ctx (reference-graph-toplevel-context graph)))
bcae9a98
LC
767 (record-case x
768 ((<toplevel-ref> name src)
628ddb80
LC
769 (add-ref-from-context graph name))
770 (else graph))))
bcae9a98 771
628ddb80 772 (lambda (x graph env locs)
bcae9a98 773 ;; Going down into X.
628ddb80
LC
774 (let ((ctx (reference-graph-toplevel-context graph))
775 (refs (reference-graph-refs graph))
776 (defs (reference-graph-defs graph)))
bcae9a98
LC
777 (record-case x
778 ((<toplevel-define> name src)
779 (let ((refs refs)
5cbf2e1d
LC
780 (defs (vhash-consq name (or src (find pair? locs))
781 defs)))
628ddb80 782 (make-reference-graph refs defs name)))
bcae9a98 783 ((<toplevel-set> name src)
628ddb80
LC
784 (add-ref-from-context graph name))
785 (else graph))))
bcae9a98 786
628ddb80 787 (lambda (x graph env locs)
bcae9a98
LC
788 ;; Leaving X's scope.
789 (record-case x
790 ((<toplevel-define>)
628ddb80
LC
791 (let ((refs (reference-graph-refs graph))
792 (defs (reference-graph-defs graph)))
793 (make-reference-graph refs defs #f)))
794 (else graph)))
bcae9a98 795
628ddb80
LC
796 (lambda (graph env)
797 ;; Process the resulting reference graph: determine all private definitions
bcae9a98
LC
798 ;; not reachable from any public definition. Macros
799 ;; (syntax-transformers), which are globally bound, never considered
800 ;; unused since we can't tell whether a macro is actually used; in
628ddb80 801 ;; addition, macros are considered roots of the graph since they may use
bcae9a98
LC
802 ;; private bindings. FIXME: The `make-syntax-transformer' calls don't
803 ;; contain any literal `toplevel-ref' of the global bindings they use so
804 ;; this strategy fails.
805 (define (exported? name)
806 (if (module? env)
807 (module-variable (module-public-interface env) name)
808 #t))
809
810 (let-values (((public-defs private-defs)
5cbf2e1d
LC
811 (partition* (lambda (name)
812 (or (exported? name)
813 (macro-variable? name env)))
814 (reference-graph-defs graph))))
815 (let* ((roots (vhash-consq #f #t public-defs))
628ddb80
LC
816 (refs (reference-graph-refs graph))
817 (reachable (graph-reachable-nodes* roots refs))
5cbf2e1d
LC
818 (unused (vlist-filter (lambda (name+src)
819 (not (vhash-assq (car name+src)
820 reachable)))
821 private-defs)))
822 (vlist-for-each (lambda (name+loc)
823 (let ((name (car name+loc))
824 (loc (cdr name+loc)))
825 (warning 'unused-toplevel loc name)))
826 unused))))
827
828 (make-reference-graph vlist-null vlist-null #f))))
bcae9a98
LC
829
830\f
f67ddf9d
LC
831;;;
832;;; Unbound variable analysis.
833;;;
834
835;; <toplevel-info> records are used during tree traversal in search of
836;; possibly unbound variable. They contain a list of references to
795ab688
LC
837;; potentially unbound top-level variables, and a list of the top-level
838;; defines that have been encountered.
f67ddf9d 839(define-record-type <toplevel-info>
795ab688 840 (make-toplevel-info refs defs)
f67ddf9d
LC
841 toplevel-info?
842 (refs toplevel-info-refs) ;; ((VARIABLE-NAME . LOCATION) ...)
795ab688 843 (defs toplevel-info-defs)) ;; (VARIABLE-NAME ...)
f67ddf9d 844
6bb891dc 845(define (goops-toplevel-definition proc args env)
b6d2306d
LC
846 ;; If application of PROC to ARGS is a GOOPS top-level definition, return
847 ;; the name of the variable being defined; otherwise return #f. This
848 ;; assumes knowledge of the current implementation of `define-class' et al.
6bb891dc
LC
849 (define (toplevel-define-arg args)
850 (and (pair? args) (pair? (cdr args)) (null? (cddr args))
851 (record-case (car args)
852 ((<const> exp)
853 (and (symbol? exp) exp))
854 (else #f))))
855
b6d2306d
LC
856 (record-case proc
857 ((<module-ref> mod public? name)
858 (and (equal? mod '(oop goops))
859 (not public?)
860 (eq? name 'toplevel-define!)
6bb891dc
LC
861 (toplevel-define-arg args)))
862 ((<toplevel-ref> name)
863 ;; This may be the result of expanding one of the GOOPS macros within
864 ;; `oop/goops.scm'.
865 (and (eq? name 'toplevel-define!)
866 (eq? env (resolve-module '(oop goops)))
867 (toplevel-define-arg args)))
b6d2306d
LC
868 (else #f)))
869
48b1db75 870(define unbound-variable-analysis
ae03cf1f 871 ;; Report possibly unbound variables in the given tree.
48b1db75 872 (make-tree-analysis
795ab688 873 (lambda (x info env locs)
48b1db75
LC
874 ;; X is a leaf: extend INFO's refs accordingly.
875 (let ((refs (toplevel-info-refs info))
795ab688 876 (defs (toplevel-info-defs info)))
48b1db75
LC
877 (define (bound? name)
878 (or (and (module? env)
879 (module-variable env name))
04ea6fb5 880 (vhash-assq name defs)))
48b1db75
LC
881
882 (record-case x
883 ((<toplevel-ref> name src)
884 (if (bound? name)
885 info
886 (let ((src (or src (find pair? locs))))
04ea6fb5 887 (make-toplevel-info (vhash-consq name src refs)
795ab688 888 defs))))
48b1db75
LC
889 (else info))))
890
795ab688 891 (lambda (x info env locs)
48b1db75
LC
892 ;; Going down into X.
893 (let* ((refs (toplevel-info-refs info))
894 (defs (toplevel-info-defs info))
795ab688 895 (src (tree-il-src x)))
48b1db75
LC
896 (define (bound? name)
897 (or (and (module? env)
898 (module-variable env name))
04ea6fb5 899 (vhash-assq name defs)))
48b1db75
LC
900
901 (record-case x
902 ((<toplevel-set> name src)
903 (if (bound? name)
795ab688 904 (make-toplevel-info refs defs)
48b1db75 905 (let ((src (find pair? locs)))
04ea6fb5 906 (make-toplevel-info (vhash-consq name src refs)
795ab688 907 defs))))
48b1db75 908 ((<toplevel-define> name)
04ea6fb5
LC
909 (make-toplevel-info (vhash-delete name refs eq?)
910 (vhash-consq name #t defs)))
48b1db75
LC
911
912 ((<application> proc args)
913 ;; Check for a dynamic top-level definition, as is
914 ;; done by code expanded from GOOPS macros.
915 (let ((name (goops-toplevel-definition proc args
916 env)))
917 (if (symbol? name)
04ea6fb5 918 (make-toplevel-info (vhash-delete name refs
48b1db75 919 eq?)
04ea6fb5 920 (vhash-consq name #t defs))
795ab688 921 (make-toplevel-info refs defs))))
48b1db75 922 (else
795ab688 923 (make-toplevel-info refs defs)))))
48b1db75 924
795ab688 925 (lambda (x info env locs)
48b1db75 926 ;; Leaving X's scope.
bcae9a98 927 info)
48b1db75
LC
928
929 (lambda (toplevel env)
930 ;; Post-process the result.
04ea6fb5
LC
931 (vlist-for-each (lambda (name+loc)
932 (let ((name (car name+loc))
933 (loc (cdr name+loc)))
934 (warning 'unbound-variable loc name)))
935 (vlist-reverse (toplevel-info-refs toplevel))))
48b1db75 936
04ea6fb5 937 (make-toplevel-info vlist-null vlist-null)))
ae03cf1f
LC
938
939\f
940;;;
941;;; Arity analysis.
942;;;
943
af5ed549 944;; <arity-info> records contain information about lexical definitions of
ae03cf1f
LC
945;; procedures currently in scope, top-level procedure definitions that have
946;; been encountered, and calls to top-level procedures that have been
947;; encountered.
948(define-record-type <arity-info>
949 (make-arity-info toplevel-calls lexical-lambdas toplevel-lambdas)
950 arity-info?
951 (toplevel-calls toplevel-procedure-calls) ;; ((NAME . APPLICATION) ...)
952 (lexical-lambdas lexical-lambdas) ;; ((GENSYM . DEFINITION) ...)
953 (toplevel-lambdas toplevel-lambdas)) ;; ((NAME . DEFINITION) ...)
954
955(define (validate-arity proc application lexical?)
956 ;; Validate the argument count of APPLICATION, a tree-il application of
957 ;; PROC, emitting a warning in case of argument count mismatch.
958
af5ed549
LC
959 (define (filter-keyword-args keywords allow-other-keys? args)
960 ;; Filter keyword arguments from ARGS and return the resulting list.
961 ;; KEYWORDS is the list of allowed keywords, and ALLOW-OTHER-KEYS?
962 ;; specified whethere keywords not listed in KEYWORDS are allowed.
963 (let loop ((args args)
964 (result '()))
965 (if (null? args)
966 (reverse result)
967 (let ((arg (car args)))
968 (if (and (const? arg)
969 (or (memq (const-exp arg) keywords)
970 (and allow-other-keys?
971 (keyword? (const-exp arg)))))
972 (loop (if (pair? (cdr args))
973 (cddr args)
974 '())
975 result)
976 (loop (cdr args)
977 (cons arg result)))))))
978
99480e11
LC
979 (define (arities proc)
980 ;; Return the arities of PROC, which can be either a tree-il or a
ae03cf1f
LC
981 ;; procedure.
982 (define (len x)
983 (or (and (or (null? x) (pair? x))
984 (length x))
985 0))
af5ed549 986 (cond ((program? proc)
99480e11
LC
987 (values (program-name proc)
988 (map (lambda (a)
989 (list (arity:nreq a) (arity:nopt a) (arity:rest? a)
990 (map car (arity:kw a))
991 (arity:allow-other-keys? a)))
992 (program-arities proc))))
ae03cf1f
LC
993 ((procedure? proc)
994 (let ((arity (procedure-property proc 'arity)))
995 (values (procedure-name proc)
99480e11
LC
996 (list (list (car arity) (cadr arity) (caddr arity)
997 #f #f)))))
ae03cf1f 998 (else
99480e11
LC
999 (let loop ((name #f)
1000 (proc proc)
1001 (arities '()))
1002 (if (not proc)
1003 (values name (reverse arities))
1004 (record-case proc
3a88cb3b
AW
1005 ((<lambda-case> req opt rest kw alternate)
1006 (loop name alternate
99480e11
LC
1007 (cons (list (len req) (len opt) rest
1008 (and (pair? kw) (map car (cdr kw)))
1009 (and (pair? kw) (car kw)))
1010 arities)))
1011 ((<lambda> meta body)
1012 (loop (assoc-ref meta 'name) body arities))
1013 (else
1014 (values #f #f))))))))
ae03cf1f
LC
1015
1016 (let ((args (application-args application))
1017 (src (tree-il-src application)))
99480e11
LC
1018 (call-with-values (lambda () (arities proc))
1019 (lambda (name arities)
1020 (define matches?
1021 (find (lambda (arity)
1022 (pmatch arity
1023 ((,req ,opt ,rest? ,kw ,aok?)
1024 (let ((args (if (pair? kw)
1025 (filter-keyword-args kw aok? args)
1026 args)))
1027 (if (and req opt)
1028 (let ((count (length args)))
1029 (and (>= count req)
1030 (or rest?
1031 (<= count (+ req opt)))))
1032 #t)))
1033 (else #t)))
1034 arities))
1035
1036 (if (not matches?)
1037 (warning 'arity-mismatch src
1038 (or name (with-output-to-string (lambda () (write proc))))
1039 lexical?)))))
ae03cf1f
LC
1040 #t)
1041
1042(define arity-analysis
1043 ;; Report arity mismatches in the given tree.
1044 (make-tree-analysis
795ab688 1045 (lambda (x info env locs)
ae03cf1f
LC
1046 ;; X is a leaf.
1047 info)
795ab688 1048 (lambda (x info env locs)
ae03cf1f
LC
1049 ;; Down into X.
1050 (define (extend lexical-name val info)
1051 ;; If VAL is a lambda, add NAME to the lexical-lambdas of INFO.
1052 (let ((toplevel-calls (toplevel-procedure-calls info))
1053 (lexical-lambdas (lexical-lambdas info))
1054 (toplevel-lambdas (toplevel-lambdas info)))
1055 (record-case val
1056 ((<lambda> body)
1057 (make-arity-info toplevel-calls
df685ee4
LC
1058 (vhash-consq lexical-name val
1059 lexical-lambdas)
ae03cf1f
LC
1060 toplevel-lambdas))
1061 ((<lexical-ref> gensym)
1062 ;; lexical alias
df685ee4 1063 (let ((val* (vhash-assq gensym lexical-lambdas)))
ae03cf1f
LC
1064 (if (pair? val*)
1065 (extend lexical-name (cdr val*) info)
1066 info)))
1067 ((<toplevel-ref> name)
1068 ;; top-level alias
1069 (make-arity-info toplevel-calls
df685ee4
LC
1070 (vhash-consq lexical-name val
1071 lexical-lambdas)
ae03cf1f
LC
1072 toplevel-lambdas))
1073 (else info))))
1074
1075 (let ((toplevel-calls (toplevel-procedure-calls info))
1076 (lexical-lambdas (lexical-lambdas info))
1077 (toplevel-lambdas (toplevel-lambdas info)))
1078
1079 (record-case x
1080 ((<toplevel-define> name exp)
1081 (record-case exp
1082 ((<lambda> body)
1083 (make-arity-info toplevel-calls
1084 lexical-lambdas
df685ee4 1085 (vhash-consq name exp toplevel-lambdas)))
ae03cf1f
LC
1086 ((<toplevel-ref> name)
1087 ;; alias for another toplevel
df685ee4 1088 (let ((proc (vhash-assq name toplevel-lambdas)))
ae03cf1f
LC
1089 (make-arity-info toplevel-calls
1090 lexical-lambdas
df685ee4
LC
1091 (vhash-consq (toplevel-define-name x)
1092 (if (pair? proc)
1093 (cdr proc)
1094 exp)
1095 toplevel-lambdas))))
ae03cf1f
LC
1096 (else info)))
1097 ((<let> vars vals)
1098 (fold extend info vars vals))
1099 ((<letrec> vars vals)
1100 (fold extend info vars vals))
1101 ((<fix> vars vals)
1102 (fold extend info vars vals))
1103
1104 ((<application> proc args src)
1105 (record-case proc
1106 ((<lambda> body)
1107 (validate-arity proc x #t)
1108 info)
1109 ((<toplevel-ref> name)
df685ee4 1110 (make-arity-info (vhash-consq name x toplevel-calls)
ae03cf1f
LC
1111 lexical-lambdas
1112 toplevel-lambdas))
1113 ((<lexical-ref> gensym)
df685ee4 1114 (let ((proc (vhash-assq gensym lexical-lambdas)))
ae03cf1f
LC
1115 (if (pair? proc)
1116 (record-case (cdr proc)
1117 ((<toplevel-ref> name)
1118 ;; alias to toplevel
df685ee4 1119 (make-arity-info (vhash-consq name x toplevel-calls)
ae03cf1f
LC
1120 lexical-lambdas
1121 toplevel-lambdas))
1122 (else
1123 (validate-arity (cdr proc) x #t)
1124 info))
1125
1126 ;; If GENSYM wasn't found, it may be because it's an
1127 ;; argument of the procedure being compiled.
1128 info)))
1129 (else info)))
1130 (else info))))
1131
795ab688 1132 (lambda (x info env locs)
ae03cf1f
LC
1133 ;; Up from X.
1134 (define (shrink name val info)
1135 ;; Remove NAME from the lexical-lambdas of INFO.
1136 (let ((toplevel-calls (toplevel-procedure-calls info))
1137 (lexical-lambdas (lexical-lambdas info))
1138 (toplevel-lambdas (toplevel-lambdas info)))
1139 (make-arity-info toplevel-calls
df685ee4
LC
1140 (if (vhash-assq name lexical-lambdas)
1141 (vlist-tail lexical-lambdas)
1142 lexical-lambdas)
ae03cf1f
LC
1143 toplevel-lambdas)))
1144
1145 (let ((toplevel-calls (toplevel-procedure-calls info))
1146 (lexical-lambdas (lexical-lambdas info))
1147 (toplevel-lambdas (toplevel-lambdas info)))
1148 (record-case x
1149 ((<let> vars vals)
1150 (fold shrink info vars vals))
1151 ((<letrec> vars vals)
1152 (fold shrink info vars vals))
1153 ((<fix> vars vals)
1154 (fold shrink info vars vals))
1155
1156 (else info))))
1157
1158 (lambda (result env)
1159 ;; Post-processing: check all top-level procedure calls that have been
1160 ;; encountered.
1161 (let ((toplevel-calls (toplevel-procedure-calls result))
1162 (toplevel-lambdas (toplevel-lambdas result)))
df685ee4
LC
1163 (vlist-for-each
1164 (lambda (name+application)
1165 (let* ((name (car name+application))
1166 (application (cdr name+application))
1167 (proc
1168 (or (and=> (vhash-assq name toplevel-lambdas) cdr)
1169 (and (module? env)
1170 (false-if-exception
1171 (module-ref env name)))))
1172 (proc*
1173 ;; handle toplevel aliases
1174 (if (toplevel-ref? proc)
1175 (let ((name (toplevel-ref-name proc)))
1176 (and (module? env)
1177 (false-if-exception
1178 (module-ref env name))))
1179 proc)))
1180 (if (or (lambda? proc*) (procedure? proc*))
1181 (validate-arity proc* application (lambda? proc*)))))
1182 toplevel-calls)))
1183
1184 (make-arity-info vlist-null vlist-null vlist-null)))