web.texi defun -> deffn
[bpt/guile.git] / doc / ref / api-macros.texi
CommitLineData
e4955559
AW
1@c -*-texinfo-*-
2@c This is part of the GNU Guile Reference Manual.
3@c Copyright (C) 1996, 1997, 2000, 2001, 2002, 2003, 2004, 2009, 2010
4@c Free Software Foundation, Inc.
5@c See the file guile.texi for copying conditions.
6
e4955559
AW
7@node Macros
8@section Macros
9
10At its best, programming in Lisp is an iterative process of building up a
11language appropriate to the problem at hand, and then solving the problem in
12that language. Defining new procedures is part of that, but Lisp also allows
13the user to extend its syntax, with its famous @dfn{macros}.
14
15@cindex macros
16@cindex transformation
17Macros are syntactic extensions which cause the expression that they appear in
18to be transformed in some way @emph{before} being evaluated. In expressions that
19are intended for macro transformation, the identifier that names the relevant
20macro must appear as the first element, like this:
21
22@lisp
23(@var{macro-name} @var{macro-args} @dots{})
24@end lisp
25
26@cindex macro expansion
27Macro expansion is a separate phase of evaluation, run before code is
28interpreted or compiled. A macro is a program that runs on programs, translating
29an embedded language into core Scheme.
30
31@menu
32* Defining Macros:: Binding macros, globally and locally.
33* Syntax Rules:: Pattern-driven macros.
34* Syntax Case:: Procedural, hygienic macros.
35* Defmacros:: Lisp-style macros.
36* Identifier Macros:: Identifier macros.
37* Eval When:: Affecting the expand-time environment.
38* Internal Macros:: Macros as first-class values.
39@end menu
40
41@node Defining Macros
42@subsection Defining Macros
43
44A macro is a binding between a keyword and a syntax transformer. Since it's
45difficult to discuss @code{define-syntax} without discussing the format of
46transformers, consider the following example macro definition:
47
48@example
49(define-syntax when
50 (syntax-rules ()
51 ((when condition exp ...)
52 (if condition
53 (begin exp ...)))))
54
55(when #t
56 (display "hey ho\n")
57 (display "let's go\n"))
58@print{} hey ho
59@print{} let's go
60@end example
61
62In this example, the @code{when} binding is bound with @code{define-syntax}.
63Syntax transformers are discussed in more depth in @ref{Syntax Rules} and
64@ref{Syntax Case}.
65
66@deffn {Syntax} define-syntax keyword transformer
67Bind @var{keyword} to the syntax transformer obtained by evaluating
68@var{transformer}.
69
70After a macro has been defined, further instances of @var{keyword} in Scheme
71source code will invoke the syntax transformer defined by @var{transformer}.
72@end deffn
73
74One can also establish local syntactic bindings with @code{let-syntax}.
75
76@deffn {Syntax} let-syntax ((keyword transformer) ...) exp...
77Bind @var{keyword...} to @var{transformer...} while expanding @var{exp...}.
78
79A @code{let-syntax} binding only exists at expansion-time.
80
81@example
82(let-syntax ((unless
83 (syntax-rules ()
84 ((unless condition exp ...)
85 (if (not condition)
86 (begin exp ...))))))
87 (unless #t
88 (primitive-exit 1))
89 "rock rock rock")
90@result{} "rock rock rock"
91@end example
92@end deffn
93
94A @code{define-syntax} form is valid anywhere a definition may appear: at the
95top-level, or locally. Just as a local @code{define} expands out to an instance
96of @code{letrec}, a local @code{define-syntax} expands out to
97@code{letrec-syntax}.
98
99@deffn {Syntax} letrec-syntax ((keyword transformer) ...) exp...
100Bind @var{keyword...} to @var{transformer...} while expanding @var{exp...}.
101
102In the spirit of @code{letrec} versus @code{let}, an expansion produced by
103@var{transformer} may reference a @var{keyword} bound by the
104same @var{letrec-syntax}.
105
106@example
107(letrec-syntax ((my-or
108 (syntax-rules ()
109 ((my-or)
110 #t)
111 ((my-or exp)
112 exp)
113 ((my-or exp rest ...)
114 (let ((t exp))
115 (if exp
116 exp
117 (my-or rest ...)))))))
118 (my-or #f "rockaway beach"))
119@result{} "rockaway beach"
120@end example
121@end deffn
122
123@node Syntax Rules
124@subsection Syntax-rules Macros
125
126@code{syntax-rules} macros are simple, pattern-driven syntax transformers, with
127a beauty worthy of Scheme.
128
129@deffn {Syntax} syntax-rules literals (pattern template)...
1fc8dcc7
AW
130Create a syntax transformer that will rewrite an expression using the rules
131embodied in the @var{pattern} and @var{template} clauses.
132@end deffn
133
e4955559
AW
134A @code{syntax-rules} macro consists of three parts: the literals (if any), the
135patterns, and as many templates as there are patterns.
136
137When the syntax expander sees the invocation of a @code{syntax-rules} macro, it
138matches the expression against the patterns, in order, and rewrites the
139expression using the template from the first matching pattern. If no pattern
140matches, a syntax error is signalled.
e4955559
AW
141
142@subsubsection Patterns
143
144We have already seen some examples of patterns in the previous section:
145@code{(unless condition exp ...)}, @code{(my-or exp)}, and so on. A pattern is
146structured like the expression that it is to match. It can have nested structure
147as well, like @code{(let ((var val) ...) exp exp* ...)}. Broadly speaking,
148patterns are made of lists, improper lists, vectors, identifiers, and datums.
149Users can match a sequence of patterns using the ellipsis (@code{...}).
150
151Identifiers in a pattern are called @dfn{literals} if they are present in the
152@code{syntax-rules} literals list, and @dfn{pattern variables} otherwise. When
153building up the macro output, the expander replaces instances of a pattern
154variable in the template with the matched subexpression.
155
156@example
157(define-syntax kwote
158 (syntax-rules ()
159 ((kwote exp)
160 (quote exp))))
161(kwote (foo . bar))
162@result{} (foo . bar)
163@end example
164
165An improper list of patterns matches as rest arguments do:
166
167@example
168(define-syntax let1
169 (syntax-rules ()
170 ((_ (var val) . exps)
171 (let ((var val)) . exps))))
172@end example
173
174However this definition of @code{let1} probably isn't what you want, as the tail
175pattern @var{exps} will match non-lists, like @code{(let1 (foo 'bar) . baz)}. So
176often instead of using improper lists as patterns, ellipsized patterns are
177better. Instances of a pattern variable in the template must be followed by an
178ellipsis.
179
180@example
181(define-syntax let1
182 (syntax-rules ()
183 ((_ (var val) exp ...)
184 (let ((var val)) exp ...))))
185@end example
186
187This @code{let1} probably still doesn't do what we want, because the body
188matches sequences of zero expressions, like @code{(let1 (foo 'bar))}. In this
189case we need to assert we have at least one body expression. A common idiom for
190this is to name the ellipsized pattern variable with an asterisk:
191
192@example
193(define-syntax let1
194 (syntax-rules ()
195 ((_ (var val) exp exp* ...)
196 (let ((var val)) exp exp* ...))))
197@end example
198
199A vector of patterns matches a vector whose contents match the patterns,
200including ellipsizing and tail patterns.
201
202@example
203(define-syntax letv
204 (syntax-rules ()
205 ((_ #((var val) ...) exp exp* ...)
206 (let ((var val) ...) exp exp* ...))))
207(letv #((foo 'bar)) foo)
208@result{} foo
209@end example
210
211Literals are used to match specific datums in an expression, like the use of
212@code{=>} and @code{else} in @code{cond} expressions.
213
214@example
215(define-syntax cond1
216 (syntax-rules (=> else)
217 ((cond1 test => fun)
218 (let ((exp test))
219 (if exp (fun exp) #f)))
220 ((cond1 test exp exp* ...)
221 (if test (begin exp exp* ...)))
222 ((cond1 else exp exp* ...)
223 (begin exp exp* ...))))
224
225(define (square x) (* x x))
226(cond1 10 => square)
227@result{} 100
228(let ((=> #t))
229 (cond1 10 => square))
230@result{} #<procedure square (x)>
231@end example
232
233A literal matches an input expression if the input expression is an identifier
234with the same name as the literal, and both are unbound@footnote{Language
235lawyers probably see the need here for use of @code{literal-identifier=?} rather
236than @code{free-identifier=?}, and would probably be correct. Patches
237accepted.}.
238
239If a pattern is not a list, vector, or an identifier, it matches as a literal,
240with @code{equal?}.
241
242@example
243(define-syntax define-matcher-macro
244 (syntax-rules ()
245 ((_ name lit)
246 (define-syntax name
247 (syntax-rules ()
248 ((_ lit) #t)
249 ((_ else) #f))))))
250
251(define-matcher-macro is-literal-foo? "foo")
252
253(is-literal-foo? "foo")
254@result{} #t
255(is-literal-foo? "bar")
256@result{} #f
257(let ((foo "foo"))
258 (is-literal-foo? foo))
259@result{} #f
260@end example
261
262The last example indicates that matching happens at expansion-time, not
263at run-time.
264
265Syntax-rules macros are always used as @code{(@var{macro} . @var{args})}, and
266the @var{macro} will always be a symbol. Correspondingly, a @code{syntax-rules}
267pattern must be a list (proper or improper), and the first pattern in that list
268must be an identifier. Incidentally it can be any identifier -- it doesn't have
269to actually be the name of the macro. Thus the following three are equivalent:
270
271@example
272(define-syntax when
273 (syntax-rules ()
274 ((when c e ...)
275 (if c (begin e ...)))))
276
277(define-syntax when
278 (syntax-rules ()
279 ((_ c e ...)
280 (if c (begin e ...)))))
281
282(define-syntax when
283 (syntax-rules ()
284 ((something-else-entirely c e ...)
285 (if c (begin e ...)))))
286@end example
287
288For clarity, use one of the first two variants. Also note that since the pattern
289variable will always match the macro itself (e.g., @code{cond1}), it is actually
290left unbound in the template.
291
292@subsubsection Hygiene
293
294@code{syntax-rules} macros have a magical property: they preserve referential
295transparency. When you read a macro definition, any free bindings in that macro
296are resolved relative to the macro definition; and when you read a macro
297instantiation, all free bindings in that expression are resolved relative to the
298expression.
299
300This property is sometimes known as @dfn{hygiene}, and it does aid in code
301cleanliness. In your macro definitions, you can feel free to introduce temporary
302variables, without worrying about inadvertantly introducing bindings into the
303macro expansion.
304
305Consider the definition of @code{my-or} from the previous section:
306
307@example
308(define-syntax my-or
309 (syntax-rules ()
310 ((my-or)
311 #t)
312 ((my-or exp)
313 exp)
314 ((my-or exp rest ...)
315 (let ((t exp))
316 (if exp
317 exp
318 (my-or rest ...))))))
319@end example
320
321A naive expansion of @code{(let ((t #t)) (my-or #f t))} would yield:
322
323@example
324(let ((t #t))
325 (let ((t #f))
326 (if t t t)))
327@result{} #f
328@end example
329
330@noindent
331Which clearly is not what we want. Somehow the @code{t} in the definition is
332distinct from the @code{t} at the site of use; and it is indeed this distinction
333that is maintained by the syntax expander, when expanding hygienic macros.
334
335This discussion is mostly relevant in the context of traditional Lisp macros
336(@pxref{Defmacros}), which do not preserve referential transparency. Hygiene
337adds to the expressive power of Scheme.
338
339@subsubsection Further Information
340
341For a formal definition of @code{syntax-rules} and its pattern language, see
342@xref{Macros, , Macros, r5rs, Revised(5) Report on the Algorithmic Language
343Scheme}.
344
345@code{syntax-rules} macros are simple and clean, but do they have limitations.
346They do not lend themselves to expressive error messages: patterns either match
347or they don't. Their ability to generate code is limited to template-driven
348expansion; often one needs to define a number of helper macros to get real work
349done. Sometimes one wants to introduce a binding into the lexical context of the
350generated code; this is impossible with @code{syntax-rules}. Relatedly, they
351cannot programmatically generate identifiers.
352
353The solution to all of these problems is to use @code{syntax-case} if you need
354its features. But if for some reason you're stuck with @code{syntax-rules}, you
355might enjoy Joe Marshall's
356@uref{http://sites.google.com/site/evalapply/eccentric.txt,@code{syntax-rules}
357Primer for the Merely Eccentric}.
358
359@node Syntax Case
360@subsection Support for the @code{syntax-case} System
361
1fc8dcc7
AW
362@code{syntax-case} macros are procedural syntax transformers, with a power
363worthy of Scheme.
364
365@deffn {Syntax} syntax-case syntax literals (pattern [guard] exp)...
366Match the syntax object @var{syntax} against the given patterns, in order. If a
367@var{pattern} matches, return the result of evaluating the associated @var{exp}.
368@end deffn
369
370Compare the following definitions of @code{when}:
371
372@example
373(define-syntax when
374 (syntax-rules ()
375 ((_ test e e* ...)
376 (if test (begin e e* ...)))))
377
378(define-syntax when
379 (lambda (x)
380 (syntax-case x ()
381 ((_ test e e* ...)
382 #'(if test (begin e e* ...))))))
383@end example
384
385Clearly, the @code{syntax-case} definition is similar to its @code{syntax-rules}
386counterpart, and equally clearly there are some differences. The
387@code{syntax-case} definition is wrapped in a @code{lambda}, a function of one
388argument; that argument is passed to the @code{syntax-case} invocation; and the
389``return value'' of the macro has a @code{#'} prefix.
390
391All of these differences stem from the fact that @code{syntax-case} does not
392define a syntax transformer itself -- instead, @code{syntax-case} expressions
393provide a way to destructure a @dfn{syntax object}, and to rebuild syntax
394objects as output.
395
396So the @code{lambda} wrapper is simply a leaky implementation detail, that
397syntax transformers are just functions that transform syntax to syntax. This
398should not be surprising, given that we have already described macros as
399``programs that write programs''. @code{syntax-case} is simply a way to take
400apart and put together program text, and to be a valid syntax transformer it
401needs to be wrapped in a procedure.
402
403Unlike traditional Lisp macros (@pxref{Defmacros}), @code{syntax-case} macros
404transform syntax objects, not raw Scheme forms. Recall the naive expansion of
405@code{my-or} given in the previous section:
406
407@example
408(let ((t #t))
409 (my-or #f t))
410;; naive expansion:
411(let ((t #t))
412 (let ((t #f))
413 (if t t t)))
414@end example
415
416Raw Scheme forms simply don't have enough information to distinguish the first
417two @code{t} instances in @code{(if t t t)} from the third @code{t}. So instead
418of representing identifiers as symbols, the syntax expander represents
419identifiers as annotated syntax objects, attaching such information to those
420syntax objects as is needed to maintain referential transparency.
421
422@deffn {Syntax} syntax form
423Create a syntax object wrapping @var{form} within the current lexical context.
424@end deffn
425
426Syntax objects are typically created internally to the process of expansion, but
427it is possible to create them outside of syntax expansion:
428
429@example
430(syntax (foo bar baz))
431@result{} #<some representation of that syntax>
432@end example
433
434@noindent
435However it is more common, and useful, to create syntax objects when building
436output from a @code{syntax-case} expression.
437
438@example
439(define-syntax add1
440 (lambda (x)
441 (syntax-case x ()
442 ((_ exp)
443 (syntax (+ exp 1))))))
444@end example
445
446It is not strictly necessary for a @code{syntax-case} expression to return a
447syntax object, because @code{syntax-case} expressions can be used in helper
448functions, or otherwise used outside of syntax expansion itself. However a
7545ddd4 449syntax transformer procedure must return a syntax object, so most uses of
1fc8dcc7
AW
450@code{syntax-case} do end up returning syntax objects.
451
452Here in this case, the form that built the return value was @code{(syntax (+ exp
4531))}. The interesting thing about this is that within a @code{syntax}
7545ddd4 454expression, any appearance of a pattern variable is substituted into the
1fc8dcc7
AW
455resulting syntax object, carrying with it all relevant metadata from the source
456expression, such as lexical identity and source location.
457
458Indeed, a pattern variable may only be referenced from inside a @code{syntax}
459form. The syntax expander would raise an error when defining @code{add1} if it
460found @var{exp} referenced outside a @code{syntax} form.
461
462Since @code{syntax} appears frequently in macro-heavy code, it has a special
463reader macro: @code{#'}. @code{#'foo} is transformed by the reader into
464@code{(syntax foo)}, just as @code{'foo} is tranformed into @code{(quote foo)}.
465
466The pattern language used by @code{syntax-case} is conveniently the same
467language used by @code{syntax-rules}. Given this, Guile actually defines
468@code{syntax-rules} in terms of @code{syntax-case}:
469
470@example
471(define-syntax syntax-rules
472 (lambda (x)
473 (syntax-case x ()
474 ((_ (k ...) ((keyword . pattern) template) ...)
475 #'(lambda (x)
476 (syntax-case x (k ...)
477 ((dummy . pattern) #'template)
478 ...))))))
479@end example
480
481And that's that.
482
483@subsubsection Why @code{syntax-case}?
484
485The examples we have shown thus far could just as well have been expressed with
486@code{syntax-rules}, and have just shown that @code{syntax-case} is more
487verbose, which is true. But there is a difference: @code{syntax-case} creates
488@emph{procedural} macros, giving the full power of Scheme to the macro expander.
489This has many practical applications.
490
491A common desire is to be able to match a form only if it is an identifier. This
492is impossible with @code{syntax-rules}, given the datum matching forms. But with
493@code{syntax-case} it is easy:
494
495@deffn {Scheme Procedure} identifier? syntax-object
496Returns @code{#t} iff @var{syntax-object} is an identifier.
497@end deffn
498
499@example
7545ddd4 500;; relying on previous add1 definition
1fc8dcc7
AW
501(define-syntax add1!
502 (lambda (x)
503 (syntax-case x ()
504 ((_ var) (identifier? #'var)
505 #'(set! var (add1 var))))))
506
507(define foo 0)
508(add1! foo)
509foo @result{} 1
510(add1! "not-an-identifier") @result{} error
511@end example
512
513With @code{syntax-rules}, the error for @code{(add1! "not-an-identifier")} would
514be something like ``invalid @code{set!}''. With @code{syntax-case}, it will say
515something like ``invalid @code{add1!}'', because we attach the @dfn{guard
516clause} to the pattern: @code{(identifier? #'var)}. This becomes more important
517with more complicated macros. It is necessary to use @code{identifier?}, because
518to the expander, an identifier is more than a bare symbol.
519
520Note that even in the guard clause, we reference the @var{var} pattern variable
521within a @code{syntax} form, via @code{#'var}.
522
523Another common desire is to introduce bindings into the lexical context of the
524output expression. One example would be in the so-called ``anaphoric macros'',
525like @code{aif}. Anaphoric macros bind some expression to a well-known
526identifier, often @code{it}, within their bodies. For example, in @code{(aif
527(foo) (bar it))}, @code{it} would be bound to the result of @code{(foo)}.
528
529To begin with, we should mention a solution that doesn't work:
530
531@example
532;; doesn't work
533(define-syntax aif
534 (lambda (x)
535 (syntax-case x ()
536 ((_ test then else)
537 #'(let ((it test))
538 (if it then else))))))
539@end example
540
541The reason that this doesn't work is that, by default, the expander will
542preserve referential transparency; the @var{then} and @var{else} expressions
543won't have access to the binding of @code{it}.
544
545But they can, if we explicitly introduce a binding via @code{datum->syntax}.
546
547@deffn {Scheme Procedure} datum->syntax for-syntax datum
548Create a syntax object that wraps @var{datum}, within the lexical context
549corresponding to the syntax object @var{for-syntax}.
550@end deffn
551
552For completeness, we should mention that it is possible to strip the metadata
553from a syntax object, returning a raw Scheme datum:
554
555@deffn {Scheme Procedure} syntax->datum syntax-object
556Strip the metadata from @var{syntax-object}, returning its contents as a raw
557Scheme datum.
558@end deffn
559
560In this case we want to introduce @code{it} in the context of the whole
561expression, so we can create a syntax object as @code{(datum->syntax x 'it)},
562where @code{x} is the whole expression, as passed to the transformer procedure.
563
564Here's another solution that doesn't work:
565
566@example
567;; doesn't work either
568(define-syntax aif
569 (lambda (x)
570 (syntax-case x ()
571 ((_ test then else)
572 (let ((it (datum->syntax x 'it)))
573 #'(let ((it test))
574 (if it then else)))))))
575@end example
576
577The reason that this one doesn't work is that there are really two environments
578at work here -- the environment of pattern variables, as bound by
579@code{syntax-case}, and the environment of lexical variables, as bound by normal
580Scheme. Here we need to introduce a piece of Scheme's environment into that of
581the syntax expander, and we can do so using @code{syntax-case} itself:
582
583@example
584;; works, but is obtuse
585(define-syntax aif
586 (lambda (x)
587 (syntax-case x ()
588 ((_ test then else)
589 ;; invoking syntax-case on the generated
590 ;; syntax object to expose it to `syntax'
591 (syntax-case (datum->syntax x 'it) ()
592 (it
593 #'(let ((it test))
594 (if it then else))))))))
595
596(aif (getuid) (display it) (display "none")) (newline)
597@print{} 500
598@end example
599
600However there are easier ways to write this. @code{with-syntax} is often
601convenient:
602
603@deffn {Syntax} with-syntax ((pat val)...) exp...
604Bind patterns @var{pat} from their corresponding values @var{val}, within the
605lexical context of @var{exp...}.
606
607@example
608;; better
609(define-syntax aif
610 (lambda (x)
611 (syntax-case x ()
612 ((_ test then else)
613 (with-syntax ((it (datum->syntax x 'it)))
614 #'(let ((it test))
615 (if it then else)))))))
616@end example
617@end deffn
618
619As you might imagine, @code{with-syntax} is defined in terms of
620@code{syntax-case}. But even that might be off-putting to you if you are an old
621Lisp macro hacker, used to building macro output with @code{quasiquote}. The
622issue is that @code{with-syntax} creates a separation between the point of
623definition of a value and its point of substitution.
624
625@pindex quasisyntax
626@pindex unsyntax
627@pindex unsyntax-splicing
628So for cases in which a @code{quasiquote} style makes more sense,
629@code{syntax-case} also defines @code{quasisyntax}, and the related
630@code{unsyntax} and @code{unsyntax-splicing}, abbreviated by the reader as
631@code{#`}, @code{#,}, and @code{#,@@}, respectively.
632
633For example, to define a macro that inserts a compile-time timestamp into a
634source file, one may write:
635
636@example
637(define-syntax display-compile-timestamp
638 (lambda (x)
639 (syntax-case x ()
640 ((_)
641 #`(begin
642 (display "The compile timestamp was: ")
643 (display #,(current-time))
644 (newline))))))
645@end example
646
647Finally, we should mention the following helper procedures defined by the core
648of @code{syntax-case}:
649
650@deffn {Scheme Procedure} bound-identifier=? a b
651Returns @code{#t} iff the syntax objects @var{a} and @var{b} refer to the same
652lexically-bound identifier.
653@end deffn
654
655@deffn {Scheme Procedure} free-identifier=? a b
656Returns @code{#t} iff the syntax objects @var{a} and @var{b} refer to the same
657free identifier.
658@end deffn
659
660@deffn {Scheme Procedure} generate-temporaries ls
661Return a list of temporary identifiers as long as @var{ls} is long.
662@end deffn
663
664Readers interested in further information on @code{syntax-case} macros should
665see R. Kent Dybvig's excellent @cite{The Scheme Programming Language}, either
666edition 3 or 4, in the chapter on syntax. Dybvig was the primary author of the
667@code{syntax-case} system. The book itself is available online at
668@uref{http://scheme.com/tspl4/}.
669
e4955559
AW
670@node Defmacros
671@subsection Lisp-style Macro Definitions
672
1fc8dcc7
AW
673The traditional way to define macros in Lisp is very similar to procedure
674definitions. The key differences are that the macro definition body should
675return a list that describes the transformed expression, and that the definition
676is marked as a macro definition (rather than a procedure definition) by the use
677of a different definition keyword: in Lisp, @code{defmacro} rather than
678@code{defun}, and in Scheme, @code{define-macro} rather than @code{define}.
e4955559
AW
679
680@fnindex defmacro
681@fnindex define-macro
682Guile supports this style of macro definition using both @code{defmacro}
683and @code{define-macro}. The only difference between them is how the
684macro name and arguments are grouped together in the definition:
685
686@lisp
687(defmacro @var{name} (@var{args} @dots{}) @var{body} @dots{})
688@end lisp
689
690@noindent
691is the same as
692
693@lisp
694(define-macro (@var{name} @var{args} @dots{}) @var{body} @dots{})
695@end lisp
696
697@noindent
698The difference is analogous to the corresponding difference between
699Lisp's @code{defun} and Scheme's @code{define}.
700
1fc8dcc7
AW
701Having read the previous section on @code{syntax-case}, it's probably clear that
702Guile actually implements defmacros in terms of @code{syntax-case}, applying the
703transformer on the expression between invocations of @code{syntax->datum} and
704@code{datum->syntax}. This realization leads us to the problem with defmacros,
705that they do not preserve referential transparency. One can be careful to not
706introduce bindings into expanded code, via liberal use of @code{gensym}, but
707there is no getting around the lack of referential transparency for free
708bindings in the macro itself.
e4955559 709
1fc8dcc7 710Even a macro as simple as our @code{when} from before is difficult to get right:
e4955559 711
1fc8dcc7
AW
712@example
713(define-macro (when cond exp . rest)
714 `(if ,cond
715 (begin ,exp . ,rest)))
e4955559 716
1fc8dcc7
AW
717(when #f (display "Launching missiles!\n"))
718@result{} #f
e4955559 719
1fc8dcc7
AW
720(let ((if list))
721 (when #f (display "Launching missiles!\n")))
722@print{} Launching missiles!
723@result{} (#f #<unspecified>)
724@end example
725
726Guile's perspective is that defmacros have had a good run, but that modern
727macros should be written with @code{syntax-rules} or @code{syntax-case}. There
728are still many uses of defmacros within Guile itself, but we will be phasing
729them out over time. Of course we won't take away @code{defmacro} or
730@code{define-macro} themselves, as there is lots of code out there that uses
731them.
e4955559
AW
732
733
734@node Identifier Macros
735@subsection Identifier Macros
736
6ffd4131
AW
737When the syntax expander sees a form in which the first element is a macro, the
738whole form gets passed to the macro's syntax transformer. One may visualize this
739as:
740
741@example
742(define-syntax foo foo-transformer)
743(foo @var{arg}...)
744;; expands via
745(foo-transformer #'(foo @var{arg}...))
746@end example
747
748If, on the other hand, a macro is referenced in some other part of a form, the
749syntax transformer is invoked with only the macro reference, not the whole form.
750
751@example
752(define-syntax foo foo-transformer)
753foo
754;; expands via
755(foo-transformer #'foo)
756@end example
757
758This allows bare identifier references to be replaced programmatically via a
759macro. @code{syntax-rules} provides some syntax to effect this transformation
760more easily.
761
762@deffn {Syntax} identifier-syntax exp
763Returns a macro transformer that will replace occurences of the macro with
764@var{exp}.
765@end deffn
766
767For example, if you are importing external code written in terms of @code{fx+},
768the fixnum addition operator, but Guile doesn't have @code{fx+}, you may use the
769following to replace @code{fx+} with @code{+}:
770
771@example
772(define-syntax fx+ (identifier-syntax +))
773@end example
774
69724dde
AW
775There is also special support for recognizing identifiers on the
776left-hand side of a @code{set!} expression, as in the following:
777
778@example
779(define-syntax foo foo-transformer)
780(set! foo @var{val})
781;; expands via
782(foo-transformer #'(set! foo @var{val}))
783;; iff foo-transformer is a "variable transformer"
784@end example
785
786As the example notes, the transformer procedure must be explicitly
787marked as being a ``variable transformer'', as most macros aren't
7545ddd4 788written to discriminate on the form in the operator position.
69724dde
AW
789
790@deffn {Scheme Procedure} make-variable-transformer transformer
791Mark the @var{transformer} procedure as being a ``variable
792transformer''. In practice this means that, when bound to a syntactic
793keyword, it may detect references to that keyword on the left-hand-side
794of a @code{set!}.
795
796@example
797(define bar 10)
798(define-syntax bar-alias
799 (make-variable-transformer
800 (lambda (x)
801 (syntax-case x (set!)
802 ((set! var val) #'(set! bar val))
803 ((var arg ...) #'(bar arg ...))
804 (var (identifier? #'var) #'bar)))))
805
806bar-alias @result{} 10
807(set! bar-alias 20)
808bar @result{} 20
809(set! bar 30)
810bar-alias @result{} 30
811@end example
812@end deffn
813
814There is an extension to identifer-syntax which allows it to handle the
815@code{set!} case as well:
816
817@deffn {Syntax} identifier-syntax (var exp1) ((set! var val) exp2)
818Create a variable transformer. The first clause is used for references
819to the variable in operator or operand position, and the second for
820appearances of the variable on the left-hand-side of an assignment.
821
822For example, the previous @code{bar-alias} example could be expressed
823more succinctly like this:
824
825@example
826(define-syntax bar-alias
827 (identifier-syntax
828 (var bar)
829 ((set! var val) (set! bar val))))
830@end example
831
832@noindent
833As before, the templates in @code{identifier-syntax} forms do not need
834wrapping in @code{#'} syntax forms.
835@end deffn
836
6ffd4131 837
e4955559
AW
838@node Eval When
839@subsection Eval-when
840
6ffd4131
AW
841As @code{syntax-case} macros have the whole power of Scheme available to them,
842they present a problem regarding time: when a macro runs, what parts of the
843program are available for the macro to use?
e4955559 844
6ffd4131
AW
845The default answer to this question is that when you import a module (via
846@code{define-module} or @code{use-modules}), that module will be loaded up at
847expansion-time, as well as at run-time. Additionally, top-level syntactic
848definitions within one compilation unit made by @code{define-syntax} are also
849evaluated at expansion time, in the order that they appear in the compilation
850unit (file).
851
852But if a syntactic definition needs to call out to a normal procedure at
853expansion-time, it might well need need special declarations to indicate that
854the procedure should be made available at expansion-time.
855
856For example, the following code will work at a REPL, but not in a file:
857
858@example
859;; incorrect
860(use-modules (srfi srfi-19))
861(define (date) (date->string (current-date)))
862(define-syntax %date (identifier-syntax (date)))
863(define *compilation-date* %date)
864@end example
e4955559 865
6ffd4131
AW
866It works at a REPL because the expressions are evaluated one-by-one, in order,
867but if placed in a file, the expressions are expanded one-by-one, but not
868evaluated until the compiled file is loaded.
869
870The fix is to use @code{eval-when}.
871
872@example
873;; correct: using eval-when
874(use-modules (srfi srfi-19))
875(eval-when (compile load eval)
876 (define (date) (date->string (current-date))))
877(define-syntax %date (identifier-syntax (date)))
878(define *compilation-date* %date)
879@end example
880
881@deffn {Syntax} eval-when conditions exp...
882Evaluate @var{exp...} under the given @var{conditions}. Valid conditions include
883@code{eval}, @code{load}, and @code{compile}. If you need to use
884@code{eval-when}, use it with all three conditions, as in the above example.
885Other uses of @code{eval-when} may void your warranty or poison your cat.
886@end deffn
887
888@node Internal Macros
889@subsection Internal Macros
e4955559
AW
890
891@deffn {Scheme Procedure} make-syntax-transformer name type binding
6ffd4131
AW
892Construct a syntax transformer object. This is part of Guile's low-level support
893for syntax-case.
e4955559
AW
894@end deffn
895
896@deffn {Scheme Procedure} macro? obj
897@deffnx {C Function} scm_macro_p (obj)
6ffd4131
AW
898Return @code{#t} iff @var{obj} is a syntax transformer.
899
900Note that it's a bit difficult to actually get a macro as a first-class object;
901simply naming it (like @code{case}) will produce a syntax error. But it is
902possible to get these objects using @code{module-ref}:
903
904@example
905(macro? (module-ref (current-module) 'case))
906@result{} #t
907@end example
e4955559
AW
908@end deffn
909
910@deffn {Scheme Procedure} macro-type m
911@deffnx {C Function} scm_macro_type (m)
6ffd4131
AW
912Return the @var{type} that was given when @var{m} was constructed, via
913@code{make-syntax-transformer}.
e4955559
AW
914@end deffn
915
916@deffn {Scheme Procedure} macro-name m
917@deffnx {C Function} scm_macro_name (m)
918Return the name of the macro @var{m}.
919@end deffn
920
e4955559
AW
921@deffn {Scheme Procedure} macro-binding m
922@deffnx {C Function} scm_macro_binding (m)
923Return the binding of the macro @var{m}.
924@end deffn
925
6ffd4131
AW
926@deffn {Scheme Procedure} macro-transformer m
927@deffnx {C Function} scm_macro_transformer (m)
928Return the transformer of the macro @var{m}. This will return a procedure, for
929which one may ask the docstring. That's the whole reason this section is
930documented. Actually a part of the result of @code{macro-binding}.
931@end deffn
932
e4955559
AW
933
934@c Local Variables:
935@c TeX-master: "guile.texi"
936@c End: