Merge branch 'stable-2.0'
[bpt/guile.git] / test-suite / tests / peval.test
CommitLineData
de1eb420
AW
1;;;; tree-il.test --- test suite for compiling tree-il -*- scheme -*-
2;;;; Andy Wingo <wingo@pobox.com> --- May 2009
3;;;;
30c3dac7 4;;;; Copyright (C) 2009, 2010, 2011, 2012, 2013 Free Software Foundation, Inc.
de1eb420
AW
5;;;;
6;;;; This library is free software; you can redistribute it and/or
7;;;; modify it under the terms of the GNU Lesser General Public
8;;;; License as published by the Free Software Foundation; either
9;;;; version 3 of the License, or (at your option) any later version.
10;;;;
11;;;; This library is distributed in the hope that it will be useful,
12;;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
13;;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14;;;; Lesser General Public License for more details.
15;;;;
16;;;; You should have received a copy of the GNU Lesser General Public
17;;;; License along with this library; if not, write to the Free Software
18;;;; Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19
20(define-module (test-suite tree-il)
21 #:use-module (test-suite lib)
22 #:use-module (system base compile)
23 #:use-module (system base pmatch)
24 #:use-module (system base message)
25 #:use-module (language tree-il)
26 #:use-module (language tree-il primitives)
8598dd8d 27 #:use-module (rnrs bytevectors) ;; for the bytevector primitives
de1eb420
AW
28 #:use-module (srfi srfi-13))
29
30(define peval
31 ;; The partial evaluator.
32 (@@ (language tree-il optimize) peval))
33
34(define-syntax pass-if-peval
2aed2667 35 (syntax-rules ()
de1eb420 36 ((_ in pat)
de1eb420 37 (pass-if-peval in pat
25450a0d 38 (expand-primitives
403d78f9 39 (resolve-primitives
de1eb420
AW
40 (compile 'in #:from 'scheme #:to 'tree-il)
41 (current-module)))))
42 ((_ in pat code)
43 (pass-if 'in
44 (let ((evaled (unparse-tree-il (peval code))))
45 (pmatch evaled
46 (pat #t)
47 (_ (pk 'peval-mismatch)
48 ((@ (ice-9 pretty-print) pretty-print)
49 'in)
50 (newline)
51 ((@ (ice-9 pretty-print) pretty-print)
52 evaled)
53 (newline)
54 ((@ (ice-9 pretty-print) pretty-print)
55 'pat)
56 (newline)
57 #f)))))))
58
59\f
60(with-test-prefix "partial evaluation"
61
62 (pass-if-peval
63 ;; First order, primitive.
64 (let ((x 1) (y 2)) (+ x y))
65 (const 3))
66
67 (pass-if-peval
68 ;; First order, thunk.
69 (let ((x 1) (y 2))
70 (let ((f (lambda () (+ x y))))
71 (f)))
72 (const 3))
73
c46e0a8a 74 (pass-if-peval
de1eb420
AW
75 ;; First order, let-values (requires primitive expansion for
76 ;; `call-with-values'.)
77 (let ((x 0))
78 (call-with-values
79 (lambda () (if (zero? x) (values 1 2) (values 3 4)))
80 (lambda (a b)
81 (+ a b))))
82 (const 3))
83
c46e0a8a 84 (pass-if-peval
de1eb420
AW
85 ;; First order, multiple values.
86 (let ((x 1) (y 2))
87 (values x y))
c46e0a8a 88 (primcall values (const 1) (const 2)))
de1eb420 89
c46e0a8a 90 (pass-if-peval
de1eb420
AW
91 ;; First order, multiple values truncated.
92 (let ((x (values 1 'a)) (y 2))
93 (values x y))
c46e0a8a 94 (primcall values (const 1) (const 2)))
de1eb420 95
c46e0a8a 96 (pass-if-peval
de1eb420
AW
97 ;; First order, multiple values truncated.
98 (or (values 1 2) 3)
99 (const 1))
100
101 (pass-if-peval
102 ;; First order, coalesced, mutability preserved.
103 (cons 0 (cons 1 (cons 2 (list 3 4 5))))
c46e0a8a
AW
104 (primcall list
105 (const 0) (const 1) (const 2) (const 3) (const 4) (const 5)))
de1eb420
AW
106
107 (pass-if-peval
108 ;; First order, coalesced, immutability preserved.
109 (cons 0 (cons 1 (cons 2 '(3 4 5))))
c46e0a8a
AW
110 (primcall cons (const 0)
111 (primcall cons (const 1)
112 (primcall cons (const 2)
113 (const (3 4 5))))))
de1eb420
AW
114
115 ;; These two tests doesn't work any more because we changed the way we
116 ;; deal with constants -- now the algorithm will see a construction as
117 ;; being bound to the lexical, so it won't propagate it. It can't
118 ;; even propagate it in the case that it is only referenced once,
119 ;; because:
120 ;;
121 ;; (let ((x (cons 1 2))) (lambda () x))
122 ;;
123 ;; is not the same as
124 ;;
125 ;; (lambda () (cons 1 2))
126 ;;
127 ;; Perhaps if we determined that not only was it only referenced once,
128 ;; it was not closed over by a lambda, then we could propagate it, and
129 ;; re-enable these two tests.
130 ;;
131 #;
132 (pass-if-peval
133 ;; First order, mutability preserved.
134 (let loop ((i 3) (r '()))
135 (if (zero? i)
136 r
137 (loop (1- i) (cons (cons i i) r))))
c46e0a8a
AW
138 (primcall list
139 (primcall cons (const 1) (const 1))
140 (primcall cons (const 2) (const 2))
141 (primcall cons (const 3) (const 3))))
de1eb420
AW
142 ;;
143 ;; See above.
144 #;
145 (pass-if-peval
146 ;; First order, evaluated.
147 (let loop ((i 7)
148 (r '()))
149 (if (<= i 0)
150 (car r)
151 (loop (1- i) (cons i r))))
152 (const 1))
153
154 ;; Instead here are tests for what happens for the above cases: they
155 ;; unroll but they don't fold.
156 (pass-if-peval
157 (let loop ((i 3) (r '()))
158 (if (zero? i)
159 r
160 (loop (1- i) (cons (cons i i) r))))
161 (let (r) (_)
c46e0a8a
AW
162 ((primcall list
163 (primcall cons (const 3) (const 3))))
de1eb420 164 (let (r) (_)
c46e0a8a
AW
165 ((primcall cons
166 (primcall cons (const 2) (const 2))
167 (lexical r _)))
168 (primcall cons
169 (primcall cons (const 1) (const 1))
170 (lexical r _)))))
de1eb420
AW
171
172 ;; See above.
173 (pass-if-peval
174 (let loop ((i 4)
175 (r '()))
176 (if (<= i 0)
177 (car r)
178 (loop (1- i) (cons i r))))
179 (let (r) (_)
c46e0a8a 180 ((primcall list (const 4)))
de1eb420 181 (let (r) (_)
c46e0a8a
AW
182 ((primcall cons
183 (const 3)
184 (lexical r _)))
de1eb420 185 (let (r) (_)
c46e0a8a
AW
186 ((primcall cons
187 (const 2)
188 (lexical r _)))
de1eb420 189 (let (r) (_)
c46e0a8a
AW
190 ((primcall cons
191 (const 1)
192 (lexical r _)))
193 (primcall car
194 (lexical r _)))))))
de1eb420
AW
195
196 ;; Static sums.
197 (pass-if-peval
198 (let loop ((l '(1 2 3 4)) (sum 0))
199 (if (null? l)
200 sum
201 (loop (cdr l) (+ sum (car l)))))
202 (const 10))
203
c46e0a8a 204 (pass-if-peval
de1eb420
AW
205 (let ((string->chars
206 (lambda (s)
207 (define (char-at n)
208 (string-ref s n))
209 (define (len)
210 (string-length s))
211 (let loop ((i 0))
212 (if (< i (len))
213 (cons (char-at i)
214 (loop (1+ i)))
215 '())))))
216 (string->chars "yo"))
c46e0a8a 217 (primcall list (const #\y) (const #\o)))
de1eb420
AW
218
219 (pass-if-peval
220 ;; Primitives in module-refs are resolved (the expansion of `pmatch'
221 ;; below leads to calls to (@@ (system base pmatch) car) and
222 ;; similar, which is what we want to be inlined.)
223 (begin
224 (use-modules (system base pmatch))
225 (pmatch '(a b c d)
226 ((a b . _)
227 #t)))
c46e0a8a
AW
228 (seq (call . _)
229 (const #t)))
de1eb420
AW
230
231 (pass-if-peval
232 ;; Mutability preserved.
233 ((lambda (x y z) (list x y z)) 1 2 3)
c46e0a8a 234 (primcall list (const 1) (const 2) (const 3)))
de1eb420
AW
235
236 (pass-if-peval
237 ;; Don't propagate effect-free expressions that operate on mutable
238 ;; objects.
239 (let* ((x (list 1))
240 (y (car x)))
241 (set-car! x 0)
242 y)
c46e0a8a
AW
243 (let (x) (_) ((primcall list (const 1)))
244 (let (y) (_) ((primcall car (lexical x _)))
245 (seq
246 (primcall set-car! (lexical x _) (const 0))
de1eb420
AW
247 (lexical y _)))))
248
249 (pass-if-peval
250 ;; Don't propagate effect-free expressions that operate on objects we
251 ;; don't know about.
252 (let ((y (car x)))
253 (set-car! x 0)
254 y)
c46e0a8a
AW
255 (let (y) (_) ((primcall car (toplevel x)))
256 (seq
257 (primcall set-car! (toplevel x) (const 0))
de1eb420
AW
258 (lexical y _))))
259
260 (pass-if-peval
261 ;; Infinite recursion
262 ((lambda (x) (x x)) (lambda (x) (x x)))
263 (let (x) (_)
264 ((lambda _
265 (lambda-case
266 (((x) _ _ _ _ _)
c46e0a8a
AW
267 (call (lexical x _) (lexical x _))))))
268 (call (lexical x _) (lexical x _))))
de1eb420
AW
269
270 (pass-if-peval
271 ;; First order, aliased primitive.
272 (let* ((x *) (y (x 1 2))) y)
273 (const 2))
274
275 (pass-if-peval
276 ;; First order, shadowed primitive.
277 (begin
278 (define (+ x y) (pk x y))
279 (+ 1 2))
c46e0a8a 280 (seq
de1eb420
AW
281 (define +
282 (lambda (_)
283 (lambda-case
284 (((x y) #f #f #f () (_ _))
c46e0a8a
AW
285 (call (toplevel pk) (lexical x _) (lexical y _))))))
286 (call (toplevel +) (const 1) (const 2))))
de1eb420
AW
287
288 (pass-if-peval
289 ;; First-order, effects preserved.
290 (let ((x 2))
291 (do-something!)
292 x)
c46e0a8a
AW
293 (seq
294 (call (toplevel do-something!))
de1eb420
AW
295 (const 2)))
296
297 (pass-if-peval
298 ;; First order, residual bindings removed.
299 (let ((x 2) (y 3))
300 (* (+ x y) z))
c46e0a8a 301 (primcall * (const 5) (toplevel z)))
de1eb420
AW
302
303 (pass-if-peval
304 ;; First order, with lambda.
305 (define (foo x)
306 (define (bar z) (* z z))
307 (+ x (bar 3)))
308 (define foo
309 (lambda (_)
310 (lambda-case
311 (((x) #f #f #f () (_))
c46e0a8a 312 (primcall + (lexical x _) (const 9)))))))
de1eb420
AW
313
314 (pass-if-peval
315 ;; First order, with lambda inlined & specialized twice.
316 (let ((f (lambda (x y)
317 (+ (* x top) y)))
318 (x 2)
319 (y 3))
320 (+ (* x (f x y))
321 (f something x)))
c46e0a8a
AW
322 (primcall +
323 (primcall *
324 (const 2)
325 (primcall + ; (f 2 3)
326 (primcall *
327 (const 2)
328 (toplevel top))
329 (const 3)))
330 (let (x) (_) ((toplevel something)) ; (f something 2)
331 ;; `something' is not const, so preserve order of
332 ;; effects with a lexical binding.
333 (primcall +
334 (primcall *
335 (lexical x _)
336 (toplevel top))
337 (const 2)))))
de1eb420
AW
338
339 (pass-if-peval
340 ;; First order, with lambda inlined & specialized 3 times.
341 (let ((f (lambda (x y) (if (> x 0) y x))))
342 (+ (f -1 0)
343 (f 1 0)
344 (f -1 y)
345 (f 2 y)
346 (f z y)))
c46e0a8a
AW
347 (primcall
348 +
c46e0a8a
AW
349 (primcall
350 +
c46e0a8a
AW
351 (primcall
352 +
f499d6e3
MW
353 (const -1) ; (f -1 0)
354 (seq (toplevel y) (const -1))) ; (f -1 y)
355 (toplevel y)) ; (f 2 y)
356 (let (x y) (_ _) ((toplevel z) (toplevel y)) ; (f z y)
357 (if (primcall > (lexical x _) (const 0))
358 (lexical y _)
359 (lexical x _)))))
de1eb420
AW
360
361 (pass-if-peval
362 ;; First order, conditional.
363 (let ((y 2))
364 (lambda (x)
365 (if (> y 0)
366 (display x)
367 'never-reached)))
368 (lambda ()
369 (lambda-case
370 (((x) #f #f #f () (_))
c46e0a8a 371 (call (toplevel display) (lexical x _))))))
de1eb420
AW
372
373 (pass-if-peval
374 ;; First order, recursive procedure.
375 (letrec ((fibo (lambda (n)
376 (if (<= n 1)
377 n
378 (+ (fibo (- n 1))
379 (fibo (- n 2)))))))
380 (fibo 4))
381 (const 3))
382
383 (pass-if-peval
384 ;; Don't propagate toplevel references, as intervening expressions
385 ;; could alter their bindings.
386 (let ((x top))
387 (foo)
388 x)
389 (let (x) (_) ((toplevel top))
c46e0a8a
AW
390 (seq
391 (call (toplevel foo))
de1eb420
AW
392 (lexical x _))))
393
394 (pass-if-peval
395 ;; Higher order.
396 ((lambda (f x)
397 (f (* (car x) (cadr x))))
398 (lambda (x)
399 (+ x 1))
400 '(2 3))
401 (const 7))
402
403 (pass-if-peval
404 ;; Higher order with optional argument (default value).
405 ((lambda* (f x #:optional (y 0))
406 (+ y (f (* (car x) (cadr x)))))
407 (lambda (x)
408 (+ x 1))
409 '(2 3))
410 (const 7))
411
412 (pass-if-peval
413 ;; Higher order with optional argument (caller-supplied value).
414 ((lambda* (f x #:optional (y 0))
415 (+ y (f (* (car x) (cadr x)))))
416 (lambda (x)
417 (+ x 1))
418 '(2 3)
419 35)
420 (const 42))
421
422 (pass-if-peval
423 ;; Higher order with optional argument (side-effecting default
424 ;; value).
425 ((lambda* (f x #:optional (y (foo)))
426 (+ y (f (* (car x) (cadr x)))))
427 (lambda (x)
428 (+ x 1))
429 '(2 3))
c46e0a8a
AW
430 (let (y) (_) ((call (toplevel foo)))
431 (primcall + (lexical y _) (const 7))))
de1eb420
AW
432
433 (pass-if-peval
434 ;; Higher order with optional argument (caller-supplied value).
435 ((lambda* (f x #:optional (y (foo)))
436 (+ y (f (* (car x) (cadr x)))))
437 (lambda (x)
438 (+ x 1))
439 '(2 3)
440 35)
441 (const 42))
442
443 (pass-if-peval
444 ;; Higher order.
445 ((lambda (f) (f x)) (lambda (x) x))
446 (toplevel x))
447
448 (pass-if-peval
449 ;; Bug reported at
450 ;; <https://lists.gnu.org/archive/html/bug-guile/2011-09/msg00019.html>.
451 (let ((fold (lambda (f g) (f (g top)))))
452 (fold 1+ (lambda (x) x)))
c46e0a8a 453 (primcall 1+ (toplevel top)))
de1eb420
AW
454
455 (pass-if-peval
456 ;; Procedure not inlined when residual code contains recursive calls.
457 ;; <http://debbugs.gnu.org/9542>
458 (letrec ((fold (lambda (f x3 b null? car cdr)
459 (if (null? x3)
460 b
461 (f (car x3) (fold f (cdr x3) b null? car cdr))))))
462 (fold * x 1 zero? (lambda (x1) x1) (lambda (x2) (- x2 1))))
463 (letrec (fold) (_) (_)
c46e0a8a 464 (call (lexical fold _)
de1eb420
AW
465 (primitive *)
466 (toplevel x)
467 (const 1)
468 (primitive zero?)
469 (lambda ()
470 (lambda-case
471 (((x1) #f #f #f () (_))
472 (lexical x1 _))))
473 (lambda ()
474 (lambda-case
475 (((x2) #f #f #f () (_))
c46e0a8a 476 (primcall 1- (lexical x2 _))))))))
de1eb420
AW
477
478 (pass-if "inlined lambdas are alpha-renamed"
479 ;; In this example, `make-adder' is inlined more than once; thus,
480 ;; they should use different gensyms for their arguments, because
481 ;; the various optimization passes assume uniquely-named variables.
482 ;;
483 ;; Bug reported at
484 ;; <https://lists.gnu.org/archive/html/bug-guile/2011-09/msg00019.html> and
485 ;; <https://lists.gnu.org/archive/html/bug-guile/2011-09/msg00029.html>.
486 (pmatch (unparse-tree-il
25450a0d 487 (peval (expand-primitives
403d78f9 488 (resolve-primitives
c46e0a8a
AW
489 (compile
490 '(let ((make-adder
491 (lambda (x) (lambda (y) (+ x y)))))
492 (cons (make-adder 1) (make-adder 2)))
493 #:to 'tree-il)
494 (current-module)))))
495 ((primcall cons
496 (lambda ()
497 (lambda-case
498 (((y) #f #f #f () (,gensym1))
499 (primcall +
500 (const 1)
501 (lexical y ,ref1)))))
502 (lambda ()
503 (lambda-case
504 (((y) #f #f #f () (,gensym2))
505 (primcall +
506 (const 2)
507 (lexical y ,ref2))))))
de1eb420
AW
508 (and (eq? gensym1 ref1)
509 (eq? gensym2 ref2)
510 (not (eq? gensym1 gensym2))))
511 (_ #f)))
512
513 (pass-if-peval
514 ;; Unused letrec bindings are pruned.
515 (letrec ((a (lambda () (b)))
516 (b (lambda () (a)))
517 (c (lambda (x) x)))
518 (c 10))
519 (const 10))
520
521 (pass-if-peval
522 ;; Unused letrec bindings are pruned.
523 (letrec ((a (foo!))
524 (b (lambda () (a)))
525 (c (lambda (x) x)))
526 (c 10))
c46e0a8a
AW
527 (seq (call (toplevel foo!))
528 (const 10)))
de1eb420
AW
529
530 (pass-if-peval
531 ;; Higher order, mutually recursive procedures.
532 (letrec ((even? (lambda (x)
533 (or (= 0 x)
534 (odd? (- x 1)))))
535 (odd? (lambda (x)
536 (not (even? x)))))
537 (and (even? 4) (odd? 7)))
538 (const #t))
539
540 (pass-if-peval
541 ;; Memv with constants.
542 (memv 1 '(3 2 1))
543 (const '(1)))
544
545 (pass-if-peval
546 ;; Memv with non-constant list. It could fold but doesn't
547 ;; currently.
548 (memv 1 (list 3 2 1))
c46e0a8a
AW
549 (primcall memv
550 (const 1)
551 (primcall list (const 3) (const 2) (const 1))))
de1eb420
AW
552
553 (pass-if-peval
554 ;; Memv with non-constant key, constant list, test context
555 (case foo
556 ((3 2 1) 'a)
557 (else 'b))
558 (let (key) (_) ((toplevel foo))
c46e0a8a 559 (if (if (primcall eqv? (lexical key _) (const 3))
de1eb420 560 (const #t)
c46e0a8a 561 (if (primcall eqv? (lexical key _) (const 2))
de1eb420 562 (const #t)
c46e0a8a 563 (primcall eqv? (lexical key _) (const 1))))
de1eb420
AW
564 (const a)
565 (const b))))
566
567 (pass-if-peval
c46e0a8a 568 ;; Memv with non-constant key, empty list, test context.
de1eb420
AW
569 (case foo
570 (() 'a)
571 (else 'b))
c46e0a8a 572 (seq (toplevel foo) (const 'b)))
de1eb420
AW
573
574 ;;
575 ;; Below are cases where constant propagation should bail out.
576 ;;
577
578 (pass-if-peval
579 ;; Non-constant lexical is not propagated.
580 (let ((v (make-vector 6 #f)))
581 (lambda (n)
582 (vector-set! v n n)))
583 (let (v) (_)
d547e1c9 584 ((primcall make-vector (const 6) (const #f)))
de1eb420
AW
585 (lambda ()
586 (lambda-case
587 (((n) #f #f #f () (_))
c46e0a8a
AW
588 (primcall vector-set!
589 (lexical v _) (lexical n _) (lexical n _)))))))
de1eb420
AW
590
591 (pass-if-peval
592 ;; Mutable lexical is not propagated.
593 (let ((v (vector 1 2 3)))
594 (lambda ()
595 v))
596 (let (v) (_)
c46e0a8a 597 ((primcall vector (const 1) (const 2) (const 3)))
de1eb420
AW
598 (lambda ()
599 (lambda-case
600 ((() #f #f #f () ())
601 (lexical v _))))))
602
603 (pass-if-peval
604 ;; Lexical that is not provably pure is not inlined nor propagated.
605 (let* ((x (if (> p q) (frob!) (display 'chbouib)))
606 (y (* x 2)))
607 (+ x x y))
c46e0a8a
AW
608 (let (x) (_) ((if (primcall > (toplevel p) (toplevel q))
609 (call (toplevel frob!))
610 (call (toplevel display) (const chbouib))))
611 (let (y) (_) ((primcall * (lexical x _) (const 2)))
612 (primcall +
f499d6e3
MW
613 (primcall + (lexical x _) (lexical x _))
614 (lexical y _)))))
de1eb420
AW
615
616 (pass-if-peval
617 ;; Non-constant arguments not propagated to lambdas.
618 ((lambda (x y z)
619 (vector-set! x 0 0)
620 (set-car! y 0)
621 (set-cdr! z '()))
622 (vector 1 2 3)
623 (make-list 10)
624 (list 1 2 3))
625 (let (x y z) (_ _ _)
c46e0a8a
AW
626 ((primcall vector (const 1) (const 2) (const 3))
627 (call (toplevel make-list) (const 10))
628 (primcall list (const 1) (const 2) (const 3)))
629 (seq
630 (primcall vector-set!
631 (lexical x _) (const 0) (const 0))
632 (seq (primcall set-car!
633 (lexical y _) (const 0))
634 (primcall set-cdr!
635 (lexical z _) (const ()))))))
de1eb420
AW
636
637 (pass-if-peval
638 (let ((foo top-foo) (bar top-bar))
639 (let* ((g (lambda (x y) (+ x y)))
640 (f (lambda (g x) (g x x))))
641 (+ (f g foo) (f g bar))))
642 (let (foo bar) (_ _) ((toplevel top-foo) (toplevel top-bar))
c46e0a8a
AW
643 (primcall +
644 (primcall + (lexical foo _) (lexical foo _))
645 (primcall + (lexical bar _) (lexical bar _)))))
de1eb420
AW
646
647 (pass-if-peval
648 ;; Fresh objects are not turned into constants, nor are constants
649 ;; turned into fresh objects.
650 (let* ((c '(2 3))
651 (x (cons 1 c))
652 (y (cons 0 x)))
653 y)
c46e0a8a
AW
654 (let (x) (_) ((primcall cons (const 1) (const (2 3))))
655 (primcall cons (const 0) (lexical x _))))
de1eb420
AW
656
657 (pass-if-peval
658 ;; Bindings mutated.
659 (let ((x 2))
660 (set! x 3)
661 x)
662 (let (x) (_) ((const 2))
c46e0a8a 663 (seq
de1eb420
AW
664 (set! (lexical x _) (const 3))
665 (lexical x _))))
666
667 (pass-if-peval
668 ;; Bindings mutated.
669 (letrec ((x 0)
670 (f (lambda ()
671 (set! x (+ 1 x))
672 x)))
673 (frob f) ; may mutate `x'
674 x)
675 (letrec (x) (_) ((const 0))
c46e0a8a
AW
676 (seq
677 (call (toplevel frob) (lambda _ _))
de1eb420
AW
678 (lexical x _))))
679
680 (pass-if-peval
681 ;; Bindings mutated.
682 (letrec ((f (lambda (x)
683 (set! f (lambda (_) x))
684 x)))
685 (f 2))
686 (letrec _ . _))
687
688 (pass-if-peval
689 ;; Bindings possibly mutated.
690 (let ((x (make-foo)))
691 (frob! x) ; may mutate `x'
692 x)
c46e0a8a
AW
693 (let (x) (_) ((call (toplevel make-foo)))
694 (seq
695 (call (toplevel frob!) (lexical x _))
de1eb420
AW
696 (lexical x _))))
697
698 (pass-if-peval
699 ;; Inlining stops at recursive calls with dynamic arguments.
700 (let loop ((x x))
701 (if (< x 0) x (loop (1- x))))
702 (letrec (loop) (_) ((lambda (_)
703 (lambda-case
704 (((x) #f #f #f () (_))
705 (if _ _
c46e0a8a
AW
706 (call (lexical loop _)
707 (primcall 1-
708 (lexical x _))))))))
709 (call (lexical loop _) (toplevel x))))
de1eb420
AW
710
711 (pass-if-peval
712 ;; Recursion on the 2nd argument is fully evaluated.
713 (let ((x (top)))
714 (let loop ((x x) (y 10))
715 (if (> y 0)
716 (loop x (1- y))
717 (foo x y))))
c46e0a8a
AW
718 (let (x) (_) ((call (toplevel top)))
719 (call (toplevel foo) (lexical x _) (const 0))))
de1eb420
AW
720
721 (pass-if-peval
722 ;; Inlining aborted when residual code contains recursive calls.
723 ;;
724 ;; <http://debbugs.gnu.org/9542>
725 (let loop ((x x) (y 0))
726 (if (> y 0)
727 (loop (1- x) (1- y))
728 (if (< x 0)
729 x
730 (loop (1+ x) (1+ y)))))
731 (letrec (loop) (_) ((lambda (_)
732 (lambda-case
733 (((x y) #f #f #f () (_ _))
c46e0a8a
AW
734 (if (primcall >
735 (lexical y _) (const 0))
de1eb420 736 _ _)))))
c46e0a8a 737 (call (lexical loop _) (toplevel x) (const 0))))
de1eb420
AW
738
739 (pass-if-peval
740 ;; Infinite recursion: `peval' gives up and leaves it as is.
741 (letrec ((f (lambda (x) (g (1- x))))
742 (g (lambda (x) (h (1+ x))))
743 (h (lambda (x) (f x))))
744 (f 0))
745 (letrec _ . _))
746
747 (pass-if-peval
748 ;; Infinite recursion: all the arguments to `loop' are static, but
749 ;; unrolling it would lead `peval' to enter an infinite loop.
750 (let loop ((x 0))
751 (and (< x top)
752 (loop (1+ x))))
753 (letrec (loop) (_) ((lambda . _))
c46e0a8a 754 (call (lexical loop _) (const 0))))
de1eb420
AW
755
756 (pass-if-peval
757 ;; This test checks that the `start' binding is indeed residualized.
758 ;; See the `referenced?' procedure in peval's `prune-bindings'.
759 (let ((pos 0))
de1eb420 760 (let ((here (let ((start pos)) (lambda () start))))
1cd63115 761 (set! pos 1) ;; Cause references to `pos' to residualize.
de1eb420
AW
762 (here)))
763 (let (pos) (_) ((const 0))
1cd63115 764 (let (here) (_) (_)
79d29f96
AW
765 (seq
766 (set! (lexical pos _) (const 1))
767 (call (lexical here _))))))
768
de1eb420
AW
769 (pass-if-peval
770 ;; FIXME: should this one residualize the binding?
771 (letrec ((a a))
772 1)
773 (const 1))
774
775 (pass-if-peval
776 ;; This is a fun one for peval to handle.
777 (letrec ((a a))
778 a)
779 (letrec (a) (_) ((lexical a _))
780 (lexical a _)))
781
782 (pass-if-peval
783 ;; Another interesting recursive case.
784 (letrec ((a b) (b a))
785 a)
786 (letrec (a) (_) ((lexical a _))
787 (lexical a _)))
788
789 (pass-if-peval
790 ;; Another pruning case, that `a' is residualized.
791 (letrec ((a (lambda () (a)))
792 (b (lambda () (a)))
793 (c (lambda (x) x)))
794 (let ((d (foo b)))
795 (c d)))
796
797 ;; "b c a" is the current order that we get with unordered letrec,
798 ;; but it's not important to this test, so if it changes, just adapt
799 ;; the test.
800 (letrec (b c a) (_ _ _)
801 ((lambda _
802 (lambda-case
803 ((() #f #f #f () ())
c46e0a8a 804 (call (lexical a _)))))
de1eb420
AW
805 (lambda _
806 (lambda-case
807 (((x) #f #f #f () (_))
808 (lexical x _))))
809 (lambda _
810 (lambda-case
811 ((() #f #f #f () ())
c46e0a8a 812 (call (lexical a _))))))
de1eb420
AW
813 (let (d)
814 (_)
c46e0a8a
AW
815 ((call (toplevel foo) (lexical b _)))
816 (call (lexical c _) (lexical d _)))))
de1eb420
AW
817
818 (pass-if-peval
819 ;; In this case, we can prune the bindings. `a' ends up being copied
820 ;; because it is only referenced once in the source program. Oh
821 ;; well.
822 (letrec* ((a (lambda (x) (top x)))
823 (b (lambda () a)))
824 (foo (b) (b)))
c46e0a8a
AW
825 (call (toplevel foo)
826 (lambda _
827 (lambda-case
828 (((x) #f #f #f () (_))
829 (call (toplevel top) (lexical x _)))))
830 (lambda _
831 (lambda-case
832 (((x) #f #f #f () (_))
833 (call (toplevel top) (lexical x _)))))))
de1eb420 834
9b977c83 835 (pass-if-peval
30c3dac7
AW
836 ;; The inliner sees through a `let'.
837 ((let ((a 10)) (lambda (b) (* b 2))) 30)
838 (const 60))
839
840 (pass-if-peval
841 ((lambda ()
842 (define (const x) (lambda (_) x))
843 (let ((v #f))
844 ((const #t) v))))
845 (const #t))
846
564f5e70
AW
847 (pass-if-peval
848 ;; Applications of procedures with rest arguments can get inlined.
849 ((lambda (x y . z)
850 (list x y z))
851 1 2 3 4)
9b977c83
AW
852 (let (z) (_) ((primcall list (const 3) (const 4)))
853 (primcall list (const 1) (const 2) (lexical z _))))
564f5e70 854
9b977c83 855 (pass-if-peval
d21537ef
AW
856 ;; Unmutated lists can get inlined.
857 (let ((args (list 2 3)))
858 (apply (lambda (x y z w)
859 (list x y z w))
860 0 1 args))
9b977c83 861 (primcall list (const 0) (const 1) (const 2) (const 3)))
d21537ef 862
9b977c83 863 (pass-if-peval
d21537ef
AW
864 ;; However if the list might have been mutated, it doesn't propagate.
865 (let ((args (list 2 3)))
866 (foo! args)
867 (apply (lambda (x y z w)
868 (list x y z w))
869 0 1 args))
9b977c83
AW
870 (let (args) (_) ((primcall list (const 2) (const 3)))
871 (seq
872 (call (toplevel foo!) (lexical args _))
39caffe7 873 (primcall apply
9b977c83
AW
874 (lambda ()
875 (lambda-case
876 (((x y z w) #f #f #f () (_ _ _ _))
877 (primcall list
878 (lexical x _) (lexical y _)
879 (lexical z _) (lexical w _)))))
880 (const 0)
881 (const 1)
882 (lexical args _)))))
883
884 (pass-if-peval
8598dd8d
AW
885 ;; Here the `args' that gets built by the application of the lambda
886 ;; takes more than effort "10" to visit. Test that we fall back to
887 ;; the source expression of the operand, which is still a call to
888 ;; `list', so the inlining still happens.
889 (lambda (bv offset n)
890 (let ((x (bytevector-ieee-single-native-ref
891 bv
892 (+ offset 0)))
893 (y (bytevector-ieee-single-native-ref
894 bv
895 (+ offset 4))))
896 (let ((args (list x y)))
39caffe7 897 (apply
8598dd8d
AW
898 (lambda (bv offset x y)
899 (bytevector-ieee-single-native-set!
900 bv
901 (+ offset 0)
902 x)
903 (bytevector-ieee-single-native-set!
904 bv
905 (+ offset 4)
906 y))
907 bv
908 offset
909 args))))
910 (lambda ()
911 (lambda-case
912 (((bv offset n) #f #f #f () (_ _ _))
9b977c83
AW
913 (let (x y) (_ _) ((primcall bytevector-ieee-single-native-ref
914 (lexical bv _)
915 (primcall +
916 (lexical offset _) (const 0)))
917 (primcall bytevector-ieee-single-native-ref
918 (lexical bv _)
919 (primcall +
920 (lexical offset _) (const 4))))
921 (seq
922 (primcall bytevector-ieee-single-native-set!
923 (lexical bv _)
924 (primcall +
925 (lexical offset _) (const 0))
926 (lexical x _))
927 (primcall bytevector-ieee-single-native-set!
928 (lexical bv _)
929 (primcall +
930 (lexical offset _) (const 4))
931 (lexical y _))))))))
932
933 (pass-if-peval
8598dd8d
AW
934 ;; Here we ensure that non-constant expressions are not copied.
935 (lambda ()
936 (let ((args (list (foo!))))
39caffe7 937 (apply
8598dd8d
AW
938 (lambda (z x)
939 (list z x))
940 ;; This toplevel ref might raise an unbound variable exception.
941 ;; The effects of `(foo!)' must be visible before this effect.
942 z
943 args)))
91c763ee
AW
944 (lambda ()
945 (lambda-case
946 ((() #f #f #f () ())
9b977c83 947 (let (_) (_) ((call (toplevel foo!)))
91c763ee 948 (let (z) (_) ((toplevel z))
9b977c83
AW
949 (primcall 'list
950 (lexical z _)
951 (lexical _ _))))))))
91c763ee 952
9b977c83 953 (pass-if-peval
91c763ee
AW
954 ;; Rest args referenced more than once are not destructured.
955 (lambda ()
956 (let ((args (list 'foo)))
957 (set-car! args 'bar)
39caffe7 958 (apply
91c763ee
AW
959 (lambda (z x)
960 (list z x))
961 z
962 args)))
8598dd8d
AW
963 (lambda ()
964 (lambda-case
965 ((() #f #f #f () ())
966 (let (args) (_)
9b977c83
AW
967 ((primcall list (const foo)))
968 (seq
969 (primcall set-car! (lexical args _) (const bar))
39caffe7 970 (primcall apply
9b977c83
AW
971 (lambda . _)
972 (toplevel z)
973 (lexical args _))))))))
974
975 (pass-if-peval
85edd670
AW
976 ;; Let-values inlining, even with consumers with rest args.
977 (call-with-values (lambda () (values 1 2))
978 (lambda args
979 (apply list args)))
9b977c83 980 (primcall list (const 1) (const 2)))
85edd670 981
e6450062
AW
982 (pass-if-peval
983 ;; When we can't inline let-values but can prove that the producer
984 ;; has just one value, reduce to "let" (which can then fold
985 ;; further).
986 (call-with-values (lambda () (if foo 1 2))
987 (lambda args
988 (apply values args)))
989 (if (toplevel foo) (const 1) (const 2)))
990
de1eb420
AW
991 (pass-if-peval
992 ;; Constant folding: cons of #nil does not make list
993 (cons 1 #nil)
c46e0a8a 994 (primcall cons (const 1) (const '#nil)))
de1eb420
AW
995
996 (pass-if-peval
997 ;; Constant folding: cons
998 (begin (cons 1 2) #f)
999 (const #f))
1000
1001 (pass-if-peval
1002 ;; Constant folding: cons
1003 (begin (cons (foo) 2) #f)
c46e0a8a 1004 (seq (call (toplevel foo)) (const #f)))
de1eb420
AW
1005
1006 (pass-if-peval
1007 ;; Constant folding: cons
1008 (if (cons 0 0) 1 2)
1009 (const 1))
1010
1011 (pass-if-peval
1012 ;; Constant folding: car+cons
1013 (car (cons 1 0))
1014 (const 1))
1015
1016 (pass-if-peval
1017 ;; Constant folding: cdr+cons
1018 (cdr (cons 1 0))
1019 (const 0))
1020
1021 (pass-if-peval
1022 ;; Constant folding: car+cons, impure
1023 (car (cons 1 (bar)))
c46e0a8a 1024 (seq (call (toplevel bar)) (const 1)))
de1eb420
AW
1025
1026 (pass-if-peval
1027 ;; Constant folding: cdr+cons, impure
1028 (cdr (cons (bar) 0))
c46e0a8a 1029 (seq (call (toplevel bar)) (const 0)))
de1eb420
AW
1030
1031 (pass-if-peval
1032 ;; Constant folding: car+list
1033 (car (list 1 0))
1034 (const 1))
1035
1036 (pass-if-peval
1037 ;; Constant folding: cdr+list
1038 (cdr (list 1 0))
c46e0a8a 1039 (primcall list (const 0)))
de1eb420
AW
1040
1041 (pass-if-peval
1042 ;; Constant folding: car+list, impure
1043 (car (list 1 (bar)))
c46e0a8a 1044 (seq (call (toplevel bar)) (const 1)))
de1eb420
AW
1045
1046 (pass-if-peval
1047 ;; Constant folding: cdr+list, impure
1048 (cdr (list (bar) 0))
c46e0a8a
AW
1049 (seq (call (toplevel bar)) (primcall list (const 0))))
1050
1051 (pass-if-peval
1052 ;; Equality primitive: same lexical
1053 (let ((x (random))) (eq? x x))
1054 (seq (call (toplevel random)) (const #t)))
1055
1056 (pass-if-peval
1057 ;; Equality primitive: merge lexical identities
1058 (let* ((x (random)) (y x)) (eq? x y))
1059 (seq (call (toplevel random)) (const #t)))
de1eb420
AW
1060
1061 (pass-if-peval
9b965638
AW
1062 ;; Non-constant guards get lexical bindings, invocation of winder and
1063 ;; unwinder lifted out. Unfortunately both have the generic variable
1064 ;; name "tmp", so we can't distinguish them in this test, and they
1065 ;; also collide in generic names with the single-value result from
1066 ;; the dynwind; alack.
de1eb420 1067 (dynamic-wind foo (lambda () bar) baz)
9b965638 1068 (let (tmp tmp) (_ _) ((toplevel foo) (toplevel baz))
bb97e4ab
AW
1069 (seq (seq (if (primcall thunk? (lexical tmp _))
1070 (call (lexical tmp _))
1071 (primcall scm-error . _))
1072 (primcall wind (lexical tmp _) (lexical tmp _)))
1073 (let (tmp) (_) ((toplevel bar))
1074 (seq (seq (primcall unwind)
1075 (call (lexical tmp _)))
9b965638 1076 (lexical tmp _))))))
de1eb420
AW
1077
1078 (pass-if-peval
bb97e4ab 1079 ;; Constant guards don't need lexical bindings or thunk? checks.
de1eb420 1080 (dynamic-wind (lambda () foo) (lambda () bar) (lambda () baz))
bb97e4ab
AW
1081 (seq (seq (toplevel foo)
1082 (primcall wind
1083 (lambda ()
1084 (lambda-case
1085 ((() #f #f #f () ()) (toplevel foo))))
1086 (lambda ()
1087 (lambda-case
1088 ((() #f #f #f () ()) (toplevel baz))))))
1089 (let (tmp) (_) ((toplevel bar))
1090 (seq (seq (primcall unwind)
1091 (toplevel baz))
9b965638
AW
1092 (lexical tmp _)))))
1093
1094 (pass-if-peval
1095 ;; Dynwind bodies that return an unknown number of values need a
1096 ;; let-values.
1097 (dynamic-wind (lambda () foo) (lambda () (bar)) (lambda () baz))
bb97e4ab
AW
1098 (seq (seq (toplevel foo)
1099 (primcall wind
1100 (lambda ()
1101 (lambda-case
1102 ((() #f #f #f () ()) (toplevel foo))))
1103 (lambda ()
1104 (lambda-case
1105 ((() #f #f #f () ()) (toplevel baz))))))
1106 (let-values (call (toplevel bar))
9b965638
AW
1107 (lambda-case
1108 ((() #f vals #f () (_))
bb97e4ab
AW
1109 (seq (seq (primcall unwind)
1110 (toplevel baz))
39caffe7 1111 (primcall apply (primitive values) (lexical vals _))))))))
de1eb420
AW
1112
1113 (pass-if-peval
de1eb420
AW
1114 ;; Prompt is removed if tag is unreferenced
1115 (let ((tag (make-prompt-tag)))
1116 (call-with-prompt tag
1117 (lambda () 1)
1118 (lambda args args)))
1119 (const 1))
1120
1121 (pass-if-peval
de1eb420
AW
1122 ;; Prompt is removed if tag is unreferenced, with explicit stem
1123 (let ((tag (make-prompt-tag "foo")))
1124 (call-with-prompt tag
1125 (lambda () 1)
1126 (lambda args args)))
1127 (const 1))
1128
1129 ;; Handler lambda inlined
1130 (pass-if-peval
de1eb420
AW
1131 (call-with-prompt tag
1132 (lambda () 1)
1133 (lambda (k x) x))
178a4092
AW
1134 (prompt #t
1135 (toplevel tag)
99983d54 1136 (const 1)
178a4092
AW
1137 (lambda _
1138 (lambda-case
1139 (((k x) #f #f #f () (_ _))
1140 (lexical x _))))))
de1eb420
AW
1141
1142 ;; Handler toplevel not inlined
1143 (pass-if-peval
178a4092
AW
1144 (call-with-prompt tag
1145 (lambda () 1)
1146 handler)
1147 (prompt #f
1148 (toplevel tag)
1149 (lambda _
1150 (lambda-case
1151 ((() #f #f #f () ())
1152 (const 1))))
1153 (toplevel handler)))
de1eb420
AW
1154
1155 (pass-if-peval
de1eb420
AW
1156 ;; `while' without `break' or `continue' has no prompts and gets its
1157 ;; condition folded. Unfortunately the outer `lp' does not yet get
997ed300
AW
1158 ;; elided, and the continuation tag stays around. (The continue tag
1159 ;; stays around because although it is not referenced, recursively
1160 ;; visiting the loop in the continue handler manages to visit the tag
1161 ;; twice before aborting. The abort doesn't unroll the recursive
1162 ;; reference.)
de1eb420 1163 (while #t #t)
2aed2667 1164 (let (_) (_) ((primcall make-prompt-tag . _))
997ed300
AW
1165 (letrec (lp) (_)
1166 ((lambda _
1167 (lambda-case
1168 ((() #f #f #f () ())
1169 (letrec (loop) (_)
1170 ((lambda _
1171 (lambda-case
1172 ((() #f #f #f () ())
2aed2667
AW
1173 (call (lexical loop _))))))
1174 (call (lexical loop _)))))))
1175 (call (lexical lp _)))))
de1eb420
AW
1176
1177 (pass-if-peval
de1eb420
AW
1178 (lambda (a . rest)
1179 (apply (lambda (x y) (+ x y))
1180 a rest))
1181 (lambda _
1182 (lambda-case
1183 (((x y) #f #f #f () (_ _))
1184 _))))
1185
c46e0a8a 1186 (pass-if-peval
de1eb420 1187 (car '(1 2))
985702f7
AW
1188 (const 1))
1189
1190 ;; If we bail out when inlining an identifier because it's too big,
1191 ;; but the identifier simply aliases some other identifier, then avoid
1192 ;; residualizing a reference to the leaf identifier. The bailout is
1193 ;; driven by the recursive-effort-limit, which is currently 100. We
1194 ;; make sure to trip it with this recursive sum thing.
4105f688 1195 (pass-if-peval
985702f7
AW
1196 (let ((x (let sum ((n 0) (out 0))
1197 (if (< n 10000)
1198 (sum (1+ n) (+ out n))
1199 out))))
1200 ((lambda (y) (list y)) x))
1201 (let (x) (_) (_)
74bbb994 1202 (primcall list (lexical x _))))
f49fd9af
AW
1203
1204 ;; Here we test that a common test in a chain of ifs gets lifted.
74bbb994 1205 (pass-if-peval
f49fd9af
AW
1206 (if (and (struct? x) (eq? (struct-vtable x) A))
1207 (foo x)
1208 (if (and (struct? x) (eq? (struct-vtable x) B))
1209 (bar x)
1210 (if (and (struct? x) (eq? (struct-vtable x) C))
1211 (baz x)
1212 (qux x))))
1213 (let (failure) (_) ((lambda _
1214 (lambda-case
1215 ((() #f #f #f () ())
74bbb994
AW
1216 (call (toplevel qux) (toplevel x))))))
1217 (if (primcall struct? (toplevel x))
1218 (if (primcall eq?
1219 (primcall struct-vtable (toplevel x))
1220 (toplevel A))
1221 (call (toplevel foo) (toplevel x))
1222 (if (primcall eq?
1223 (primcall struct-vtable (toplevel x))
1224 (toplevel B))
1225 (call (toplevel bar) (toplevel x))
1226 (if (primcall eq?
1227 (primcall struct-vtable (toplevel x))
1228 (toplevel C))
1229 (call (toplevel baz) (toplevel x))
1230 (call (lexical failure _)))))
1231 (call (lexical failure _)))))
9b1750ed
AW
1232
1233 ;; Multiple common tests should get lifted as well.
74bbb994 1234 (pass-if-peval
9b1750ed
AW
1235 (if (and (struct? x) (eq? (struct-vtable x) A) B)
1236 (foo x)
1237 (if (and (struct? x) (eq? (struct-vtable x) A) C)
1238 (bar x)
1239 (if (and (struct? x) (eq? (struct-vtable x) A) D)
1240 (baz x)
1241 (qux x))))
1242 (let (failure) (_) ((lambda _
1243 (lambda-case
1244 ((() #f #f #f () ())
74bbb994
AW
1245 (call (toplevel qux) (toplevel x))))))
1246 (if (primcall struct? (toplevel x))
1247 (if (primcall eq?
1248 (primcall struct-vtable (toplevel x))
1249 (toplevel A))
9b1750ed 1250 (if (toplevel B)
74bbb994 1251 (call (toplevel foo) (toplevel x))
9b1750ed 1252 (if (toplevel C)
74bbb994 1253 (call (toplevel bar) (toplevel x))
9b1750ed 1254 (if (toplevel D)
74bbb994
AW
1255 (call (toplevel baz) (toplevel x))
1256 (call (lexical failure _)))))
1257 (call (lexical failure _)))
2aed2667 1258 (call (lexical failure _)))))
3d2bcd2c 1259
2aed2667 1260 (pass-if-peval
3d2bcd2c 1261 (apply (lambda (x y) (cons x y)) '(1 2))
2aed2667 1262 (primcall cons (const 1) (const 2)))
3d2bcd2c 1263
2aed2667 1264 (pass-if-peval
3d2bcd2c 1265 (apply (lambda (x y) (cons x y)) (list 1 2))
2aed2667 1266 (primcall cons (const 1) (const 2)))
997ed300 1267
c1bff879
AW
1268 ;; Disable after removal of abort-in-tail-position optimization, in
1269 ;; hopes that CPS does a uniformly better job.
1270 #;
2aed2667 1271 (pass-if-peval
997ed300
AW
1272 (let ((t (make-prompt-tag)))
1273 (call-with-prompt t
1274 (lambda () (abort-to-prompt t 1 2 3))
1275 (lambda (k x y z) (list x y z))))
64fc50c2
AW
1276 (primcall list (const 1) (const 2) (const 3)))
1277
1278 (pass-if-peval
1279 (call-with-values foo (lambda (x) (bar x)))
1280 (let (x) (_) ((call (toplevel foo)))
4a6d3519
AW
1281 (call (toplevel bar) (lexical x _))))
1282
1283 (pass-if-peval
1284 ((lambda (foo)
1285 (define* (bar a #:optional (b (1+ a)))
1286 (list a b))
1287 (bar 1))
1288 1)
1289 (primcall list (const 1) (const 2))))