Merge branch 'master' into wip-manual-2
[bpt/guile.git] / doc / ref / api-data.texi
CommitLineData
07d83abe
MV
1@c -*-texinfo-*-
2@c This is part of the GNU Guile Reference Manual.
27219b32 3@c Copyright (C) 1996, 1997, 2000, 2001, 2002, 2003, 2004, 2006, 2007, 2008, 2009, 2010
07d83abe
MV
4@c Free Software Foundation, Inc.
5@c See the file guile.texi for copying conditions.
6
07d83abe
MV
7@node Simple Data Types
8@section Simple Generic Data Types
9
10This chapter describes those of Guile's simple data types which are
11primarily used for their role as items of generic data. By
12@dfn{simple} we mean data types that are not primarily used as
13containers to hold other data --- i.e.@: pairs, lists, vectors and so on.
14For the documentation of such @dfn{compound} data types, see
15@ref{Compound Data Types}.
16
17@c One of the great strengths of Scheme is that there is no straightforward
18@c distinction between ``data'' and ``functionality''. For example,
19@c Guile's support for dynamic linking could be described:
20
21@c @itemize @bullet
22@c @item
23@c either in a ``data-centric'' way, as the behaviour and properties of the
24@c ``dynamically linked object'' data type, and the operations that may be
25@c applied to instances of this type
26
27@c @item
28@c or in a ``functionality-centric'' way, as the set of procedures that
29@c constitute Guile's support for dynamic linking, in the context of the
30@c module system.
31@c @end itemize
32
33@c The contents of this chapter are, therefore, a matter of judgment. By
34@c @dfn{generic}, we mean to select those data types whose typical use as
35@c @emph{data} in a wide variety of programming contexts is more important
36@c than their use in the implementation of a particular piece of
37@c @emph{functionality}. The last section of this chapter provides
38@c references for all the data types that are documented not here but in a
39@c ``functionality-centric'' way elsewhere in the manual.
40
41@menu
42* Booleans:: True/false values.
43* Numbers:: Numerical data types.
050ab45f
MV
44* Characters:: Single characters.
45* Character Sets:: Sets of characters.
46* Strings:: Sequences of characters.
b242715b 47* Bytevectors:: Sequences of bytes.
07d83abe
MV
48* Regular Expressions:: Pattern matching and substitution.
49* Symbols:: Symbols.
50* Keywords:: Self-quoting, customizable display keywords.
51* Other Types:: "Functionality-centric" data types.
52@end menu
53
54
55@node Booleans
56@subsection Booleans
57@tpindex Booleans
58
59The two boolean values are @code{#t} for true and @code{#f} for false.
60
61Boolean values are returned by predicate procedures, such as the general
62equality predicates @code{eq?}, @code{eqv?} and @code{equal?}
63(@pxref{Equality}) and numerical and string comparison operators like
64@code{string=?} (@pxref{String Comparison}) and @code{<=}
65(@pxref{Comparison}).
66
67@lisp
68(<= 3 8)
69@result{} #t
70
71(<= 3 -3)
72@result{} #f
73
74(equal? "house" "houses")
75@result{} #f
76
77(eq? #f #f)
78@result{}
79#t
80@end lisp
81
82In test condition contexts like @code{if} and @code{cond} (@pxref{if
83cond case}), where a group of subexpressions will be evaluated only if a
84@var{condition} expression evaluates to ``true'', ``true'' means any
85value at all except @code{#f}.
86
87@lisp
88(if #t "yes" "no")
89@result{} "yes"
90
91(if 0 "yes" "no")
92@result{} "yes"
93
94(if #f "yes" "no")
95@result{} "no"
96@end lisp
97
98A result of this asymmetry is that typical Scheme source code more often
99uses @code{#f} explicitly than @code{#t}: @code{#f} is necessary to
100represent an @code{if} or @code{cond} false value, whereas @code{#t} is
101not necessary to represent an @code{if} or @code{cond} true value.
102
103It is important to note that @code{#f} is @strong{not} equivalent to any
104other Scheme value. In particular, @code{#f} is not the same as the
105number 0 (like in C and C++), and not the same as the ``empty list''
106(like in some Lisp dialects).
107
108In C, the two Scheme boolean values are available as the two constants
109@code{SCM_BOOL_T} for @code{#t} and @code{SCM_BOOL_F} for @code{#f}.
110Care must be taken with the false value @code{SCM_BOOL_F}: it is not
111false when used in C conditionals. In order to test for it, use
112@code{scm_is_false} or @code{scm_is_true}.
113
114@rnindex not
115@deffn {Scheme Procedure} not x
116@deffnx {C Function} scm_not (x)
117Return @code{#t} if @var{x} is @code{#f}, else return @code{#f}.
118@end deffn
119
120@rnindex boolean?
121@deffn {Scheme Procedure} boolean? obj
122@deffnx {C Function} scm_boolean_p (obj)
123Return @code{#t} if @var{obj} is either @code{#t} or @code{#f}, else
124return @code{#f}.
125@end deffn
126
127@deftypevr {C Macro} SCM SCM_BOOL_T
128The @code{SCM} representation of the Scheme object @code{#t}.
129@end deftypevr
130
131@deftypevr {C Macro} SCM SCM_BOOL_F
132The @code{SCM} representation of the Scheme object @code{#f}.
133@end deftypevr
134
135@deftypefn {C Function} int scm_is_true (SCM obj)
136Return @code{0} if @var{obj} is @code{#f}, else return @code{1}.
137@end deftypefn
138
139@deftypefn {C Function} int scm_is_false (SCM obj)
140Return @code{1} if @var{obj} is @code{#f}, else return @code{0}.
141@end deftypefn
142
143@deftypefn {C Function} int scm_is_bool (SCM obj)
144Return @code{1} if @var{obj} is either @code{#t} or @code{#f}, else
145return @code{0}.
146@end deftypefn
147
148@deftypefn {C Function} SCM scm_from_bool (int val)
149Return @code{#f} if @var{val} is @code{0}, else return @code{#t}.
150@end deftypefn
151
152@deftypefn {C Function} int scm_to_bool (SCM val)
153Return @code{1} if @var{val} is @code{SCM_BOOL_T}, return @code{0}
154when @var{val} is @code{SCM_BOOL_F}, else signal a `wrong type' error.
155
156You should probably use @code{scm_is_true} instead of this function
157when you just want to test a @code{SCM} value for trueness.
158@end deftypefn
159
160@node Numbers
161@subsection Numerical data types
162@tpindex Numbers
163
164Guile supports a rich ``tower'' of numerical types --- integer,
165rational, real and complex --- and provides an extensive set of
166mathematical and scientific functions for operating on numerical
167data. This section of the manual documents those types and functions.
168
169You may also find it illuminating to read R5RS's presentation of numbers
170in Scheme, which is particularly clear and accessible: see
171@ref{Numbers,,,r5rs,R5RS}.
172
173@menu
174* Numerical Tower:: Scheme's numerical "tower".
175* Integers:: Whole numbers.
176* Reals and Rationals:: Real and rational numbers.
177* Complex Numbers:: Complex numbers.
178* Exactness:: Exactness and inexactness.
179* Number Syntax:: Read syntax for numerical data.
180* Integer Operations:: Operations on integer values.
181* Comparison:: Comparison predicates.
182* Conversion:: Converting numbers to and from strings.
183* Complex:: Complex number operations.
184* Arithmetic:: Arithmetic functions.
185* Scientific:: Scientific functions.
07d83abe
MV
186* Bitwise Operations:: Logical AND, OR, NOT, and so on.
187* Random:: Random number generation.
188@end menu
189
190
191@node Numerical Tower
192@subsubsection Scheme's Numerical ``Tower''
193@rnindex number?
194
195Scheme's numerical ``tower'' consists of the following categories of
196numbers:
197
198@table @dfn
199@item integers
200Whole numbers, positive or negative; e.g.@: --5, 0, 18.
201
202@item rationals
203The set of numbers that can be expressed as @math{@var{p}/@var{q}}
204where @var{p} and @var{q} are integers; e.g.@: @math{9/16} works, but
205pi (an irrational number) doesn't. These include integers
206(@math{@var{n}/1}).
207
208@item real numbers
209The set of numbers that describes all possible positions along a
210one-dimensional line. This includes rationals as well as irrational
211numbers.
212
213@item complex numbers
214The set of numbers that describes all possible positions in a two
215dimensional space. This includes real as well as imaginary numbers
216(@math{@var{a}+@var{b}i}, where @var{a} is the @dfn{real part},
217@var{b} is the @dfn{imaginary part}, and @math{i} is the square root of
218@minus{}1.)
219@end table
220
221It is called a tower because each category ``sits on'' the one that
222follows it, in the sense that every integer is also a rational, every
223rational is also real, and every real number is also a complex number
224(but with zero imaginary part).
225
226In addition to the classification into integers, rationals, reals and
227complex numbers, Scheme also distinguishes between whether a number is
228represented exactly or not. For example, the result of
9f1ba6a9
NJ
229@m{2\sin(\pi/4),2*sin(pi/4)} is exactly @m{\sqrt{2},2^(1/2)}, but Guile
230can represent neither @m{\pi/4,pi/4} nor @m{\sqrt{2},2^(1/2)} exactly.
07d83abe
MV
231Instead, it stores an inexact approximation, using the C type
232@code{double}.
233
234Guile can represent exact rationals of any magnitude, inexact
235rationals that fit into a C @code{double}, and inexact complex numbers
236with @code{double} real and imaginary parts.
237
238The @code{number?} predicate may be applied to any Scheme value to
239discover whether the value is any of the supported numerical types.
240
241@deffn {Scheme Procedure} number? obj
242@deffnx {C Function} scm_number_p (obj)
243Return @code{#t} if @var{obj} is any kind of number, else @code{#f}.
244@end deffn
245
246For example:
247
248@lisp
249(number? 3)
250@result{} #t
251
252(number? "hello there!")
253@result{} #f
254
255(define pi 3.141592654)
256(number? pi)
257@result{} #t
258@end lisp
259
5615f696
MV
260@deftypefn {C Function} int scm_is_number (SCM obj)
261This is equivalent to @code{scm_is_true (scm_number_p (obj))}.
262@end deftypefn
263
07d83abe
MV
264The next few subsections document each of Guile's numerical data types
265in detail.
266
267@node Integers
268@subsubsection Integers
269
270@tpindex Integer numbers
271
272@rnindex integer?
273
274Integers are whole numbers, that is numbers with no fractional part,
275such as 2, 83, and @minus{}3789.
276
277Integers in Guile can be arbitrarily big, as shown by the following
278example.
279
280@lisp
281(define (factorial n)
282 (let loop ((n n) (product 1))
283 (if (= n 0)
284 product
285 (loop (- n 1) (* product n)))))
286
287(factorial 3)
288@result{} 6
289
290(factorial 20)
291@result{} 2432902008176640000
292
293(- (factorial 45))
294@result{} -119622220865480194561963161495657715064383733760000000000
295@end lisp
296
297Readers whose background is in programming languages where integers are
298limited by the need to fit into just 4 or 8 bytes of memory may find
299this surprising, or suspect that Guile's representation of integers is
300inefficient. In fact, Guile achieves a near optimal balance of
301convenience and efficiency by using the host computer's native
302representation of integers where possible, and a more general
303representation where the required number does not fit in the native
304form. Conversion between these two representations is automatic and
305completely invisible to the Scheme level programmer.
306
307The infinities @samp{+inf.0} and @samp{-inf.0} are considered to be
308inexact integers. They are explained in detail in the next section,
309together with reals and rationals.
310
311C has a host of different integer types, and Guile offers a host of
312functions to convert between them and the @code{SCM} representation.
313For example, a C @code{int} can be handled with @code{scm_to_int} and
314@code{scm_from_int}. Guile also defines a few C integer types of its
315own, to help with differences between systems.
316
317C integer types that are not covered can be handled with the generic
318@code{scm_to_signed_integer} and @code{scm_from_signed_integer} for
319signed types, or with @code{scm_to_unsigned_integer} and
320@code{scm_from_unsigned_integer} for unsigned types.
321
322Scheme integers can be exact and inexact. For example, a number
323written as @code{3.0} with an explicit decimal-point is inexact, but
324it is also an integer. The functions @code{integer?} and
325@code{scm_is_integer} report true for such a number, but the functions
326@code{scm_is_signed_integer} and @code{scm_is_unsigned_integer} only
327allow exact integers and thus report false. Likewise, the conversion
328functions like @code{scm_to_signed_integer} only accept exact
329integers.
330
331The motivation for this behavior is that the inexactness of a number
332should not be lost silently. If you want to allow inexact integers,
877f06c3 333you can explicitly insert a call to @code{inexact->exact} or to its C
07d83abe
MV
334equivalent @code{scm_inexact_to_exact}. (Only inexact integers will
335be converted by this call into exact integers; inexact non-integers
336will become exact fractions.)
337
338@deffn {Scheme Procedure} integer? x
339@deffnx {C Function} scm_integer_p (x)
909fcc97 340Return @code{#t} if @var{x} is an exact or inexact integer number, else
07d83abe
MV
341@code{#f}.
342
343@lisp
344(integer? 487)
345@result{} #t
346
347(integer? 3.0)
348@result{} #t
349
350(integer? -3.4)
351@result{} #f
352
353(integer? +inf.0)
354@result{} #t
355@end lisp
356@end deffn
357
358@deftypefn {C Function} int scm_is_integer (SCM x)
359This is equivalent to @code{scm_is_true (scm_integer_p (x))}.
360@end deftypefn
361
362@defvr {C Type} scm_t_int8
363@defvrx {C Type} scm_t_uint8
364@defvrx {C Type} scm_t_int16
365@defvrx {C Type} scm_t_uint16
366@defvrx {C Type} scm_t_int32
367@defvrx {C Type} scm_t_uint32
368@defvrx {C Type} scm_t_int64
369@defvrx {C Type} scm_t_uint64
370@defvrx {C Type} scm_t_intmax
371@defvrx {C Type} scm_t_uintmax
372The C types are equivalent to the corresponding ISO C types but are
373defined on all platforms, with the exception of @code{scm_t_int64} and
374@code{scm_t_uint64}, which are only defined when a 64-bit type is
375available. For example, @code{scm_t_int8} is equivalent to
376@code{int8_t}.
377
378You can regard these definitions as a stop-gap measure until all
379platforms provide these types. If you know that all the platforms
380that you are interested in already provide these types, it is better
381to use them directly instead of the types provided by Guile.
382@end defvr
383
384@deftypefn {C Function} int scm_is_signed_integer (SCM x, scm_t_intmax min, scm_t_intmax max)
385@deftypefnx {C Function} int scm_is_unsigned_integer (SCM x, scm_t_uintmax min, scm_t_uintmax max)
386Return @code{1} when @var{x} represents an exact integer that is
387between @var{min} and @var{max}, inclusive.
388
389These functions can be used to check whether a @code{SCM} value will
390fit into a given range, such as the range of a given C integer type.
391If you just want to convert a @code{SCM} value to a given C integer
392type, use one of the conversion functions directly.
393@end deftypefn
394
395@deftypefn {C Function} scm_t_intmax scm_to_signed_integer (SCM x, scm_t_intmax min, scm_t_intmax max)
396@deftypefnx {C Function} scm_t_uintmax scm_to_unsigned_integer (SCM x, scm_t_uintmax min, scm_t_uintmax max)
397When @var{x} represents an exact integer that is between @var{min} and
398@var{max} inclusive, return that integer. Else signal an error,
399either a `wrong-type' error when @var{x} is not an exact integer, or
400an `out-of-range' error when it doesn't fit the given range.
401@end deftypefn
402
403@deftypefn {C Function} SCM scm_from_signed_integer (scm_t_intmax x)
404@deftypefnx {C Function} SCM scm_from_unsigned_integer (scm_t_uintmax x)
405Return the @code{SCM} value that represents the integer @var{x}. This
406function will always succeed and will always return an exact number.
407@end deftypefn
408
409@deftypefn {C Function} char scm_to_char (SCM x)
410@deftypefnx {C Function} {signed char} scm_to_schar (SCM x)
411@deftypefnx {C Function} {unsigned char} scm_to_uchar (SCM x)
412@deftypefnx {C Function} short scm_to_short (SCM x)
413@deftypefnx {C Function} {unsigned short} scm_to_ushort (SCM x)
414@deftypefnx {C Function} int scm_to_int (SCM x)
415@deftypefnx {C Function} {unsigned int} scm_to_uint (SCM x)
416@deftypefnx {C Function} long scm_to_long (SCM x)
417@deftypefnx {C Function} {unsigned long} scm_to_ulong (SCM x)
418@deftypefnx {C Function} {long long} scm_to_long_long (SCM x)
419@deftypefnx {C Function} {unsigned long long} scm_to_ulong_long (SCM x)
420@deftypefnx {C Function} size_t scm_to_size_t (SCM x)
421@deftypefnx {C Function} ssize_t scm_to_ssize_t (SCM x)
422@deftypefnx {C Function} scm_t_int8 scm_to_int8 (SCM x)
423@deftypefnx {C Function} scm_t_uint8 scm_to_uint8 (SCM x)
424@deftypefnx {C Function} scm_t_int16 scm_to_int16 (SCM x)
425@deftypefnx {C Function} scm_t_uint16 scm_to_uint16 (SCM x)
426@deftypefnx {C Function} scm_t_int32 scm_to_int32 (SCM x)
427@deftypefnx {C Function} scm_t_uint32 scm_to_uint32 (SCM x)
428@deftypefnx {C Function} scm_t_int64 scm_to_int64 (SCM x)
429@deftypefnx {C Function} scm_t_uint64 scm_to_uint64 (SCM x)
430@deftypefnx {C Function} scm_t_intmax scm_to_intmax (SCM x)
431@deftypefnx {C Function} scm_t_uintmax scm_to_uintmax (SCM x)
432When @var{x} represents an exact integer that fits into the indicated
433C type, return that integer. Else signal an error, either a
434`wrong-type' error when @var{x} is not an exact integer, or an
435`out-of-range' error when it doesn't fit the given range.
436
437The functions @code{scm_to_long_long}, @code{scm_to_ulong_long},
438@code{scm_to_int64}, and @code{scm_to_uint64} are only available when
439the corresponding types are.
440@end deftypefn
441
442@deftypefn {C Function} SCM scm_from_char (char x)
443@deftypefnx {C Function} SCM scm_from_schar (signed char x)
444@deftypefnx {C Function} SCM scm_from_uchar (unsigned char x)
445@deftypefnx {C Function} SCM scm_from_short (short x)
446@deftypefnx {C Function} SCM scm_from_ushort (unsigned short x)
447@deftypefnx {C Function} SCM scm_from_int (int x)
448@deftypefnx {C Function} SCM scm_from_uint (unsigned int x)
449@deftypefnx {C Function} SCM scm_from_long (long x)
450@deftypefnx {C Function} SCM scm_from_ulong (unsigned long x)
451@deftypefnx {C Function} SCM scm_from_long_long (long long x)
452@deftypefnx {C Function} SCM scm_from_ulong_long (unsigned long long x)
453@deftypefnx {C Function} SCM scm_from_size_t (size_t x)
454@deftypefnx {C Function} SCM scm_from_ssize_t (ssize_t x)
455@deftypefnx {C Function} SCM scm_from_int8 (scm_t_int8 x)
456@deftypefnx {C Function} SCM scm_from_uint8 (scm_t_uint8 x)
457@deftypefnx {C Function} SCM scm_from_int16 (scm_t_int16 x)
458@deftypefnx {C Function} SCM scm_from_uint16 (scm_t_uint16 x)
459@deftypefnx {C Function} SCM scm_from_int32 (scm_t_int32 x)
460@deftypefnx {C Function} SCM scm_from_uint32 (scm_t_uint32 x)
461@deftypefnx {C Function} SCM scm_from_int64 (scm_t_int64 x)
462@deftypefnx {C Function} SCM scm_from_uint64 (scm_t_uint64 x)
463@deftypefnx {C Function} SCM scm_from_intmax (scm_t_intmax x)
464@deftypefnx {C Function} SCM scm_from_uintmax (scm_t_uintmax x)
465Return the @code{SCM} value that represents the integer @var{x}.
466These functions will always succeed and will always return an exact
467number.
468@end deftypefn
469
08962922
MV
470@deftypefn {C Function} void scm_to_mpz (SCM val, mpz_t rop)
471Assign @var{val} to the multiple precision integer @var{rop}.
472@var{val} must be an exact integer, otherwise an error will be
473signalled. @var{rop} must have been initialized with @code{mpz_init}
474before this function is called. When @var{rop} is no longer needed
475the occupied space must be freed with @code{mpz_clear}.
476@xref{Initializing Integers,,, gmp, GNU MP Manual}, for details.
477@end deftypefn
478
9f1ba6a9 479@deftypefn {C Function} SCM scm_from_mpz (mpz_t val)
08962922
MV
480Return the @code{SCM} value that represents @var{val}.
481@end deftypefn
482
07d83abe
MV
483@node Reals and Rationals
484@subsubsection Real and Rational Numbers
485@tpindex Real numbers
486@tpindex Rational numbers
487
488@rnindex real?
489@rnindex rational?
490
491Mathematically, the real numbers are the set of numbers that describe
492all possible points along a continuous, infinite, one-dimensional line.
493The rational numbers are the set of all numbers that can be written as
494fractions @var{p}/@var{q}, where @var{p} and @var{q} are integers.
495All rational numbers are also real, but there are real numbers that
34942993
KR
496are not rational, for example @m{\sqrt2, the square root of 2}, and
497@m{\pi,pi}.
07d83abe
MV
498
499Guile can represent both exact and inexact rational numbers, but it
500can not represent irrational numbers. Exact rationals are represented
501by storing the numerator and denominator as two exact integers.
502Inexact rationals are stored as floating point numbers using the C
503type @code{double}.
504
505Exact rationals are written as a fraction of integers. There must be
506no whitespace around the slash:
507
508@lisp
5091/2
510-22/7
511@end lisp
512
513Even though the actual encoding of inexact rationals is in binary, it
514may be helpful to think of it as a decimal number with a limited
515number of significant figures and a decimal point somewhere, since
516this corresponds to the standard notation for non-whole numbers. For
517example:
518
519@lisp
5200.34
521-0.00000142857931198
522-5648394822220000000000.0
5234.0
524@end lisp
525
526The limited precision of Guile's encoding means that any ``real'' number
527in Guile can be written in a rational form, by multiplying and then dividing
528by sufficient powers of 10 (or in fact, 2). For example,
529@samp{-0.00000142857931198} is the same as @minus{}142857931198 divided by
530100000000000000000. In Guile's current incarnation, therefore, the
531@code{rational?} and @code{real?} predicates are equivalent.
532
533
534Dividing by an exact zero leads to a error message, as one might
535expect. However, dividing by an inexact zero does not produce an
536error. Instead, the result of the division is either plus or minus
537infinity, depending on the sign of the divided number.
538
539The infinities are written @samp{+inf.0} and @samp{-inf.0},
be3eb25c 540respectively. This syntax is also recognized by @code{read} as an
07d83abe
MV
541extension to the usual Scheme syntax.
542
543Dividing zero by zero yields something that is not a number at all:
544@samp{+nan.0}. This is the special `not a number' value.
545
546On platforms that follow @acronym{IEEE} 754 for their floating point
547arithmetic, the @samp{+inf.0}, @samp{-inf.0}, and @samp{+nan.0} values
548are implemented using the corresponding @acronym{IEEE} 754 values.
549They behave in arithmetic operations like @acronym{IEEE} 754 describes
550it, i.e., @code{(= +nan.0 +nan.0)} @result{} @code{#f}.
551
552The infinities are inexact integers and are considered to be both even
553and odd. While @samp{+nan.0} is not @code{=} to itself, it is
554@code{eqv?} to itself.
555
556To test for the special values, use the functions @code{inf?} and
557@code{nan?}.
558
559@deffn {Scheme Procedure} real? obj
560@deffnx {C Function} scm_real_p (obj)
561Return @code{#t} if @var{obj} is a real number, else @code{#f}. Note
562that the sets of integer and rational values form subsets of the set
563of real numbers, so the predicate will also be fulfilled if @var{obj}
564is an integer number or a rational number.
565@end deffn
566
567@deffn {Scheme Procedure} rational? x
568@deffnx {C Function} scm_rational_p (x)
569Return @code{#t} if @var{x} is a rational number, @code{#f} otherwise.
570Note that the set of integer values forms a subset of the set of
571rational numbers, i. e. the predicate will also be fulfilled if
572@var{x} is an integer number.
573
574Since Guile can not represent irrational numbers, every number
575satisfying @code{real?} also satisfies @code{rational?} in Guile.
576@end deffn
577
578@deffn {Scheme Procedure} rationalize x eps
579@deffnx {C Function} scm_rationalize (x, eps)
580Returns the @emph{simplest} rational number differing
581from @var{x} by no more than @var{eps}.
582
583As required by @acronym{R5RS}, @code{rationalize} only returns an
584exact result when both its arguments are exact. Thus, you might need
585to use @code{inexact->exact} on the arguments.
586
587@lisp
588(rationalize (inexact->exact 1.2) 1/100)
589@result{} 6/5
590@end lisp
591
592@end deffn
593
d3df9759
MV
594@deffn {Scheme Procedure} inf? x
595@deffnx {C Function} scm_inf_p (x)
07d83abe
MV
596Return @code{#t} if @var{x} is either @samp{+inf.0} or @samp{-inf.0},
597@code{#f} otherwise.
598@end deffn
599
600@deffn {Scheme Procedure} nan? x
d3df9759 601@deffnx {C Function} scm_nan_p (x)
07d83abe
MV
602Return @code{#t} if @var{x} is @samp{+nan.0}, @code{#f} otherwise.
603@end deffn
604
cdf1ad3b
MV
605@deffn {Scheme Procedure} nan
606@deffnx {C Function} scm_nan ()
607Return NaN.
608@end deffn
609
610@deffn {Scheme Procedure} inf
611@deffnx {C Function} scm_inf ()
612Return Inf.
613@end deffn
614
d3df9759
MV
615@deffn {Scheme Procedure} numerator x
616@deffnx {C Function} scm_numerator (x)
617Return the numerator of the rational number @var{x}.
618@end deffn
619
620@deffn {Scheme Procedure} denominator x
621@deffnx {C Function} scm_denominator (x)
622Return the denominator of the rational number @var{x}.
623@end deffn
624
625@deftypefn {C Function} int scm_is_real (SCM val)
626@deftypefnx {C Function} int scm_is_rational (SCM val)
627Equivalent to @code{scm_is_true (scm_real_p (val))} and
628@code{scm_is_true (scm_rational_p (val))}, respectively.
629@end deftypefn
630
631@deftypefn {C Function} double scm_to_double (SCM val)
632Returns the number closest to @var{val} that is representable as a
633@code{double}. Returns infinity for a @var{val} that is too large in
634magnitude. The argument @var{val} must be a real number.
635@end deftypefn
636
637@deftypefn {C Function} SCM scm_from_double (double val)
be3eb25c 638Return the @code{SCM} value that represents @var{val}. The returned
d3df9759
MV
639value is inexact according to the predicate @code{inexact?}, but it
640will be exactly equal to @var{val}.
641@end deftypefn
642
07d83abe
MV
643@node Complex Numbers
644@subsubsection Complex Numbers
645@tpindex Complex numbers
646
647@rnindex complex?
648
649Complex numbers are the set of numbers that describe all possible points
650in a two-dimensional space. The two coordinates of a particular point
651in this space are known as the @dfn{real} and @dfn{imaginary} parts of
652the complex number that describes that point.
653
654In Guile, complex numbers are written in rectangular form as the sum of
655their real and imaginary parts, using the symbol @code{i} to indicate
656the imaginary part.
657
658@lisp
6593+4i
660@result{}
6613.0+4.0i
662
663(* 3-8i 2.3+0.3i)
664@result{}
6659.3-17.5i
666@end lisp
667
34942993
KR
668@cindex polar form
669@noindent
670Polar form can also be used, with an @samp{@@} between magnitude and
671angle,
672
673@lisp
6741@@3.141592 @result{} -1.0 (approx)
675-1@@1.57079 @result{} 0.0-1.0i (approx)
676@end lisp
677
07d83abe
MV
678Guile represents a complex number with a non-zero imaginary part as a
679pair of inexact rationals, so the real and imaginary parts of a
680complex number have the same properties of inexactness and limited
681precision as single inexact rational numbers. Guile can not represent
682exact complex numbers with non-zero imaginary parts.
683
5615f696
MV
684@deffn {Scheme Procedure} complex? z
685@deffnx {C Function} scm_complex_p (z)
07d83abe
MV
686Return @code{#t} if @var{x} is a complex number, @code{#f}
687otherwise. Note that the sets of real, rational and integer
688values form subsets of the set of complex numbers, i. e. the
689predicate will also be fulfilled if @var{x} is a real,
690rational or integer number.
691@end deffn
692
c9dc8c6c
MV
693@deftypefn {C Function} int scm_is_complex (SCM val)
694Equivalent to @code{scm_is_true (scm_complex_p (val))}.
695@end deftypefn
696
07d83abe
MV
697@node Exactness
698@subsubsection Exact and Inexact Numbers
699@tpindex Exact numbers
700@tpindex Inexact numbers
701
702@rnindex exact?
703@rnindex inexact?
704@rnindex exact->inexact
705@rnindex inexact->exact
706
707R5RS requires that a calculation involving inexact numbers always
708produces an inexact result. To meet this requirement, Guile
709distinguishes between an exact integer value such as @samp{5} and the
710corresponding inexact real value which, to the limited precision
711available, has no fractional part, and is printed as @samp{5.0}. Guile
712will only convert the latter value to the former when forced to do so by
713an invocation of the @code{inexact->exact} procedure.
714
715@deffn {Scheme Procedure} exact? z
716@deffnx {C Function} scm_exact_p (z)
717Return @code{#t} if the number @var{z} is exact, @code{#f}
718otherwise.
719
720@lisp
721(exact? 2)
722@result{} #t
723
724(exact? 0.5)
725@result{} #f
726
727(exact? (/ 2))
728@result{} #t
729@end lisp
730
731@end deffn
732
733@deffn {Scheme Procedure} inexact? z
734@deffnx {C Function} scm_inexact_p (z)
735Return @code{#t} if the number @var{z} is inexact, @code{#f}
736else.
737@end deffn
738
739@deffn {Scheme Procedure} inexact->exact z
740@deffnx {C Function} scm_inexact_to_exact (z)
741Return an exact number that is numerically closest to @var{z}, when
742there is one. For inexact rationals, Guile returns the exact rational
743that is numerically equal to the inexact rational. Inexact complex
744numbers with a non-zero imaginary part can not be made exact.
745
746@lisp
747(inexact->exact 0.5)
748@result{} 1/2
749@end lisp
750
751The following happens because 12/10 is not exactly representable as a
752@code{double} (on most platforms). However, when reading a decimal
753number that has been marked exact with the ``#e'' prefix, Guile is
754able to represent it correctly.
755
756@lisp
757(inexact->exact 1.2)
758@result{} 5404319552844595/4503599627370496
759
760#e1.2
761@result{} 6/5
762@end lisp
763
764@end deffn
765
766@c begin (texi-doc-string "guile" "exact->inexact")
767@deffn {Scheme Procedure} exact->inexact z
768@deffnx {C Function} scm_exact_to_inexact (z)
769Convert the number @var{z} to its inexact representation.
770@end deffn
771
772
773@node Number Syntax
774@subsubsection Read Syntax for Numerical Data
775
776The read syntax for integers is a string of digits, optionally
777preceded by a minus or plus character, a code indicating the
778base in which the integer is encoded, and a code indicating whether
779the number is exact or inexact. The supported base codes are:
780
781@table @code
782@item #b
783@itemx #B
784the integer is written in binary (base 2)
785
786@item #o
787@itemx #O
788the integer is written in octal (base 8)
789
790@item #d
791@itemx #D
792the integer is written in decimal (base 10)
793
794@item #x
795@itemx #X
796the integer is written in hexadecimal (base 16)
797@end table
798
799If the base code is omitted, the integer is assumed to be decimal. The
800following examples show how these base codes are used.
801
802@lisp
803-13
804@result{} -13
805
806#d-13
807@result{} -13
808
809#x-13
810@result{} -19
811
812#b+1101
813@result{} 13
814
815#o377
816@result{} 255
817@end lisp
818
819The codes for indicating exactness (which can, incidentally, be applied
820to all numerical values) are:
821
822@table @code
823@item #e
824@itemx #E
825the number is exact
826
827@item #i
828@itemx #I
829the number is inexact.
830@end table
831
832If the exactness indicator is omitted, the number is exact unless it
833contains a radix point. Since Guile can not represent exact complex
834numbers, an error is signalled when asking for them.
835
836@lisp
837(exact? 1.2)
838@result{} #f
839
840(exact? #e1.2)
841@result{} #t
842
843(exact? #e+1i)
844ERROR: Wrong type argument
845@end lisp
846
847Guile also understands the syntax @samp{+inf.0} and @samp{-inf.0} for
848plus and minus infinity, respectively. The value must be written
849exactly as shown, that is, they always must have a sign and exactly
850one zero digit after the decimal point. It also understands
851@samp{+nan.0} and @samp{-nan.0} for the special `not-a-number' value.
852The sign is ignored for `not-a-number' and the value is always printed
853as @samp{+nan.0}.
854
855@node Integer Operations
856@subsubsection Operations on Integer Values
857@rnindex odd?
858@rnindex even?
859@rnindex quotient
860@rnindex remainder
861@rnindex modulo
862@rnindex gcd
863@rnindex lcm
864
865@deffn {Scheme Procedure} odd? n
866@deffnx {C Function} scm_odd_p (n)
867Return @code{#t} if @var{n} is an odd number, @code{#f}
868otherwise.
869@end deffn
870
871@deffn {Scheme Procedure} even? n
872@deffnx {C Function} scm_even_p (n)
873Return @code{#t} if @var{n} is an even number, @code{#f}
874otherwise.
875@end deffn
876
877@c begin (texi-doc-string "guile" "quotient")
878@c begin (texi-doc-string "guile" "remainder")
879@deffn {Scheme Procedure} quotient n d
880@deffnx {Scheme Procedure} remainder n d
881@deffnx {C Function} scm_quotient (n, d)
882@deffnx {C Function} scm_remainder (n, d)
883Return the quotient or remainder from @var{n} divided by @var{d}. The
884quotient is rounded towards zero, and the remainder will have the same
885sign as @var{n}. In all cases quotient and remainder satisfy
886@math{@var{n} = @var{q}*@var{d} + @var{r}}.
887
888@lisp
889(remainder 13 4) @result{} 1
890(remainder -13 4) @result{} -1
891@end lisp
892@end deffn
893
894@c begin (texi-doc-string "guile" "modulo")
895@deffn {Scheme Procedure} modulo n d
896@deffnx {C Function} scm_modulo (n, d)
897Return the remainder from @var{n} divided by @var{d}, with the same
898sign as @var{d}.
899
900@lisp
901(modulo 13 4) @result{} 1
902(modulo -13 4) @result{} 3
903(modulo 13 -4) @result{} -3
904(modulo -13 -4) @result{} -1
905@end lisp
906@end deffn
907
908@c begin (texi-doc-string "guile" "gcd")
fd8a1df5 909@deffn {Scheme Procedure} gcd x@dots{}
07d83abe
MV
910@deffnx {C Function} scm_gcd (x, y)
911Return the greatest common divisor of all arguments.
912If called without arguments, 0 is returned.
913
914The C function @code{scm_gcd} always takes two arguments, while the
915Scheme function can take an arbitrary number.
916@end deffn
917
918@c begin (texi-doc-string "guile" "lcm")
fd8a1df5 919@deffn {Scheme Procedure} lcm x@dots{}
07d83abe
MV
920@deffnx {C Function} scm_lcm (x, y)
921Return the least common multiple of the arguments.
922If called without arguments, 1 is returned.
923
924The C function @code{scm_lcm} always takes two arguments, while the
925Scheme function can take an arbitrary number.
926@end deffn
927
cdf1ad3b
MV
928@deffn {Scheme Procedure} modulo-expt n k m
929@deffnx {C Function} scm_modulo_expt (n, k, m)
930Return @var{n} raised to the integer exponent
931@var{k}, modulo @var{m}.
932
933@lisp
934(modulo-expt 2 3 5)
935 @result{} 3
936@end lisp
937@end deffn
07d83abe
MV
938
939@node Comparison
940@subsubsection Comparison Predicates
941@rnindex zero?
942@rnindex positive?
943@rnindex negative?
944
945The C comparison functions below always takes two arguments, while the
946Scheme functions can take an arbitrary number. Also keep in mind that
947the C functions return one of the Scheme boolean values
948@code{SCM_BOOL_T} or @code{SCM_BOOL_F} which are both true as far as C
949is concerned. Thus, always write @code{scm_is_true (scm_num_eq_p (x,
950y))} when testing the two Scheme numbers @code{x} and @code{y} for
951equality, for example.
952
953@c begin (texi-doc-string "guile" "=")
954@deffn {Scheme Procedure} =
955@deffnx {C Function} scm_num_eq_p (x, y)
956Return @code{#t} if all parameters are numerically equal.
957@end deffn
958
959@c begin (texi-doc-string "guile" "<")
960@deffn {Scheme Procedure} <
961@deffnx {C Function} scm_less_p (x, y)
962Return @code{#t} if the list of parameters is monotonically
963increasing.
964@end deffn
965
966@c begin (texi-doc-string "guile" ">")
967@deffn {Scheme Procedure} >
968@deffnx {C Function} scm_gr_p (x, y)
969Return @code{#t} if the list of parameters is monotonically
970decreasing.
971@end deffn
972
973@c begin (texi-doc-string "guile" "<=")
974@deffn {Scheme Procedure} <=
975@deffnx {C Function} scm_leq_p (x, y)
976Return @code{#t} if the list of parameters is monotonically
977non-decreasing.
978@end deffn
979
980@c begin (texi-doc-string "guile" ">=")
981@deffn {Scheme Procedure} >=
982@deffnx {C Function} scm_geq_p (x, y)
983Return @code{#t} if the list of parameters is monotonically
984non-increasing.
985@end deffn
986
987@c begin (texi-doc-string "guile" "zero?")
988@deffn {Scheme Procedure} zero? z
989@deffnx {C Function} scm_zero_p (z)
990Return @code{#t} if @var{z} is an exact or inexact number equal to
991zero.
992@end deffn
993
994@c begin (texi-doc-string "guile" "positive?")
995@deffn {Scheme Procedure} positive? x
996@deffnx {C Function} scm_positive_p (x)
997Return @code{#t} if @var{x} is an exact or inexact number greater than
998zero.
999@end deffn
1000
1001@c begin (texi-doc-string "guile" "negative?")
1002@deffn {Scheme Procedure} negative? x
1003@deffnx {C Function} scm_negative_p (x)
1004Return @code{#t} if @var{x} is an exact or inexact number less than
1005zero.
1006@end deffn
1007
1008
1009@node Conversion
1010@subsubsection Converting Numbers To and From Strings
1011@rnindex number->string
1012@rnindex string->number
1013
b89c4943
LC
1014The following procedures read and write numbers according to their
1015external representation as defined by R5RS (@pxref{Lexical structure,
1016R5RS Lexical Structure,, r5rs, The Revised^5 Report on the Algorithmic
a2f00b9b 1017Language Scheme}). @xref{Number Input and Output, the @code{(ice-9
b89c4943
LC
1018i18n)} module}, for locale-dependent number parsing.
1019
07d83abe
MV
1020@deffn {Scheme Procedure} number->string n [radix]
1021@deffnx {C Function} scm_number_to_string (n, radix)
1022Return a string holding the external representation of the
1023number @var{n} in the given @var{radix}. If @var{n} is
1024inexact, a radix of 10 will be used.
1025@end deffn
1026
1027@deffn {Scheme Procedure} string->number string [radix]
1028@deffnx {C Function} scm_string_to_number (string, radix)
1029Return a number of the maximally precise representation
1030expressed by the given @var{string}. @var{radix} must be an
1031exact integer, either 2, 8, 10, or 16. If supplied, @var{radix}
1032is a default radix that may be overridden by an explicit radix
1033prefix in @var{string} (e.g. "#o177"). If @var{radix} is not
1034supplied, then the default radix is 10. If string is not a
1035syntactically valid notation for a number, then
1036@code{string->number} returns @code{#f}.
1037@end deffn
1038
1b09b607
KR
1039@deftypefn {C Function} SCM scm_c_locale_stringn_to_number (const char *string, size_t len, unsigned radix)
1040As per @code{string->number} above, but taking a C string, as pointer
1041and length. The string characters should be in the current locale
1042encoding (@code{locale} in the name refers only to that, there's no
1043locale-dependent parsing).
1044@end deftypefn
1045
07d83abe
MV
1046
1047@node Complex
1048@subsubsection Complex Number Operations
1049@rnindex make-rectangular
1050@rnindex make-polar
1051@rnindex real-part
1052@rnindex imag-part
1053@rnindex magnitude
1054@rnindex angle
1055
3323ec06
NJ
1056@deffn {Scheme Procedure} make-rectangular real_part imaginary_part
1057@deffnx {C Function} scm_make_rectangular (real_part, imaginary_part)
1058Return a complex number constructed of the given @var{real-part} and @var{imaginary-part} parts.
07d83abe
MV
1059@end deffn
1060
1061@deffn {Scheme Procedure} make-polar x y
1062@deffnx {C Function} scm_make_polar (x, y)
34942993 1063@cindex polar form
07d83abe
MV
1064Return the complex number @var{x} * e^(i * @var{y}).
1065@end deffn
1066
1067@c begin (texi-doc-string "guile" "real-part")
1068@deffn {Scheme Procedure} real-part z
1069@deffnx {C Function} scm_real_part (z)
1070Return the real part of the number @var{z}.
1071@end deffn
1072
1073@c begin (texi-doc-string "guile" "imag-part")
1074@deffn {Scheme Procedure} imag-part z
1075@deffnx {C Function} scm_imag_part (z)
1076Return the imaginary part of the number @var{z}.
1077@end deffn
1078
1079@c begin (texi-doc-string "guile" "magnitude")
1080@deffn {Scheme Procedure} magnitude z
1081@deffnx {C Function} scm_magnitude (z)
1082Return the magnitude of the number @var{z}. This is the same as
1083@code{abs} for real arguments, but also allows complex numbers.
1084@end deffn
1085
1086@c begin (texi-doc-string "guile" "angle")
1087@deffn {Scheme Procedure} angle z
1088@deffnx {C Function} scm_angle (z)
1089Return the angle of the complex number @var{z}.
1090@end deffn
1091
5615f696
MV
1092@deftypefn {C Function} SCM scm_c_make_rectangular (double re, double im)
1093@deftypefnx {C Function} SCM scm_c_make_polar (double x, double y)
1094Like @code{scm_make_rectangular} or @code{scm_make_polar},
1095respectively, but these functions take @code{double}s as their
1096arguments.
1097@end deftypefn
1098
1099@deftypefn {C Function} double scm_c_real_part (z)
1100@deftypefnx {C Function} double scm_c_imag_part (z)
1101Returns the real or imaginary part of @var{z} as a @code{double}.
1102@end deftypefn
1103
1104@deftypefn {C Function} double scm_c_magnitude (z)
1105@deftypefnx {C Function} double scm_c_angle (z)
1106Returns the magnitude or angle of @var{z} as a @code{double}.
1107@end deftypefn
1108
07d83abe
MV
1109
1110@node Arithmetic
1111@subsubsection Arithmetic Functions
1112@rnindex max
1113@rnindex min
1114@rnindex +
1115@rnindex *
1116@rnindex -
1117@rnindex /
b1f57ea4
LC
1118@findex 1+
1119@findex 1-
07d83abe
MV
1120@rnindex abs
1121@rnindex floor
1122@rnindex ceiling
1123@rnindex truncate
1124@rnindex round
1125
1126The C arithmetic functions below always takes two arguments, while the
1127Scheme functions can take an arbitrary number. When you need to
1128invoke them with just one argument, for example to compute the
1129equivalent od @code{(- x)}, pass @code{SCM_UNDEFINED} as the second
1130one: @code{scm_difference (x, SCM_UNDEFINED)}.
1131
1132@c begin (texi-doc-string "guile" "+")
1133@deffn {Scheme Procedure} + z1 @dots{}
1134@deffnx {C Function} scm_sum (z1, z2)
1135Return the sum of all parameter values. Return 0 if called without any
1136parameters.
1137@end deffn
1138
1139@c begin (texi-doc-string "guile" "-")
1140@deffn {Scheme Procedure} - z1 z2 @dots{}
1141@deffnx {C Function} scm_difference (z1, z2)
1142If called with one argument @var{z1}, -@var{z1} is returned. Otherwise
1143the sum of all but the first argument are subtracted from the first
1144argument.
1145@end deffn
1146
1147@c begin (texi-doc-string "guile" "*")
1148@deffn {Scheme Procedure} * z1 @dots{}
1149@deffnx {C Function} scm_product (z1, z2)
1150Return the product of all arguments. If called without arguments, 1 is
1151returned.
1152@end deffn
1153
1154@c begin (texi-doc-string "guile" "/")
1155@deffn {Scheme Procedure} / z1 z2 @dots{}
1156@deffnx {C Function} scm_divide (z1, z2)
1157Divide the first argument by the product of the remaining arguments. If
1158called with one argument @var{z1}, 1/@var{z1} is returned.
1159@end deffn
1160
b1f57ea4
LC
1161@deffn {Scheme Procedure} 1+ z
1162@deffnx {C Function} scm_oneplus (z)
1163Return @math{@var{z} + 1}.
1164@end deffn
1165
1166@deffn {Scheme Procedure} 1- z
1167@deffnx {C function} scm_oneminus (z)
1168Return @math{@var{z} - 1}.
1169@end deffn
1170
07d83abe
MV
1171@c begin (texi-doc-string "guile" "abs")
1172@deffn {Scheme Procedure} abs x
1173@deffnx {C Function} scm_abs (x)
1174Return the absolute value of @var{x}.
1175
1176@var{x} must be a number with zero imaginary part. To calculate the
1177magnitude of a complex number, use @code{magnitude} instead.
1178@end deffn
1179
1180@c begin (texi-doc-string "guile" "max")
1181@deffn {Scheme Procedure} max x1 x2 @dots{}
1182@deffnx {C Function} scm_max (x1, x2)
1183Return the maximum of all parameter values.
1184@end deffn
1185
1186@c begin (texi-doc-string "guile" "min")
1187@deffn {Scheme Procedure} min x1 x2 @dots{}
1188@deffnx {C Function} scm_min (x1, x2)
1189Return the minimum of all parameter values.
1190@end deffn
1191
1192@c begin (texi-doc-string "guile" "truncate")
fd8a1df5 1193@deffn {Scheme Procedure} truncate x
07d83abe
MV
1194@deffnx {C Function} scm_truncate_number (x)
1195Round the inexact number @var{x} towards zero.
1196@end deffn
1197
1198@c begin (texi-doc-string "guile" "round")
1199@deffn {Scheme Procedure} round x
1200@deffnx {C Function} scm_round_number (x)
1201Round the inexact number @var{x} to the nearest integer. When exactly
1202halfway between two integers, round to the even one.
1203@end deffn
1204
1205@c begin (texi-doc-string "guile" "floor")
1206@deffn {Scheme Procedure} floor x
1207@deffnx {C Function} scm_floor (x)
1208Round the number @var{x} towards minus infinity.
1209@end deffn
1210
1211@c begin (texi-doc-string "guile" "ceiling")
1212@deffn {Scheme Procedure} ceiling x
1213@deffnx {C Function} scm_ceiling (x)
1214Round the number @var{x} towards infinity.
1215@end deffn
1216
35da08ee
MV
1217@deftypefn {C Function} double scm_c_truncate (double x)
1218@deftypefnx {C Function} double scm_c_round (double x)
1219Like @code{scm_truncate_number} or @code{scm_round_number},
1220respectively, but these functions take and return @code{double}
1221values.
1222@end deftypefn
07d83abe
MV
1223
1224@node Scientific
1225@subsubsection Scientific Functions
1226
1227The following procedures accept any kind of number as arguments,
1228including complex numbers.
1229
1230@rnindex sqrt
1231@c begin (texi-doc-string "guile" "sqrt")
1232@deffn {Scheme Procedure} sqrt z
40296bab
KR
1233Return the square root of @var{z}. Of the two possible roots
1234(positive and negative), the one with the a positive real part is
1235returned, or if that's zero then a positive imaginary part. Thus,
1236
1237@example
1238(sqrt 9.0) @result{} 3.0
1239(sqrt -9.0) @result{} 0.0+3.0i
1240(sqrt 1.0+1.0i) @result{} 1.09868411346781+0.455089860562227i
1241(sqrt -1.0-1.0i) @result{} 0.455089860562227-1.09868411346781i
1242@end example
07d83abe
MV
1243@end deffn
1244
1245@rnindex expt
1246@c begin (texi-doc-string "guile" "expt")
1247@deffn {Scheme Procedure} expt z1 z2
1248Return @var{z1} raised to the power of @var{z2}.
1249@end deffn
1250
1251@rnindex sin
1252@c begin (texi-doc-string "guile" "sin")
1253@deffn {Scheme Procedure} sin z
1254Return the sine of @var{z}.
1255@end deffn
1256
1257@rnindex cos
1258@c begin (texi-doc-string "guile" "cos")
1259@deffn {Scheme Procedure} cos z
1260Return the cosine of @var{z}.
1261@end deffn
1262
1263@rnindex tan
1264@c begin (texi-doc-string "guile" "tan")
1265@deffn {Scheme Procedure} tan z
1266Return the tangent of @var{z}.
1267@end deffn
1268
1269@rnindex asin
1270@c begin (texi-doc-string "guile" "asin")
1271@deffn {Scheme Procedure} asin z
1272Return the arcsine of @var{z}.
1273@end deffn
1274
1275@rnindex acos
1276@c begin (texi-doc-string "guile" "acos")
1277@deffn {Scheme Procedure} acos z
1278Return the arccosine of @var{z}.
1279@end deffn
1280
1281@rnindex atan
1282@c begin (texi-doc-string "guile" "atan")
1283@deffn {Scheme Procedure} atan z
1284@deffnx {Scheme Procedure} atan y x
1285Return the arctangent of @var{z}, or of @math{@var{y}/@var{x}}.
1286@end deffn
1287
1288@rnindex exp
1289@c begin (texi-doc-string "guile" "exp")
1290@deffn {Scheme Procedure} exp z
1291Return e to the power of @var{z}, where e is the base of natural
1292logarithms (2.71828@dots{}).
1293@end deffn
1294
1295@rnindex log
1296@c begin (texi-doc-string "guile" "log")
1297@deffn {Scheme Procedure} log z
1298Return the natural logarithm of @var{z}.
1299@end deffn
1300
1301@c begin (texi-doc-string "guile" "log10")
1302@deffn {Scheme Procedure} log10 z
1303Return the base 10 logarithm of @var{z}.
1304@end deffn
1305
1306@c begin (texi-doc-string "guile" "sinh")
1307@deffn {Scheme Procedure} sinh z
1308Return the hyperbolic sine of @var{z}.
1309@end deffn
1310
1311@c begin (texi-doc-string "guile" "cosh")
1312@deffn {Scheme Procedure} cosh z
1313Return the hyperbolic cosine of @var{z}.
1314@end deffn
1315
1316@c begin (texi-doc-string "guile" "tanh")
1317@deffn {Scheme Procedure} tanh z
1318Return the hyperbolic tangent of @var{z}.
1319@end deffn
1320
1321@c begin (texi-doc-string "guile" "asinh")
1322@deffn {Scheme Procedure} asinh z
1323Return the hyperbolic arcsine of @var{z}.
1324@end deffn
1325
1326@c begin (texi-doc-string "guile" "acosh")
1327@deffn {Scheme Procedure} acosh z
1328Return the hyperbolic arccosine of @var{z}.
1329@end deffn
1330
1331@c begin (texi-doc-string "guile" "atanh")
1332@deffn {Scheme Procedure} atanh z
1333Return the hyperbolic arctangent of @var{z}.
1334@end deffn
1335
1336
07d83abe
MV
1337@node Bitwise Operations
1338@subsubsection Bitwise Operations
1339
1340For the following bitwise functions, negative numbers are treated as
1341infinite precision twos-complements. For instance @math{-6} is bits
1342@math{@dots{}111010}, with infinitely many ones on the left. It can
1343be seen that adding 6 (binary 110) to such a bit pattern gives all
1344zeros.
1345
1346@deffn {Scheme Procedure} logand n1 n2 @dots{}
1347@deffnx {C Function} scm_logand (n1, n2)
1348Return the bitwise @sc{and} of the integer arguments.
1349
1350@lisp
1351(logand) @result{} -1
1352(logand 7) @result{} 7
1353(logand #b111 #b011 #b001) @result{} 1
1354@end lisp
1355@end deffn
1356
1357@deffn {Scheme Procedure} logior n1 n2 @dots{}
1358@deffnx {C Function} scm_logior (n1, n2)
1359Return the bitwise @sc{or} of the integer arguments.
1360
1361@lisp
1362(logior) @result{} 0
1363(logior 7) @result{} 7
1364(logior #b000 #b001 #b011) @result{} 3
1365@end lisp
1366@end deffn
1367
1368@deffn {Scheme Procedure} logxor n1 n2 @dots{}
1369@deffnx {C Function} scm_loxor (n1, n2)
1370Return the bitwise @sc{xor} of the integer arguments. A bit is
1371set in the result if it is set in an odd number of arguments.
1372
1373@lisp
1374(logxor) @result{} 0
1375(logxor 7) @result{} 7
1376(logxor #b000 #b001 #b011) @result{} 2
1377(logxor #b000 #b001 #b011 #b011) @result{} 1
1378@end lisp
1379@end deffn
1380
1381@deffn {Scheme Procedure} lognot n
1382@deffnx {C Function} scm_lognot (n)
1383Return the integer which is the ones-complement of the integer
1384argument, ie.@: each 0 bit is changed to 1 and each 1 bit to 0.
1385
1386@lisp
1387(number->string (lognot #b10000000) 2)
1388 @result{} "-10000001"
1389(number->string (lognot #b0) 2)
1390 @result{} "-1"
1391@end lisp
1392@end deffn
1393
1394@deffn {Scheme Procedure} logtest j k
1395@deffnx {C Function} scm_logtest (j, k)
a46648ac
KR
1396Test whether @var{j} and @var{k} have any 1 bits in common. This is
1397equivalent to @code{(not (zero? (logand j k)))}, but without actually
1398calculating the @code{logand}, just testing for non-zero.
07d83abe 1399
a46648ac 1400@lisp
07d83abe
MV
1401(logtest #b0100 #b1011) @result{} #f
1402(logtest #b0100 #b0111) @result{} #t
1403@end lisp
1404@end deffn
1405
1406@deffn {Scheme Procedure} logbit? index j
1407@deffnx {C Function} scm_logbit_p (index, j)
a46648ac
KR
1408Test whether bit number @var{index} in @var{j} is set. @var{index}
1409starts from 0 for the least significant bit.
07d83abe 1410
a46648ac 1411@lisp
07d83abe
MV
1412(logbit? 0 #b1101) @result{} #t
1413(logbit? 1 #b1101) @result{} #f
1414(logbit? 2 #b1101) @result{} #t
1415(logbit? 3 #b1101) @result{} #t
1416(logbit? 4 #b1101) @result{} #f
1417@end lisp
1418@end deffn
1419
1420@deffn {Scheme Procedure} ash n cnt
1421@deffnx {C Function} scm_ash (n, cnt)
1422Return @var{n} shifted left by @var{cnt} bits, or shifted right if
1423@var{cnt} is negative. This is an ``arithmetic'' shift.
1424
1425This is effectively a multiplication by @m{2^{cnt}, 2^@var{cnt}}, and
1426when @var{cnt} is negative it's a division, rounded towards negative
1427infinity. (Note that this is not the same rounding as @code{quotient}
1428does.)
1429
1430With @var{n} viewed as an infinite precision twos complement,
1431@code{ash} means a left shift introducing zero bits, or a right shift
1432dropping bits.
1433
1434@lisp
1435(number->string (ash #b1 3) 2) @result{} "1000"
1436(number->string (ash #b1010 -1) 2) @result{} "101"
1437
1438;; -23 is bits ...11101001, -6 is bits ...111010
1439(ash -23 -2) @result{} -6
1440@end lisp
1441@end deffn
1442
1443@deffn {Scheme Procedure} logcount n
1444@deffnx {C Function} scm_logcount (n)
a46648ac 1445Return the number of bits in integer @var{n}. If @var{n} is
07d83abe
MV
1446positive, the 1-bits in its binary representation are counted.
1447If negative, the 0-bits in its two's-complement binary
a46648ac 1448representation are counted. If zero, 0 is returned.
07d83abe
MV
1449
1450@lisp
1451(logcount #b10101010)
1452 @result{} 4
1453(logcount 0)
1454 @result{} 0
1455(logcount -2)
1456 @result{} 1
1457@end lisp
1458@end deffn
1459
1460@deffn {Scheme Procedure} integer-length n
1461@deffnx {C Function} scm_integer_length (n)
1462Return the number of bits necessary to represent @var{n}.
1463
1464For positive @var{n} this is how many bits to the most significant one
1465bit. For negative @var{n} it's how many bits to the most significant
1466zero bit in twos complement form.
1467
1468@lisp
1469(integer-length #b10101010) @result{} 8
1470(integer-length #b1111) @result{} 4
1471(integer-length 0) @result{} 0
1472(integer-length -1) @result{} 0
1473(integer-length -256) @result{} 8
1474(integer-length -257) @result{} 9
1475@end lisp
1476@end deffn
1477
1478@deffn {Scheme Procedure} integer-expt n k
1479@deffnx {C Function} scm_integer_expt (n, k)
a46648ac
KR
1480Return @var{n} raised to the power @var{k}. @var{k} must be an exact
1481integer, @var{n} can be any number.
1482
1483Negative @var{k} is supported, and results in @m{1/n^|k|, 1/n^abs(k)}
1484in the usual way. @math{@var{n}^0} is 1, as usual, and that includes
1485@math{0^0} is 1.
07d83abe
MV
1486
1487@lisp
a46648ac
KR
1488(integer-expt 2 5) @result{} 32
1489(integer-expt -3 3) @result{} -27
1490(integer-expt 5 -3) @result{} 1/125
1491(integer-expt 0 0) @result{} 1
07d83abe
MV
1492@end lisp
1493@end deffn
1494
1495@deffn {Scheme Procedure} bit-extract n start end
1496@deffnx {C Function} scm_bit_extract (n, start, end)
1497Return the integer composed of the @var{start} (inclusive)
1498through @var{end} (exclusive) bits of @var{n}. The
1499@var{start}th bit becomes the 0-th bit in the result.
1500
1501@lisp
1502(number->string (bit-extract #b1101101010 0 4) 2)
1503 @result{} "1010"
1504(number->string (bit-extract #b1101101010 4 9) 2)
1505 @result{} "10110"
1506@end lisp
1507@end deffn
1508
1509
1510@node Random
1511@subsubsection Random Number Generation
1512
1513Pseudo-random numbers are generated from a random state object, which
1514can be created with @code{seed->random-state}. The @var{state}
1515parameter to the various functions below is optional, it defaults to
1516the state object in the @code{*random-state*} variable.
1517
1518@deffn {Scheme Procedure} copy-random-state [state]
1519@deffnx {C Function} scm_copy_random_state (state)
1520Return a copy of the random state @var{state}.
1521@end deffn
1522
1523@deffn {Scheme Procedure} random n [state]
1524@deffnx {C Function} scm_random (n, state)
1525Return a number in [0, @var{n}).
1526
1527Accepts a positive integer or real n and returns a
1528number of the same type between zero (inclusive) and
1529@var{n} (exclusive). The values returned have a uniform
1530distribution.
1531@end deffn
1532
1533@deffn {Scheme Procedure} random:exp [state]
1534@deffnx {C Function} scm_random_exp (state)
1535Return an inexact real in an exponential distribution with mean
15361. For an exponential distribution with mean @var{u} use @code{(*
1537@var{u} (random:exp))}.
1538@end deffn
1539
1540@deffn {Scheme Procedure} random:hollow-sphere! vect [state]
1541@deffnx {C Function} scm_random_hollow_sphere_x (vect, state)
1542Fills @var{vect} with inexact real random numbers the sum of whose
1543squares is equal to 1.0. Thinking of @var{vect} as coordinates in
1544space of dimension @var{n} @math{=} @code{(vector-length @var{vect})},
1545the coordinates are uniformly distributed over the surface of the unit
1546n-sphere.
1547@end deffn
1548
1549@deffn {Scheme Procedure} random:normal [state]
1550@deffnx {C Function} scm_random_normal (state)
1551Return an inexact real in a normal distribution. The distribution
1552used has mean 0 and standard deviation 1. For a normal distribution
1553with mean @var{m} and standard deviation @var{d} use @code{(+ @var{m}
1554(* @var{d} (random:normal)))}.
1555@end deffn
1556
1557@deffn {Scheme Procedure} random:normal-vector! vect [state]
1558@deffnx {C Function} scm_random_normal_vector_x (vect, state)
1559Fills @var{vect} with inexact real random numbers that are
1560independent and standard normally distributed
1561(i.e., with mean 0 and variance 1).
1562@end deffn
1563
1564@deffn {Scheme Procedure} random:solid-sphere! vect [state]
1565@deffnx {C Function} scm_random_solid_sphere_x (vect, state)
1566Fills @var{vect} with inexact real random numbers the sum of whose
1567squares is less than 1.0. Thinking of @var{vect} as coordinates in
1568space of dimension @var{n} @math{=} @code{(vector-length @var{vect})},
1569the coordinates are uniformly distributed within the unit
4497bd2f 1570@var{n}-sphere.
07d83abe
MV
1571@c FIXME: What does this mean, particularly the n-sphere part?
1572@end deffn
1573
1574@deffn {Scheme Procedure} random:uniform [state]
1575@deffnx {C Function} scm_random_uniform (state)
1576Return a uniformly distributed inexact real random number in
1577[0,1).
1578@end deffn
1579
1580@deffn {Scheme Procedure} seed->random-state seed
1581@deffnx {C Function} scm_seed_to_random_state (seed)
1582Return a new random state using @var{seed}.
1583@end deffn
1584
1585@defvar *random-state*
1586The global random state used by the above functions when the
1587@var{state} parameter is not given.
1588@end defvar
1589
8c726cf0
NJ
1590Note that the initial value of @code{*random-state*} is the same every
1591time Guile starts up. Therefore, if you don't pass a @var{state}
1592parameter to the above procedures, and you don't set
1593@code{*random-state*} to @code{(seed->random-state your-seed)}, where
1594@code{your-seed} is something that @emph{isn't} the same every time,
1595you'll get the same sequence of ``random'' numbers on every run.
1596
1597For example, unless the relevant source code has changed, @code{(map
1598random (cdr (iota 30)))}, if the first use of random numbers since
1599Guile started up, will always give:
1600
1601@lisp
1602(map random (cdr (iota 19)))
1603@result{}
1604(0 1 1 2 2 2 1 2 6 7 10 0 5 3 12 5 5 12)
1605@end lisp
1606
1607To use the time of day as the random seed, you can use code like this:
1608
1609@lisp
1610(let ((time (gettimeofday)))
1611 (set! *random-state*
1612 (seed->random-state (+ (car time)
1613 (cdr time)))))
1614@end lisp
1615
1616@noindent
1617And then (depending on the time of day, of course):
1618
1619@lisp
1620(map random (cdr (iota 19)))
1621@result{}
1622(0 0 1 0 2 4 5 4 5 5 9 3 10 1 8 3 14 17)
1623@end lisp
1624
1625For security applications, such as password generation, you should use
1626more bits of seed. Otherwise an open source password generator could
1627be attacked by guessing the seed@dots{} but that's a subject for
1628another manual.
1629
07d83abe
MV
1630
1631@node Characters
1632@subsection Characters
1633@tpindex Characters
1634
3f12aedb
MG
1635In Scheme, there is a data type to describe a single character.
1636
1637Defining what exactly a character @emph{is} can be more complicated
bb15a36c
MG
1638than it seems. Guile follows the advice of R6RS and uses The Unicode
1639Standard to help define what a character is. So, for Guile, a
1640character is anything in the Unicode Character Database.
1641
1642@cindex code point
1643@cindex Unicode code point
1644
1645The Unicode Character Database is basically a table of characters
1646indexed using integers called 'code points'. Valid code points are in
1647the ranges 0 to @code{#xD7FF} inclusive or @code{#xE000} to
1648@code{#x10FFFF} inclusive, which is about 1.1 million code points.
1649
1650@cindex designated code point
1651@cindex code point, designated
1652
1653Any code point that has been assigned to a character or that has
1654otherwise been given a meaning by Unicode is called a 'designated code
1655point'. Most of the designated code points, about 200,000 of them,
1656indicate characters, accents or other combining marks that modify
1657other characters, symbols, whitespace, and control characters. Some
1658are not characters but indicators that suggest how to format or
1659display neighboring characters.
1660
1661@cindex reserved code point
1662@cindex code point, reserved
1663
1664If a code point is not a designated code point -- if it has not been
1665assigned to a character by The Unicode Standard -- it is a 'reserved
1666code point', meaning that they are reserved for future use. Most of
1667the code points, about 800,000, are 'reserved code points'.
1668
1669By convention, a Unicode code point is written as
1670``U+XXXX'' where ``XXXX'' is a hexadecimal number. Please note that
1671this convenient notation is not valid code. Guile does not interpret
1672``U+XXXX'' as a character.
3f12aedb 1673
050ab45f
MV
1674In Scheme, a character literal is written as @code{#\@var{name}} where
1675@var{name} is the name of the character that you want. Printable
1676characters have their usual single character name; for example,
bb15a36c
MG
1677@code{#\a} is a lower case @code{a}.
1678
1679Some of the code points are 'combining characters' that are not meant
1680to be printed by themselves but are instead meant to modify the
1681appearance of the previous character. For combining characters, an
1682alternate form of the character literal is @code{#\} followed by
1683U+25CC (a small, dotted circle), followed by the combining character.
1684This allows the combining character to be drawn on the circle, not on
1685the backslash of @code{#\}.
1686
1687Many of the non-printing characters, such as whitespace characters and
1688control characters, also have names.
07d83abe 1689
15b6a6b2
MG
1690The most commonly used non-printing characters have long character
1691names, described in the table below.
1692
1693@multitable {@code{#\backspace}} {Preferred}
1694@item Character Name @tab Codepoint
1695@item @code{#\nul} @tab U+0000
1696@item @code{#\alarm} @tab u+0007
1697@item @code{#\backspace} @tab U+0008
1698@item @code{#\tab} @tab U+0009
1699@item @code{#\linefeed} @tab U+000A
1700@item @code{#\newline} @tab U+000A
1701@item @code{#\vtab} @tab U+000B
1702@item @code{#\page} @tab U+000C
1703@item @code{#\return} @tab U+000D
1704@item @code{#\esc} @tab U+001B
1705@item @code{#\space} @tab U+0020
1706@item @code{#\delete} @tab U+007F
1707@end multitable
1708
1709There are also short names for all of the ``C0 control characters''
1710(those with code points below 32). The following table lists the short
1711name for each character.
07d83abe
MV
1712
1713@multitable @columnfractions .25 .25 .25 .25
1714@item 0 = @code{#\nul}
1715 @tab 1 = @code{#\soh}
1716 @tab 2 = @code{#\stx}
1717 @tab 3 = @code{#\etx}
1718@item 4 = @code{#\eot}
1719 @tab 5 = @code{#\enq}
1720 @tab 6 = @code{#\ack}
1721 @tab 7 = @code{#\bel}
1722@item 8 = @code{#\bs}
1723 @tab 9 = @code{#\ht}
6ea30487 1724 @tab 10 = @code{#\lf}
07d83abe 1725 @tab 11 = @code{#\vt}
3f12aedb 1726@item 12 = @code{#\ff}
07d83abe
MV
1727 @tab 13 = @code{#\cr}
1728 @tab 14 = @code{#\so}
1729 @tab 15 = @code{#\si}
1730@item 16 = @code{#\dle}
1731 @tab 17 = @code{#\dc1}
1732 @tab 18 = @code{#\dc2}
1733 @tab 19 = @code{#\dc3}
1734@item 20 = @code{#\dc4}
1735 @tab 21 = @code{#\nak}
1736 @tab 22 = @code{#\syn}
1737 @tab 23 = @code{#\etb}
1738@item 24 = @code{#\can}
1739 @tab 25 = @code{#\em}
1740 @tab 26 = @code{#\sub}
1741 @tab 27 = @code{#\esc}
1742@item 28 = @code{#\fs}
1743 @tab 29 = @code{#\gs}
1744 @tab 30 = @code{#\rs}
1745 @tab 31 = @code{#\us}
1746@item 32 = @code{#\sp}
1747@end multitable
1748
15b6a6b2
MG
1749The short name for the ``delete'' character (code point U+007F) is
1750@code{#\del}.
07d83abe 1751
15b6a6b2
MG
1752There are also a few alternative names left over for compatibility with
1753previous versions of Guile.
07d83abe 1754
3f12aedb
MG
1755@multitable {@code{#\backspace}} {Preferred}
1756@item Alternate @tab Standard
3f12aedb 1757@item @code{#\nl} @tab @code{#\newline}
15b6a6b2 1758@item @code{#\np} @tab @code{#\page}
07d83abe
MV
1759@item @code{#\null} @tab @code{#\nul}
1760@end multitable
1761
bb15a36c
MG
1762Characters may also be written using their code point values. They can
1763be written with as an octal number, such as @code{#\10} for
1764@code{#\bs} or @code{#\177} for @code{#\del}.
3f12aedb 1765
6ea30487
MG
1766When the @code{r6rs-hex-escapes} reader option is enabled, there is an
1767additional syntax for character escapes: @code{#\xHHHH} -- the letter 'x'
1768followed by a hexadecimal number of one to eight digits.
1769
1770@lisp
1771(read-enable 'r6rs-hex-escapes)
1772@end lisp
1773
1774Enabling this option will also change the hex escape format for strings. More
1775on string escapes can be found at (@pxref{String Syntax}). More on reader
1776options in general can be found at (@pxref{Reader options}).
1777
07d83abe
MV
1778@rnindex char?
1779@deffn {Scheme Procedure} char? x
1780@deffnx {C Function} scm_char_p (x)
1781Return @code{#t} iff @var{x} is a character, else @code{#f}.
1782@end deffn
1783
bb15a36c 1784Fundamentally, the character comparison operations below are
3f12aedb
MG
1785numeric comparisons of the character's code points.
1786
07d83abe
MV
1787@rnindex char=?
1788@deffn {Scheme Procedure} char=? x y
3f12aedb
MG
1789Return @code{#t} iff code point of @var{x} is equal to the code point
1790of @var{y}, else @code{#f}.
07d83abe
MV
1791@end deffn
1792
1793@rnindex char<?
1794@deffn {Scheme Procedure} char<? x y
3f12aedb
MG
1795Return @code{#t} iff the code point of @var{x} is less than the code
1796point of @var{y}, else @code{#f}.
07d83abe
MV
1797@end deffn
1798
1799@rnindex char<=?
1800@deffn {Scheme Procedure} char<=? x y
3f12aedb
MG
1801Return @code{#t} iff the code point of @var{x} is less than or equal
1802to the code point of @var{y}, else @code{#f}.
07d83abe
MV
1803@end deffn
1804
1805@rnindex char>?
1806@deffn {Scheme Procedure} char>? x y
3f12aedb
MG
1807Return @code{#t} iff the code point of @var{x} is greater than the
1808code point of @var{y}, else @code{#f}.
07d83abe
MV
1809@end deffn
1810
1811@rnindex char>=?
1812@deffn {Scheme Procedure} char>=? x y
3f12aedb
MG
1813Return @code{#t} iff the code point of @var{x} is greater than or
1814equal to the code point of @var{y}, else @code{#f}.
07d83abe
MV
1815@end deffn
1816
bb15a36c
MG
1817@cindex case folding
1818
1819Case-insensitive character comparisons use @emph{Unicode case
1820folding}. In case folding comparisons, if a character is lowercase
1821and has an uppercase form that can be expressed as a single character,
1822it is converted to uppercase before comparison. All other characters
1823undergo no conversion before the comparison occurs. This includes the
1824German sharp S (Eszett) which is not uppercased before conversion
1825because its uppercase form has two characters. Unicode case folding
1826is language independent: it uses rules that are generally true, but,
1827it cannot cover all cases for all languages.
3f12aedb 1828
07d83abe
MV
1829@rnindex char-ci=?
1830@deffn {Scheme Procedure} char-ci=? x y
3f12aedb
MG
1831Return @code{#t} iff the case-folded code point of @var{x} is the same
1832as the case-folded code point of @var{y}, else @code{#f}.
07d83abe
MV
1833@end deffn
1834
1835@rnindex char-ci<?
1836@deffn {Scheme Procedure} char-ci<? x y
3f12aedb
MG
1837Return @code{#t} iff the case-folded code point of @var{x} is less
1838than the case-folded code point of @var{y}, else @code{#f}.
07d83abe
MV
1839@end deffn
1840
1841@rnindex char-ci<=?
1842@deffn {Scheme Procedure} char-ci<=? x y
3f12aedb
MG
1843Return @code{#t} iff the case-folded code point of @var{x} is less
1844than or equal to the case-folded code point of @var{y}, else
1845@code{#f}.
07d83abe
MV
1846@end deffn
1847
1848@rnindex char-ci>?
1849@deffn {Scheme Procedure} char-ci>? x y
3f12aedb
MG
1850Return @code{#t} iff the case-folded code point of @var{x} is greater
1851than the case-folded code point of @var{y}, else @code{#f}.
07d83abe
MV
1852@end deffn
1853
1854@rnindex char-ci>=?
1855@deffn {Scheme Procedure} char-ci>=? x y
3f12aedb
MG
1856Return @code{#t} iff the case-folded code point of @var{x} is greater
1857than or equal to the case-folded code point of @var{y}, else
1858@code{#f}.
07d83abe
MV
1859@end deffn
1860
1861@rnindex char-alphabetic?
1862@deffn {Scheme Procedure} char-alphabetic? chr
1863@deffnx {C Function} scm_char_alphabetic_p (chr)
1864Return @code{#t} iff @var{chr} is alphabetic, else @code{#f}.
07d83abe
MV
1865@end deffn
1866
1867@rnindex char-numeric?
1868@deffn {Scheme Procedure} char-numeric? chr
1869@deffnx {C Function} scm_char_numeric_p (chr)
1870Return @code{#t} iff @var{chr} is numeric, else @code{#f}.
07d83abe
MV
1871@end deffn
1872
1873@rnindex char-whitespace?
1874@deffn {Scheme Procedure} char-whitespace? chr
1875@deffnx {C Function} scm_char_whitespace_p (chr)
1876Return @code{#t} iff @var{chr} is whitespace, else @code{#f}.
07d83abe
MV
1877@end deffn
1878
1879@rnindex char-upper-case?
1880@deffn {Scheme Procedure} char-upper-case? chr
1881@deffnx {C Function} scm_char_upper_case_p (chr)
1882Return @code{#t} iff @var{chr} is uppercase, else @code{#f}.
07d83abe
MV
1883@end deffn
1884
1885@rnindex char-lower-case?
1886@deffn {Scheme Procedure} char-lower-case? chr
1887@deffnx {C Function} scm_char_lower_case_p (chr)
1888Return @code{#t} iff @var{chr} is lowercase, else @code{#f}.
07d83abe
MV
1889@end deffn
1890
1891@deffn {Scheme Procedure} char-is-both? chr
1892@deffnx {C Function} scm_char_is_both_p (chr)
1893Return @code{#t} iff @var{chr} is either uppercase or lowercase, else
5676b4fa 1894@code{#f}.
07d83abe
MV
1895@end deffn
1896
0ca3a342
JG
1897@deffn {Scheme Procedure} char-general-category chr
1898@deffnx {C Function} scm_char_general_category (chr)
1899Return a symbol giving the two-letter name of the Unicode general
1900category assigned to @var{chr} or @code{#f} if no named category is
1901assigned. The following table provides a list of category names along
1902with their meanings.
1903
1904@multitable @columnfractions .1 .4 .1 .4
1905@item Lu
1906 @tab Uppercase letter
1907 @tab Pf
1908 @tab Final quote punctuation
1909@item Ll
1910 @tab Lowercase letter
1911 @tab Po
1912 @tab Other punctuation
1913@item Lt
1914 @tab Titlecase letter
1915 @tab Sm
1916 @tab Math symbol
1917@item Lm
1918 @tab Modifier letter
1919 @tab Sc
1920 @tab Currency symbol
1921@item Lo
1922 @tab Other letter
1923 @tab Sk
1924 @tab Modifier symbol
1925@item Mn
1926 @tab Non-spacing mark
1927 @tab So
1928 @tab Other symbol
1929@item Mc
1930 @tab Combining spacing mark
1931 @tab Zs
1932 @tab Space separator
1933@item Me
1934 @tab Enclosing mark
1935 @tab Zl
1936 @tab Line separator
1937@item Nd
1938 @tab Decimal digit number
1939 @tab Zp
1940 @tab Paragraph separator
1941@item Nl
1942 @tab Letter number
1943 @tab Cc
1944 @tab Control
1945@item No
1946 @tab Other number
1947 @tab Cf
1948 @tab Format
1949@item Pc
1950 @tab Connector punctuation
1951 @tab Cs
1952 @tab Surrogate
1953@item Pd
1954 @tab Dash punctuation
1955 @tab Co
1956 @tab Private use
1957@item Ps
1958 @tab Open punctuation
1959 @tab Cn
1960 @tab Unassigned
1961@item Pe
1962 @tab Close punctuation
1963 @tab
1964 @tab
1965@item Pi
1966 @tab Initial quote punctuation
1967 @tab
1968 @tab
1969@end multitable
1970@end deffn
1971
07d83abe
MV
1972@rnindex char->integer
1973@deffn {Scheme Procedure} char->integer chr
1974@deffnx {C Function} scm_char_to_integer (chr)
3f12aedb 1975Return the code point of @var{chr}.
07d83abe
MV
1976@end deffn
1977
1978@rnindex integer->char
1979@deffn {Scheme Procedure} integer->char n
1980@deffnx {C Function} scm_integer_to_char (n)
3f12aedb
MG
1981Return the character that has code point @var{n}. The integer @var{n}
1982must be a valid code point. Valid code points are in the ranges 0 to
1983@code{#xD7FF} inclusive or @code{#xE000} to @code{#x10FFFF} inclusive.
07d83abe
MV
1984@end deffn
1985
1986@rnindex char-upcase
1987@deffn {Scheme Procedure} char-upcase chr
1988@deffnx {C Function} scm_char_upcase (chr)
1989Return the uppercase character version of @var{chr}.
1990@end deffn
1991
1992@rnindex char-downcase
1993@deffn {Scheme Procedure} char-downcase chr
1994@deffnx {C Function} scm_char_downcase (chr)
1995Return the lowercase character version of @var{chr}.
1996@end deffn
1997
820f33aa
JG
1998@rnindex char-titlecase
1999@deffn {Scheme Procedure} char-titlecase chr
2000@deffnx {C Function} scm_char_titlecase (chr)
2001Return the titlecase character version of @var{chr} if one exists;
2002otherwise return the uppercase version.
2003
2004For most characters these will be the same, but the Unicode Standard
2005includes certain digraph compatibility characters, such as @code{U+01F3}
2006``dz'', for which the uppercase and titlecase characters are different
2007(@code{U+01F1} ``DZ'' and @code{U+01F2} ``Dz'' in this case,
2008respectively).
2009@end deffn
2010
a1dcb961
MG
2011@tindex scm_t_wchar
2012@deftypefn {C Function} scm_t_wchar scm_c_upcase (scm_t_wchar @var{c})
2013@deftypefnx {C Function} scm_t_wchar scm_c_downcase (scm_t_wchar @var{c})
2014@deftypefnx {C Function} scm_t_wchar scm_c_titlecase (scm_t_wchar @var{c})
2015
2016These C functions take an integer representation of a Unicode
2017codepoint and return the codepoint corresponding to its uppercase,
2018lowercase, and titlecase forms respectively. The type
2019@code{scm_t_wchar} is a signed, 32-bit integer.
2020@end deftypefn
2021
050ab45f
MV
2022@node Character Sets
2023@subsection Character Sets
07d83abe 2024
050ab45f
MV
2025The features described in this section correspond directly to SRFI-14.
2026
2027The data type @dfn{charset} implements sets of characters
2028(@pxref{Characters}). Because the internal representation of
2029character sets is not visible to the user, a lot of procedures for
2030handling them are provided.
2031
2032Character sets can be created, extended, tested for the membership of a
2033characters and be compared to other character sets.
2034
050ab45f
MV
2035@menu
2036* Character Set Predicates/Comparison::
2037* Iterating Over Character Sets:: Enumerate charset elements.
2038* Creating Character Sets:: Making new charsets.
2039* Querying Character Sets:: Test charsets for membership etc.
2040* Character-Set Algebra:: Calculating new charsets.
2041* Standard Character Sets:: Variables containing predefined charsets.
2042@end menu
2043
2044@node Character Set Predicates/Comparison
2045@subsubsection Character Set Predicates/Comparison
2046
2047Use these procedures for testing whether an object is a character set,
2048or whether several character sets are equal or subsets of each other.
2049@code{char-set-hash} can be used for calculating a hash value, maybe for
2050usage in fast lookup procedures.
2051
2052@deffn {Scheme Procedure} char-set? obj
2053@deffnx {C Function} scm_char_set_p (obj)
2054Return @code{#t} if @var{obj} is a character set, @code{#f}
2055otherwise.
2056@end deffn
2057
2058@deffn {Scheme Procedure} char-set= . char_sets
2059@deffnx {C Function} scm_char_set_eq (char_sets)
2060Return @code{#t} if all given character sets are equal.
2061@end deffn
2062
2063@deffn {Scheme Procedure} char-set<= . char_sets
2064@deffnx {C Function} scm_char_set_leq (char_sets)
2065Return @code{#t} if every character set @var{cs}i is a subset
2066of character set @var{cs}i+1.
2067@end deffn
2068
2069@deffn {Scheme Procedure} char-set-hash cs [bound]
2070@deffnx {C Function} scm_char_set_hash (cs, bound)
2071Compute a hash value for the character set @var{cs}. If
2072@var{bound} is given and non-zero, it restricts the
2073returned value to the range 0 @dots{} @var{bound - 1}.
2074@end deffn
2075
2076@c ===================================================================
2077
2078@node Iterating Over Character Sets
2079@subsubsection Iterating Over Character Sets
2080
2081Character set cursors are a means for iterating over the members of a
2082character sets. After creating a character set cursor with
2083@code{char-set-cursor}, a cursor can be dereferenced with
2084@code{char-set-ref}, advanced to the next member with
2085@code{char-set-cursor-next}. Whether a cursor has passed past the last
2086element of the set can be checked with @code{end-of-char-set?}.
2087
2088Additionally, mapping and (un-)folding procedures for character sets are
2089provided.
2090
2091@deffn {Scheme Procedure} char-set-cursor cs
2092@deffnx {C Function} scm_char_set_cursor (cs)
2093Return a cursor into the character set @var{cs}.
2094@end deffn
2095
2096@deffn {Scheme Procedure} char-set-ref cs cursor
2097@deffnx {C Function} scm_char_set_ref (cs, cursor)
2098Return the character at the current cursor position
2099@var{cursor} in the character set @var{cs}. It is an error to
2100pass a cursor for which @code{end-of-char-set?} returns true.
2101@end deffn
2102
2103@deffn {Scheme Procedure} char-set-cursor-next cs cursor
2104@deffnx {C Function} scm_char_set_cursor_next (cs, cursor)
2105Advance the character set cursor @var{cursor} to the next
2106character in the character set @var{cs}. It is an error if the
2107cursor given satisfies @code{end-of-char-set?}.
2108@end deffn
2109
2110@deffn {Scheme Procedure} end-of-char-set? cursor
2111@deffnx {C Function} scm_end_of_char_set_p (cursor)
2112Return @code{#t} if @var{cursor} has reached the end of a
2113character set, @code{#f} otherwise.
2114@end deffn
2115
2116@deffn {Scheme Procedure} char-set-fold kons knil cs
2117@deffnx {C Function} scm_char_set_fold (kons, knil, cs)
2118Fold the procedure @var{kons} over the character set @var{cs},
2119initializing it with @var{knil}.
2120@end deffn
2121
2122@deffn {Scheme Procedure} char-set-unfold p f g seed [base_cs]
2123@deffnx {C Function} scm_char_set_unfold (p, f, g, seed, base_cs)
2124This is a fundamental constructor for character sets.
2125@itemize @bullet
2126@item @var{g} is used to generate a series of ``seed'' values
2127from the initial seed: @var{seed}, (@var{g} @var{seed}),
2128(@var{g}^2 @var{seed}), (@var{g}^3 @var{seed}), @dots{}
2129@item @var{p} tells us when to stop -- when it returns true
2130when applied to one of the seed values.
2131@item @var{f} maps each seed value to a character. These
2132characters are added to the base character set @var{base_cs} to
2133form the result; @var{base_cs} defaults to the empty set.
2134@end itemize
2135@end deffn
2136
2137@deffn {Scheme Procedure} char-set-unfold! p f g seed base_cs
2138@deffnx {C Function} scm_char_set_unfold_x (p, f, g, seed, base_cs)
2139This is a fundamental constructor for character sets.
2140@itemize @bullet
2141@item @var{g} is used to generate a series of ``seed'' values
2142from the initial seed: @var{seed}, (@var{g} @var{seed}),
2143(@var{g}^2 @var{seed}), (@var{g}^3 @var{seed}), @dots{}
2144@item @var{p} tells us when to stop -- when it returns true
2145when applied to one of the seed values.
2146@item @var{f} maps each seed value to a character. These
2147characters are added to the base character set @var{base_cs} to
2148form the result; @var{base_cs} defaults to the empty set.
2149@end itemize
2150@end deffn
2151
2152@deffn {Scheme Procedure} char-set-for-each proc cs
2153@deffnx {C Function} scm_char_set_for_each (proc, cs)
2154Apply @var{proc} to every character in the character set
2155@var{cs}. The return value is not specified.
2156@end deffn
2157
2158@deffn {Scheme Procedure} char-set-map proc cs
2159@deffnx {C Function} scm_char_set_map (proc, cs)
2160Map the procedure @var{proc} over every character in @var{cs}.
2161@var{proc} must be a character -> character procedure.
2162@end deffn
2163
2164@c ===================================================================
2165
2166@node Creating Character Sets
2167@subsubsection Creating Character Sets
2168
2169New character sets are produced with these procedures.
2170
2171@deffn {Scheme Procedure} char-set-copy cs
2172@deffnx {C Function} scm_char_set_copy (cs)
2173Return a newly allocated character set containing all
2174characters in @var{cs}.
2175@end deffn
2176
2177@deffn {Scheme Procedure} char-set . rest
2178@deffnx {C Function} scm_char_set (rest)
2179Return a character set containing all given characters.
2180@end deffn
2181
2182@deffn {Scheme Procedure} list->char-set list [base_cs]
2183@deffnx {C Function} scm_list_to_char_set (list, base_cs)
2184Convert the character list @var{list} to a character set. If
2185the character set @var{base_cs} is given, the character in this
2186set are also included in the result.
2187@end deffn
2188
2189@deffn {Scheme Procedure} list->char-set! list base_cs
2190@deffnx {C Function} scm_list_to_char_set_x (list, base_cs)
2191Convert the character list @var{list} to a character set. The
2192characters are added to @var{base_cs} and @var{base_cs} is
2193returned.
2194@end deffn
2195
2196@deffn {Scheme Procedure} string->char-set str [base_cs]
2197@deffnx {C Function} scm_string_to_char_set (str, base_cs)
2198Convert the string @var{str} to a character set. If the
2199character set @var{base_cs} is given, the characters in this
2200set are also included in the result.
2201@end deffn
2202
2203@deffn {Scheme Procedure} string->char-set! str base_cs
2204@deffnx {C Function} scm_string_to_char_set_x (str, base_cs)
2205Convert the string @var{str} to a character set. The
2206characters from the string are added to @var{base_cs}, and
2207@var{base_cs} is returned.
2208@end deffn
2209
2210@deffn {Scheme Procedure} char-set-filter pred cs [base_cs]
2211@deffnx {C Function} scm_char_set_filter (pred, cs, base_cs)
2212Return a character set containing every character from @var{cs}
2213so that it satisfies @var{pred}. If provided, the characters
2214from @var{base_cs} are added to the result.
2215@end deffn
2216
2217@deffn {Scheme Procedure} char-set-filter! pred cs base_cs
2218@deffnx {C Function} scm_char_set_filter_x (pred, cs, base_cs)
2219Return a character set containing every character from @var{cs}
2220so that it satisfies @var{pred}. The characters are added to
2221@var{base_cs} and @var{base_cs} is returned.
2222@end deffn
2223
2224@deffn {Scheme Procedure} ucs-range->char-set lower upper [error [base_cs]]
2225@deffnx {C Function} scm_ucs_range_to_char_set (lower, upper, error, base_cs)
2226Return a character set containing all characters whose
2227character codes lie in the half-open range
2228[@var{lower},@var{upper}).
2229
2230If @var{error} is a true value, an error is signalled if the
2231specified range contains characters which are not contained in
2232the implemented character range. If @var{error} is @code{#f},
be3eb25c 2233these characters are silently left out of the resulting
050ab45f
MV
2234character set.
2235
2236The characters in @var{base_cs} are added to the result, if
2237given.
2238@end deffn
2239
2240@deffn {Scheme Procedure} ucs-range->char-set! lower upper error base_cs
2241@deffnx {C Function} scm_ucs_range_to_char_set_x (lower, upper, error, base_cs)
2242Return a character set containing all characters whose
2243character codes lie in the half-open range
2244[@var{lower},@var{upper}).
2245
2246If @var{error} is a true value, an error is signalled if the
2247specified range contains characters which are not contained in
2248the implemented character range. If @var{error} is @code{#f},
be3eb25c 2249these characters are silently left out of the resulting
050ab45f
MV
2250character set.
2251
2252The characters are added to @var{base_cs} and @var{base_cs} is
2253returned.
2254@end deffn
2255
2256@deffn {Scheme Procedure} ->char-set x
2257@deffnx {C Function} scm_to_char_set (x)
be3eb25c
MG
2258Coerces x into a char-set. @var{x} may be a string, character or
2259char-set. A string is converted to the set of its constituent
2260characters; a character is converted to a singleton set; a char-set is
2261returned as-is.
050ab45f
MV
2262@end deffn
2263
2264@c ===================================================================
2265
2266@node Querying Character Sets
2267@subsubsection Querying Character Sets
2268
2269Access the elements and other information of a character set with these
2270procedures.
2271
be3eb25c
MG
2272@deffn {Scheme Procedure} %char-set-dump cs
2273Returns an association list containing debugging information
2274for @var{cs}. The association list has the following entries.
2275@table @code
2276@item char-set
2277The char-set itself
2278@item len
2279The number of groups of contiguous code points the char-set
2280contains
2281@item ranges
2282A list of lists where each sublist is a range of code points
2283and their associated characters
2284@end table
2285The return value of this function cannot be relied upon to be
2286consistent between versions of Guile and should not be used in code.
2287@end deffn
2288
050ab45f
MV
2289@deffn {Scheme Procedure} char-set-size cs
2290@deffnx {C Function} scm_char_set_size (cs)
2291Return the number of elements in character set @var{cs}.
2292@end deffn
2293
2294@deffn {Scheme Procedure} char-set-count pred cs
2295@deffnx {C Function} scm_char_set_count (pred, cs)
2296Return the number of the elements int the character set
2297@var{cs} which satisfy the predicate @var{pred}.
2298@end deffn
2299
2300@deffn {Scheme Procedure} char-set->list cs
2301@deffnx {C Function} scm_char_set_to_list (cs)
2302Return a list containing the elements of the character set
2303@var{cs}.
2304@end deffn
2305
2306@deffn {Scheme Procedure} char-set->string cs
2307@deffnx {C Function} scm_char_set_to_string (cs)
2308Return a string containing the elements of the character set
2309@var{cs}. The order in which the characters are placed in the
2310string is not defined.
2311@end deffn
2312
2313@deffn {Scheme Procedure} char-set-contains? cs ch
2314@deffnx {C Function} scm_char_set_contains_p (cs, ch)
2315Return @code{#t} iff the character @var{ch} is contained in the
2316character set @var{cs}.
2317@end deffn
2318
2319@deffn {Scheme Procedure} char-set-every pred cs
2320@deffnx {C Function} scm_char_set_every (pred, cs)
2321Return a true value if every character in the character set
2322@var{cs} satisfies the predicate @var{pred}.
2323@end deffn
2324
2325@deffn {Scheme Procedure} char-set-any pred cs
2326@deffnx {C Function} scm_char_set_any (pred, cs)
2327Return a true value if any character in the character set
2328@var{cs} satisfies the predicate @var{pred}.
2329@end deffn
2330
2331@c ===================================================================
2332
2333@node Character-Set Algebra
2334@subsubsection Character-Set Algebra
2335
2336Character sets can be manipulated with the common set algebra operation,
2337such as union, complement, intersection etc. All of these procedures
2338provide side-effecting variants, which modify their character set
2339argument(s).
2340
2341@deffn {Scheme Procedure} char-set-adjoin cs . rest
2342@deffnx {C Function} scm_char_set_adjoin (cs, rest)
2343Add all character arguments to the first argument, which must
2344be a character set.
2345@end deffn
2346
2347@deffn {Scheme Procedure} char-set-delete cs . rest
2348@deffnx {C Function} scm_char_set_delete (cs, rest)
2349Delete all character arguments from the first argument, which
2350must be a character set.
2351@end deffn
2352
2353@deffn {Scheme Procedure} char-set-adjoin! cs . rest
2354@deffnx {C Function} scm_char_set_adjoin_x (cs, rest)
2355Add all character arguments to the first argument, which must
2356be a character set.
2357@end deffn
2358
2359@deffn {Scheme Procedure} char-set-delete! cs . rest
2360@deffnx {C Function} scm_char_set_delete_x (cs, rest)
2361Delete all character arguments from the first argument, which
2362must be a character set.
2363@end deffn
2364
2365@deffn {Scheme Procedure} char-set-complement cs
2366@deffnx {C Function} scm_char_set_complement (cs)
2367Return the complement of the character set @var{cs}.
2368@end deffn
2369
be3eb25c
MG
2370Note that the complement of a character set is likely to contain many
2371reserved code points (code points that are not associated with
2372characters). It may be helpful to modify the output of
2373@code{char-set-complement} by computing its intersection with the set
2374of designated code points, @code{char-set:designated}.
2375
050ab45f
MV
2376@deffn {Scheme Procedure} char-set-union . rest
2377@deffnx {C Function} scm_char_set_union (rest)
2378Return the union of all argument character sets.
2379@end deffn
2380
2381@deffn {Scheme Procedure} char-set-intersection . rest
2382@deffnx {C Function} scm_char_set_intersection (rest)
2383Return the intersection of all argument character sets.
2384@end deffn
2385
2386@deffn {Scheme Procedure} char-set-difference cs1 . rest
2387@deffnx {C Function} scm_char_set_difference (cs1, rest)
2388Return the difference of all argument character sets.
2389@end deffn
2390
2391@deffn {Scheme Procedure} char-set-xor . rest
2392@deffnx {C Function} scm_char_set_xor (rest)
2393Return the exclusive-or of all argument character sets.
2394@end deffn
2395
2396@deffn {Scheme Procedure} char-set-diff+intersection cs1 . rest
2397@deffnx {C Function} scm_char_set_diff_plus_intersection (cs1, rest)
2398Return the difference and the intersection of all argument
2399character sets.
2400@end deffn
2401
2402@deffn {Scheme Procedure} char-set-complement! cs
2403@deffnx {C Function} scm_char_set_complement_x (cs)
2404Return the complement of the character set @var{cs}.
2405@end deffn
2406
2407@deffn {Scheme Procedure} char-set-union! cs1 . rest
2408@deffnx {C Function} scm_char_set_union_x (cs1, rest)
2409Return the union of all argument character sets.
2410@end deffn
2411
2412@deffn {Scheme Procedure} char-set-intersection! cs1 . rest
2413@deffnx {C Function} scm_char_set_intersection_x (cs1, rest)
2414Return the intersection of all argument character sets.
2415@end deffn
2416
2417@deffn {Scheme Procedure} char-set-difference! cs1 . rest
2418@deffnx {C Function} scm_char_set_difference_x (cs1, rest)
2419Return the difference of all argument character sets.
2420@end deffn
2421
2422@deffn {Scheme Procedure} char-set-xor! cs1 . rest
2423@deffnx {C Function} scm_char_set_xor_x (cs1, rest)
2424Return the exclusive-or of all argument character sets.
2425@end deffn
2426
2427@deffn {Scheme Procedure} char-set-diff+intersection! cs1 cs2 . rest
2428@deffnx {C Function} scm_char_set_diff_plus_intersection_x (cs1, cs2, rest)
2429Return the difference and the intersection of all argument
2430character sets.
2431@end deffn
2432
2433@c ===================================================================
2434
2435@node Standard Character Sets
2436@subsubsection Standard Character Sets
2437
2438In order to make the use of the character set data type and procedures
2439useful, several predefined character set variables exist.
2440
49dec04b
LC
2441@cindex codeset
2442@cindex charset
2443@cindex locale
2444
be3eb25c
MG
2445These character sets are locale independent and are not recomputed
2446upon a @code{setlocale} call. They contain characters from the whole
2447range of Unicode code points. For instance, @code{char-set:letter}
2448contains about 94,000 characters.
49dec04b 2449
c9dc8c6c
MV
2450@defvr {Scheme Variable} char-set:lower-case
2451@defvrx {C Variable} scm_char_set_lower_case
050ab45f 2452All lower-case characters.
c9dc8c6c 2453@end defvr
050ab45f 2454
c9dc8c6c
MV
2455@defvr {Scheme Variable} char-set:upper-case
2456@defvrx {C Variable} scm_char_set_upper_case
050ab45f 2457All upper-case characters.
c9dc8c6c 2458@end defvr
050ab45f 2459
c9dc8c6c
MV
2460@defvr {Scheme Variable} char-set:title-case
2461@defvrx {C Variable} scm_char_set_title_case
be3eb25c
MG
2462All single characters that function as if they were an upper-case
2463letter followed by a lower-case letter.
c9dc8c6c 2464@end defvr
050ab45f 2465
c9dc8c6c
MV
2466@defvr {Scheme Variable} char-set:letter
2467@defvrx {C Variable} scm_char_set_letter
be3eb25c
MG
2468All letters. This includes @code{char-set:lower-case},
2469@code{char-set:upper-case}, @code{char-set:title-case}, and many
2470letters that have no case at all. For example, Chinese and Japanese
2471characters typically have no concept of case.
c9dc8c6c 2472@end defvr
050ab45f 2473
c9dc8c6c
MV
2474@defvr {Scheme Variable} char-set:digit
2475@defvrx {C Variable} scm_char_set_digit
050ab45f 2476All digits.
c9dc8c6c 2477@end defvr
050ab45f 2478
c9dc8c6c
MV
2479@defvr {Scheme Variable} char-set:letter+digit
2480@defvrx {C Variable} scm_char_set_letter_and_digit
050ab45f 2481The union of @code{char-set:letter} and @code{char-set:digit}.
c9dc8c6c 2482@end defvr
050ab45f 2483
c9dc8c6c
MV
2484@defvr {Scheme Variable} char-set:graphic
2485@defvrx {C Variable} scm_char_set_graphic
050ab45f 2486All characters which would put ink on the paper.
c9dc8c6c 2487@end defvr
050ab45f 2488
c9dc8c6c
MV
2489@defvr {Scheme Variable} char-set:printing
2490@defvrx {C Variable} scm_char_set_printing
050ab45f 2491The union of @code{char-set:graphic} and @code{char-set:whitespace}.
c9dc8c6c 2492@end defvr
050ab45f 2493
c9dc8c6c
MV
2494@defvr {Scheme Variable} char-set:whitespace
2495@defvrx {C Variable} scm_char_set_whitespace
050ab45f 2496All whitespace characters.
c9dc8c6c 2497@end defvr
050ab45f 2498
c9dc8c6c
MV
2499@defvr {Scheme Variable} char-set:blank
2500@defvrx {C Variable} scm_char_set_blank
be3eb25c
MG
2501All horizontal whitespace characters, which notably includes
2502@code{#\space} and @code{#\tab}.
c9dc8c6c 2503@end defvr
050ab45f 2504
c9dc8c6c
MV
2505@defvr {Scheme Variable} char-set:iso-control
2506@defvrx {C Variable} scm_char_set_iso_control
be3eb25c
MG
2507The ISO control characters are the C0 control characters (U+0000 to
2508U+001F), delete (U+007F), and the C1 control characters (U+0080 to
2509U+009F).
c9dc8c6c 2510@end defvr
050ab45f 2511
c9dc8c6c
MV
2512@defvr {Scheme Variable} char-set:punctuation
2513@defvrx {C Variable} scm_char_set_punctuation
be3eb25c
MG
2514All punctuation characters, such as the characters
2515@code{!"#%&'()*,-./:;?@@[\\]_@{@}}
c9dc8c6c 2516@end defvr
050ab45f 2517
c9dc8c6c
MV
2518@defvr {Scheme Variable} char-set:symbol
2519@defvrx {C Variable} scm_char_set_symbol
be3eb25c 2520All symbol characters, such as the characters @code{$+<=>^`|~}.
c9dc8c6c 2521@end defvr
050ab45f 2522
c9dc8c6c
MV
2523@defvr {Scheme Variable} char-set:hex-digit
2524@defvrx {C Variable} scm_char_set_hex_digit
050ab45f 2525The hexadecimal digits @code{0123456789abcdefABCDEF}.
c9dc8c6c 2526@end defvr
050ab45f 2527
c9dc8c6c
MV
2528@defvr {Scheme Variable} char-set:ascii
2529@defvrx {C Variable} scm_char_set_ascii
050ab45f 2530All ASCII characters.
c9dc8c6c 2531@end defvr
050ab45f 2532
c9dc8c6c
MV
2533@defvr {Scheme Variable} char-set:empty
2534@defvrx {C Variable} scm_char_set_empty
050ab45f 2535The empty character set.
c9dc8c6c 2536@end defvr
050ab45f 2537
be3eb25c
MG
2538@defvr {Scheme Variable} char-set:designated
2539@defvrx {C Variable} scm_char_set_designated
2540This character set contains all designated code points. This includes
2541all the code points to which Unicode has assigned a character or other
2542meaning.
2543@end defvr
2544
c9dc8c6c
MV
2545@defvr {Scheme Variable} char-set:full
2546@defvrx {C Variable} scm_char_set_full
be3eb25c
MG
2547This character set contains all possible code points. This includes
2548both designated and reserved code points.
c9dc8c6c 2549@end defvr
07d83abe
MV
2550
2551@node Strings
2552@subsection Strings
2553@tpindex Strings
2554
2555Strings are fixed-length sequences of characters. They can be created
2556by calling constructor procedures, but they can also literally get
2557entered at the @acronym{REPL} or in Scheme source files.
2558
2559@c Guile provides a rich set of string processing procedures, because text
2560@c handling is very important when Guile is used as a scripting language.
2561
2562Strings always carry the information about how many characters they are
2563composed of with them, so there is no special end-of-string character,
2564like in C. That means that Scheme strings can contain any character,
c48c62d0
MV
2565even the @samp{#\nul} character @samp{\0}.
2566
2567To use strings efficiently, you need to know a bit about how Guile
2568implements them. In Guile, a string consists of two parts, a head and
2569the actual memory where the characters are stored. When a string (or
2570a substring of it) is copied, only a new head gets created, the memory
2571is usually not copied. The two heads start out pointing to the same
2572memory.
2573
2574When one of these two strings is modified, as with @code{string-set!},
2575their common memory does get copied so that each string has its own
be3eb25c 2576memory and modifying one does not accidentally modify the other as well.
c48c62d0
MV
2577Thus, Guile's strings are `copy on write'; the actual copying of their
2578memory is delayed until one string is written to.
2579
2580This implementation makes functions like @code{substring} very
2581efficient in the common case that no modifications are done to the
2582involved strings.
2583
2584If you do know that your strings are getting modified right away, you
2585can use @code{substring/copy} instead of @code{substring}. This
2586function performs the copy immediately at the time of creation. This
2587is more efficient, especially in a multi-threaded program. Also,
2588@code{substring/copy} can avoid the problem that a short substring
2589holds on to the memory of a very large original string that could
2590otherwise be recycled.
2591
2592If you want to avoid the copy altogether, so that modifications of one
2593string show up in the other, you can use @code{substring/shared}. The
2594strings created by this procedure are called @dfn{mutation sharing
2595substrings} since the substring and the original string share
2596modifications to each other.
07d83abe 2597
05256760
MV
2598If you want to prevent modifications, use @code{substring/read-only}.
2599
c9dc8c6c
MV
2600Guile provides all procedures of SRFI-13 and a few more.
2601
07d83abe 2602@menu
5676b4fa
MV
2603* String Syntax:: Read syntax for strings.
2604* String Predicates:: Testing strings for certain properties.
2605* String Constructors:: Creating new string objects.
2606* List/String Conversion:: Converting from/to lists of characters.
2607* String Selection:: Select portions from strings.
2608* String Modification:: Modify parts or whole strings.
2609* String Comparison:: Lexicographic ordering predicates.
2610* String Searching:: Searching in strings.
2611* Alphabetic Case Mapping:: Convert the alphabetic case of strings.
2612* Reversing and Appending Strings:: Appending strings to form a new string.
2613* Mapping Folding and Unfolding:: Iterating over strings.
2614* Miscellaneous String Operations:: Replicating, insertion, parsing, ...
67af975c 2615* Conversion to/from C::
5b6b22e8 2616* String Internals:: The storage strategy for strings.
07d83abe
MV
2617@end menu
2618
2619@node String Syntax
2620@subsubsection String Read Syntax
2621
2622@c In the following @code is used to get a good font in TeX etc, but
2623@c is omitted for Info format, so as not to risk any confusion over
2624@c whether surrounding ` ' quotes are part of the escape or are
2625@c special in a string (they're not).
2626
2627The read syntax for strings is an arbitrarily long sequence of
c48c62d0 2628characters enclosed in double quotes (@nicode{"}).
07d83abe 2629
67af975c
MG
2630Backslash is an escape character and can be used to insert the following
2631special characters. @nicode{\"} and @nicode{\\} are R5RS standard, the
2632next seven are R6RS standard --- notice they follow C syntax --- and the
2633remaining four are Guile extensions.
07d83abe
MV
2634
2635@table @asis
2636@item @nicode{\\}
2637Backslash character.
2638
2639@item @nicode{\"}
2640Double quote character (an unescaped @nicode{"} is otherwise the end
2641of the string).
2642
07d83abe
MV
2643@item @nicode{\a}
2644Bell character (ASCII 7).
2645
2646@item @nicode{\f}
2647Formfeed character (ASCII 12).
2648
2649@item @nicode{\n}
2650Newline character (ASCII 10).
2651
2652@item @nicode{\r}
2653Carriage return character (ASCII 13).
2654
2655@item @nicode{\t}
2656Tab character (ASCII 9).
2657
2658@item @nicode{\v}
2659Vertical tab character (ASCII 11).
2660
67a4a16d
MG
2661@item @nicode{\b}
2662Backspace character (ASCII 8).
2663
67af975c
MG
2664@item @nicode{\0}
2665NUL character (ASCII 0).
2666
07d83abe
MV
2667@item @nicode{\xHH}
2668Character code given by two hexadecimal digits. For example
2669@nicode{\x7f} for an ASCII DEL (127).
28cc8dac
MG
2670
2671@item @nicode{\uHHHH}
2672Character code given by four hexadecimal digits. For example
2673@nicode{\u0100} for a capital A with macron (U+0100).
2674
2675@item @nicode{\UHHHHHH}
2676Character code given by six hexadecimal digits. For example
2677@nicode{\U010402}.
07d83abe
MV
2678@end table
2679
2680@noindent
2681The following are examples of string literals:
2682
2683@lisp
2684"foo"
2685"bar plonk"
2686"Hello World"
2687"\"Hi\", he said."
2688@end lisp
2689
6ea30487
MG
2690The three escape sequences @code{\xHH}, @code{\uHHHH} and @code{\UHHHHHH} were
2691chosen to not break compatibility with code written for previous versions of
2692Guile. The R6RS specification suggests a different, incompatible syntax for hex
2693escapes: @code{\xHHHH;} -- a character code followed by one to eight hexadecimal
2694digits terminated with a semicolon. If this escape format is desired instead,
2695it can be enabled with the reader option @code{r6rs-hex-escapes}.
2696
2697@lisp
2698(read-enable 'r6rs-hex-escapes)
2699@end lisp
2700
2701Enabling this option will also change the hex escape format for characters.
2702More on character escapes can be found at (@pxref{Characters}). More on
2703reader options in general can be found at (@pxref{Reader options}).
07d83abe
MV
2704
2705@node String Predicates
2706@subsubsection String Predicates
2707
2708The following procedures can be used to check whether a given string
2709fulfills some specified property.
2710
2711@rnindex string?
2712@deffn {Scheme Procedure} string? obj
2713@deffnx {C Function} scm_string_p (obj)
2714Return @code{#t} if @var{obj} is a string, else @code{#f}.
2715@end deffn
2716
91210d62
MV
2717@deftypefn {C Function} int scm_is_string (SCM obj)
2718Returns @code{1} if @var{obj} is a string, @code{0} otherwise.
2719@end deftypefn
2720
07d83abe
MV
2721@deffn {Scheme Procedure} string-null? str
2722@deffnx {C Function} scm_string_null_p (str)
2723Return @code{#t} if @var{str}'s length is zero, and
2724@code{#f} otherwise.
2725@lisp
2726(string-null? "") @result{} #t
2727y @result{} "foo"
2728(string-null? y) @result{} #f
2729@end lisp
2730@end deffn
2731
5676b4fa
MV
2732@deffn {Scheme Procedure} string-any char_pred s [start [end]]
2733@deffnx {C Function} scm_string_any (char_pred, s, start, end)
c100a12c 2734Check if @var{char_pred} is true for any character in string @var{s}.
5676b4fa 2735
c100a12c
KR
2736@var{char_pred} can be a character to check for any equal to that, or
2737a character set (@pxref{Character Sets}) to check for any in that set,
2738or a predicate procedure to call.
5676b4fa 2739
c100a12c
KR
2740For a procedure, calls @code{(@var{char_pred} c)} are made
2741successively on the characters from @var{start} to @var{end}. If
2742@var{char_pred} returns true (ie.@: non-@code{#f}), @code{string-any}
2743stops and that return value is the return from @code{string-any}. The
2744call on the last character (ie.@: at @math{@var{end}-1}), if that
2745point is reached, is a tail call.
2746
2747If there are no characters in @var{s} (ie.@: @var{start} equals
2748@var{end}) then the return is @code{#f}.
5676b4fa
MV
2749@end deffn
2750
2751@deffn {Scheme Procedure} string-every char_pred s [start [end]]
2752@deffnx {C Function} scm_string_every (char_pred, s, start, end)
c100a12c
KR
2753Check if @var{char_pred} is true for every character in string
2754@var{s}.
5676b4fa 2755
c100a12c
KR
2756@var{char_pred} can be a character to check for every character equal
2757to that, or a character set (@pxref{Character Sets}) to check for
2758every character being in that set, or a predicate procedure to call.
2759
2760For a procedure, calls @code{(@var{char_pred} c)} are made
2761successively on the characters from @var{start} to @var{end}. If
2762@var{char_pred} returns @code{#f}, @code{string-every} stops and
2763returns @code{#f}. The call on the last character (ie.@: at
2764@math{@var{end}-1}), if that point is reached, is a tail call and the
2765return from that call is the return from @code{string-every}.
5676b4fa
MV
2766
2767If there are no characters in @var{s} (ie.@: @var{start} equals
2768@var{end}) then the return is @code{#t}.
5676b4fa
MV
2769@end deffn
2770
07d83abe
MV
2771@node String Constructors
2772@subsubsection String Constructors
2773
2774The string constructor procedures create new string objects, possibly
c48c62d0
MV
2775initializing them with some specified character data. See also
2776@xref{String Selection}, for ways to create strings from existing
2777strings.
07d83abe
MV
2778
2779@c FIXME::martin: list->string belongs into `List/String Conversion'
2780
bba26c32 2781@deffn {Scheme Procedure} string char@dots{}
07d83abe 2782@rnindex string
bba26c32
KR
2783Return a newly allocated string made from the given character
2784arguments.
2785
2786@example
2787(string #\x #\y #\z) @result{} "xyz"
2788(string) @result{} ""
2789@end example
2790@end deffn
2791
2792@deffn {Scheme Procedure} list->string lst
2793@deffnx {C Function} scm_string (lst)
07d83abe 2794@rnindex list->string
bba26c32
KR
2795Return a newly allocated string made from a list of characters.
2796
2797@example
2798(list->string '(#\a #\b #\c)) @result{} "abc"
2799@end example
2800@end deffn
2801
2802@deffn {Scheme Procedure} reverse-list->string lst
2803@deffnx {C Function} scm_reverse_list_to_string (lst)
2804Return a newly allocated string made from a list of characters, in
2805reverse order.
2806
2807@example
2808(reverse-list->string '(#\a #\B #\c)) @result{} "cBa"
2809@end example
07d83abe
MV
2810@end deffn
2811
2812@rnindex make-string
2813@deffn {Scheme Procedure} make-string k [chr]
2814@deffnx {C Function} scm_make_string (k, chr)
2815Return a newly allocated string of
2816length @var{k}. If @var{chr} is given, then all elements of
2817the string are initialized to @var{chr}, otherwise the contents
2818of the @var{string} are unspecified.
2819@end deffn
2820
c48c62d0
MV
2821@deftypefn {C Function} SCM scm_c_make_string (size_t len, SCM chr)
2822Like @code{scm_make_string}, but expects the length as a
2823@code{size_t}.
2824@end deftypefn
2825
5676b4fa
MV
2826@deffn {Scheme Procedure} string-tabulate proc len
2827@deffnx {C Function} scm_string_tabulate (proc, len)
2828@var{proc} is an integer->char procedure. Construct a string
2829of size @var{len} by applying @var{proc} to each index to
2830produce the corresponding string element. The order in which
2831@var{proc} is applied to the indices is not specified.
2832@end deffn
2833
5676b4fa
MV
2834@deffn {Scheme Procedure} string-join ls [delimiter [grammar]]
2835@deffnx {C Function} scm_string_join (ls, delimiter, grammar)
2836Append the string in the string list @var{ls}, using the string
2837@var{delim} as a delimiter between the elements of @var{ls}.
2838@var{grammar} is a symbol which specifies how the delimiter is
2839placed between the strings, and defaults to the symbol
2840@code{infix}.
2841
2842@table @code
2843@item infix
2844Insert the separator between list elements. An empty string
2845will produce an empty list.
2846@item string-infix
2847Like @code{infix}, but will raise an error if given the empty
2848list.
2849@item suffix
2850Insert the separator after every list element.
2851@item prefix
2852Insert the separator before each list element.
2853@end table
2854@end deffn
2855
07d83abe
MV
2856@node List/String Conversion
2857@subsubsection List/String conversion
2858
2859When processing strings, it is often convenient to first convert them
2860into a list representation by using the procedure @code{string->list},
2861work with the resulting list, and then convert it back into a string.
2862These procedures are useful for similar tasks.
2863
2864@rnindex string->list
5676b4fa
MV
2865@deffn {Scheme Procedure} string->list str [start [end]]
2866@deffnx {C Function} scm_substring_to_list (str, start, end)
07d83abe 2867@deffnx {C Function} scm_string_to_list (str)
5676b4fa 2868Convert the string @var{str} into a list of characters.
07d83abe
MV
2869@end deffn
2870
2871@deffn {Scheme Procedure} string-split str chr
2872@deffnx {C Function} scm_string_split (str, chr)
2873Split the string @var{str} into the a list of the substrings delimited
2874by appearances of the character @var{chr}. Note that an empty substring
2875between separator characters will result in an empty string in the
2876result list.
2877
2878@lisp
2879(string-split "root:x:0:0:root:/root:/bin/bash" #\:)
2880@result{}
2881("root" "x" "0" "0" "root" "/root" "/bin/bash")
2882
2883(string-split "::" #\:)
2884@result{}
2885("" "" "")
2886
2887(string-split "" #\:)
2888@result{}
2889("")
2890@end lisp
2891@end deffn
2892
2893
2894@node String Selection
2895@subsubsection String Selection
2896
2897Portions of strings can be extracted by these procedures.
2898@code{string-ref} delivers individual characters whereas
2899@code{substring} can be used to extract substrings from longer strings.
2900
2901@rnindex string-length
2902@deffn {Scheme Procedure} string-length string
2903@deffnx {C Function} scm_string_length (string)
2904Return the number of characters in @var{string}.
2905@end deffn
2906
c48c62d0
MV
2907@deftypefn {C Function} size_t scm_c_string_length (SCM str)
2908Return the number of characters in @var{str} as a @code{size_t}.
2909@end deftypefn
2910
07d83abe
MV
2911@rnindex string-ref
2912@deffn {Scheme Procedure} string-ref str k
2913@deffnx {C Function} scm_string_ref (str, k)
2914Return character @var{k} of @var{str} using zero-origin
2915indexing. @var{k} must be a valid index of @var{str}.
2916@end deffn
2917
c48c62d0
MV
2918@deftypefn {C Function} SCM scm_c_string_ref (SCM str, size_t k)
2919Return character @var{k} of @var{str} using zero-origin
2920indexing. @var{k} must be a valid index of @var{str}.
2921@end deftypefn
2922
07d83abe 2923@rnindex string-copy
5676b4fa
MV
2924@deffn {Scheme Procedure} string-copy str [start [end]]
2925@deffnx {C Function} scm_substring_copy (str, start, end)
07d83abe 2926@deffnx {C Function} scm_string_copy (str)
5676b4fa 2927Return a copy of the given string @var{str}.
c48c62d0
MV
2928
2929The returned string shares storage with @var{str} initially, but it is
2930copied as soon as one of the two strings is modified.
07d83abe
MV
2931@end deffn
2932
2933@rnindex substring
2934@deffn {Scheme Procedure} substring str start [end]
2935@deffnx {C Function} scm_substring (str, start, end)
c48c62d0 2936Return a new string formed from the characters
07d83abe
MV
2937of @var{str} beginning with index @var{start} (inclusive) and
2938ending with index @var{end} (exclusive).
2939@var{str} must be a string, @var{start} and @var{end} must be
2940exact integers satisfying:
2941
29420 <= @var{start} <= @var{end} <= @code{(string-length @var{str})}.
c48c62d0
MV
2943
2944The returned string shares storage with @var{str} initially, but it is
2945copied as soon as one of the two strings is modified.
2946@end deffn
2947
2948@deffn {Scheme Procedure} substring/shared str start [end]
2949@deffnx {C Function} scm_substring_shared (str, start, end)
2950Like @code{substring}, but the strings continue to share their storage
2951even if they are modified. Thus, modifications to @var{str} show up
2952in the new string, and vice versa.
2953@end deffn
2954
2955@deffn {Scheme Procedure} substring/copy str start [end]
2956@deffnx {C Function} scm_substring_copy (str, start, end)
2957Like @code{substring}, but the storage for the new string is copied
2958immediately.
07d83abe
MV
2959@end deffn
2960
05256760
MV
2961@deffn {Scheme Procedure} substring/read-only str start [end]
2962@deffnx {C Function} scm_substring_read_only (str, start, end)
2963Like @code{substring}, but the resulting string can not be modified.
2964@end deffn
2965
c48c62d0
MV
2966@deftypefn {C Function} SCM scm_c_substring (SCM str, size_t start, size_t end)
2967@deftypefnx {C Function} SCM scm_c_substring_shared (SCM str, size_t start, size_t end)
2968@deftypefnx {C Function} SCM scm_c_substring_copy (SCM str, size_t start, size_t end)
05256760 2969@deftypefnx {C Function} SCM scm_c_substring_read_only (SCM str, size_t start, size_t end)
c48c62d0
MV
2970Like @code{scm_substring}, etc. but the bounds are given as a @code{size_t}.
2971@end deftypefn
2972
5676b4fa
MV
2973@deffn {Scheme Procedure} string-take s n
2974@deffnx {C Function} scm_string_take (s, n)
2975Return the @var{n} first characters of @var{s}.
2976@end deffn
2977
2978@deffn {Scheme Procedure} string-drop s n
2979@deffnx {C Function} scm_string_drop (s, n)
2980Return all but the first @var{n} characters of @var{s}.
2981@end deffn
2982
2983@deffn {Scheme Procedure} string-take-right s n
2984@deffnx {C Function} scm_string_take_right (s, n)
2985Return the @var{n} last characters of @var{s}.
2986@end deffn
2987
2988@deffn {Scheme Procedure} string-drop-right s n
2989@deffnx {C Function} scm_string_drop_right (s, n)
2990Return all but the last @var{n} characters of @var{s}.
2991@end deffn
2992
2993@deffn {Scheme Procedure} string-pad s len [chr [start [end]]]
6337e7fb 2994@deffnx {Scheme Procedure} string-pad-right s len [chr [start [end]]]
5676b4fa 2995@deffnx {C Function} scm_string_pad (s, len, chr, start, end)
5676b4fa 2996@deffnx {C Function} scm_string_pad_right (s, len, chr, start, end)
6337e7fb
KR
2997Take characters @var{start} to @var{end} from the string @var{s} and
2998either pad with @var{char} or truncate them to give @var{len}
2999characters.
3000
3001@code{string-pad} pads or truncates on the left, so for example
3002
3003@example
3004(string-pad "x" 3) @result{} " x"
3005(string-pad "abcde" 3) @result{} "cde"
3006@end example
3007
3008@code{string-pad-right} pads or truncates on the right, so for example
3009
3010@example
3011(string-pad-right "x" 3) @result{} "x "
3012(string-pad-right "abcde" 3) @result{} "abc"
3013@end example
5676b4fa
MV
3014@end deffn
3015
3016@deffn {Scheme Procedure} string-trim s [char_pred [start [end]]]
dc297bb7
KR
3017@deffnx {Scheme Procedure} string-trim-right s [char_pred [start [end]]]
3018@deffnx {Scheme Procedure} string-trim-both s [char_pred [start [end]]]
5676b4fa 3019@deffnx {C Function} scm_string_trim (s, char_pred, start, end)
5676b4fa 3020@deffnx {C Function} scm_string_trim_right (s, char_pred, start, end)
5676b4fa 3021@deffnx {C Function} scm_string_trim_both (s, char_pred, start, end)
be3eb25c 3022Trim occurrences of @var{char_pred} from the ends of @var{s}.
5676b4fa 3023
dc297bb7
KR
3024@code{string-trim} trims @var{char_pred} characters from the left
3025(start) of the string, @code{string-trim-right} trims them from the
3026right (end) of the string, @code{string-trim-both} trims from both
3027ends.
5676b4fa 3028
dc297bb7
KR
3029@var{char_pred} can be a character, a character set, or a predicate
3030procedure to call on each character. If @var{char_pred} is not given
3031the default is whitespace as per @code{char-set:whitespace}
3032(@pxref{Standard Character Sets}).
5676b4fa 3033
dc297bb7
KR
3034@example
3035(string-trim " x ") @result{} "x "
3036(string-trim-right "banana" #\a) @result{} "banan"
3037(string-trim-both ".,xy:;" char-set:punctuation)
3038 @result{} "xy"
3039(string-trim-both "xyzzy" (lambda (c)
3040 (or (eqv? c #\x)
3041 (eqv? c #\y))))
3042 @result{} "zz"
3043@end example
5676b4fa
MV
3044@end deffn
3045
07d83abe
MV
3046@node String Modification
3047@subsubsection String Modification
3048
3049These procedures are for modifying strings in-place. This means that the
3050result of the operation is not a new string; instead, the original string's
3051memory representation is modified.
3052
3053@rnindex string-set!
3054@deffn {Scheme Procedure} string-set! str k chr
3055@deffnx {C Function} scm_string_set_x (str, k, chr)
3056Store @var{chr} in element @var{k} of @var{str} and return
3057an unspecified value. @var{k} must be a valid index of
3058@var{str}.
3059@end deffn
3060
c48c62d0
MV
3061@deftypefn {C Function} void scm_c_string_set_x (SCM str, size_t k, SCM chr)
3062Like @code{scm_string_set_x}, but the index is given as a @code{size_t}.
3063@end deftypefn
3064
07d83abe 3065@rnindex string-fill!
5676b4fa
MV
3066@deffn {Scheme Procedure} string-fill! str chr [start [end]]
3067@deffnx {C Function} scm_substring_fill_x (str, chr, start, end)
07d83abe 3068@deffnx {C Function} scm_string_fill_x (str, chr)
5676b4fa
MV
3069Stores @var{chr} in every element of the given @var{str} and
3070returns an unspecified value.
07d83abe
MV
3071@end deffn
3072
3073@deffn {Scheme Procedure} substring-fill! str start end fill
3074@deffnx {C Function} scm_substring_fill_x (str, start, end, fill)
3075Change every character in @var{str} between @var{start} and
3076@var{end} to @var{fill}.
3077
3078@lisp
3079(define y "abcdefg")
3080(substring-fill! y 1 3 #\r)
3081y
3082@result{} "arrdefg"
3083@end lisp
3084@end deffn
3085
3086@deffn {Scheme Procedure} substring-move! str1 start1 end1 str2 start2
3087@deffnx {C Function} scm_substring_move_x (str1, start1, end1, str2, start2)
3088Copy the substring of @var{str1} bounded by @var{start1} and @var{end1}
3089into @var{str2} beginning at position @var{start2}.
3090@var{str1} and @var{str2} can be the same string.
3091@end deffn
3092
5676b4fa
MV
3093@deffn {Scheme Procedure} string-copy! target tstart s [start [end]]
3094@deffnx {C Function} scm_string_copy_x (target, tstart, s, start, end)
3095Copy the sequence of characters from index range [@var{start},
3096@var{end}) in string @var{s} to string @var{target}, beginning
3097at index @var{tstart}. The characters are copied left-to-right
3098or right-to-left as needed -- the copy is guaranteed to work,
3099even if @var{target} and @var{s} are the same string. It is an
3100error if the copy operation runs off the end of the target
3101string.
3102@end deffn
3103
07d83abe
MV
3104
3105@node String Comparison
3106@subsubsection String Comparison
3107
3108The procedures in this section are similar to the character ordering
3109predicates (@pxref{Characters}), but are defined on character sequences.
07d83abe 3110
5676b4fa 3111The first set is specified in R5RS and has names that end in @code{?}.
28cc8dac 3112The second set is specified in SRFI-13 and the names have not ending
67af975c 3113@code{?}.
28cc8dac
MG
3114
3115The predicates ending in @code{-ci} ignore the character case
3116when comparing strings. For now, case-insensitive comparison is done
3117using the R5RS rules, where every lower-case character that has a
3118single character upper-case form is converted to uppercase before
3119comparison. See @xref{Text Collation, the @code{(ice-9
b89c4943 3120i18n)} module}, for locale-dependent string comparison.
07d83abe
MV
3121
3122@rnindex string=?
3323ec06
NJ
3123@deffn {Scheme Procedure} string=? [s1 [s2 . rest]]
3124@deffnx {C Function} scm_i_string_equal_p (s1, s2, rest)
07d83abe
MV
3125Lexicographic equality predicate; return @code{#t} if the two
3126strings are the same length and contain the same characters in
3127the same positions, otherwise return @code{#f}.
3128
3129The procedure @code{string-ci=?} treats upper and lower case
3130letters as though they were the same character, but
3131@code{string=?} treats upper and lower case as distinct
3132characters.
3133@end deffn
3134
3135@rnindex string<?
3323ec06
NJ
3136@deffn {Scheme Procedure} string<? [s1 [s2 . rest]]
3137@deffnx {C Function} scm_i_string_less_p (s1, s2, rest)
07d83abe
MV
3138Lexicographic ordering predicate; return @code{#t} if @var{s1}
3139is lexicographically less than @var{s2}.
3140@end deffn
3141
3142@rnindex string<=?
3323ec06
NJ
3143@deffn {Scheme Procedure} string<=? [s1 [s2 . rest]]
3144@deffnx {C Function} scm_i_string_leq_p (s1, s2, rest)
07d83abe
MV
3145Lexicographic ordering predicate; return @code{#t} if @var{s1}
3146is lexicographically less than or equal to @var{s2}.
3147@end deffn
3148
3149@rnindex string>?
3323ec06
NJ
3150@deffn {Scheme Procedure} string>? [s1 [s2 . rest]]
3151@deffnx {C Function} scm_i_string_gr_p (s1, s2, rest)
07d83abe
MV
3152Lexicographic ordering predicate; return @code{#t} if @var{s1}
3153is lexicographically greater than @var{s2}.
3154@end deffn
3155
3156@rnindex string>=?
3323ec06
NJ
3157@deffn {Scheme Procedure} string>=? [s1 [s2 . rest]]
3158@deffnx {C Function} scm_i_string_geq_p (s1, s2, rest)
07d83abe
MV
3159Lexicographic ordering predicate; return @code{#t} if @var{s1}
3160is lexicographically greater than or equal to @var{s2}.
3161@end deffn
3162
3163@rnindex string-ci=?
3323ec06
NJ
3164@deffn {Scheme Procedure} string-ci=? [s1 [s2 . rest]]
3165@deffnx {C Function} scm_i_string_ci_equal_p (s1, s2, rest)
07d83abe
MV
3166Case-insensitive string equality predicate; return @code{#t} if
3167the two strings are the same length and their component
3168characters match (ignoring case) at each position; otherwise
3169return @code{#f}.
3170@end deffn
3171
5676b4fa 3172@rnindex string-ci<?
3323ec06
NJ
3173@deffn {Scheme Procedure} string-ci<? [s1 [s2 . rest]]
3174@deffnx {C Function} scm_i_string_ci_less_p (s1, s2, rest)
07d83abe
MV
3175Case insensitive lexicographic ordering predicate; return
3176@code{#t} if @var{s1} is lexicographically less than @var{s2}
3177regardless of case.
3178@end deffn
3179
3180@rnindex string<=?
3323ec06
NJ
3181@deffn {Scheme Procedure} string-ci<=? [s1 [s2 . rest]]
3182@deffnx {C Function} scm_i_string_ci_leq_p (s1, s2, rest)
07d83abe
MV
3183Case insensitive lexicographic ordering predicate; return
3184@code{#t} if @var{s1} is lexicographically less than or equal
3185to @var{s2} regardless of case.
3186@end deffn
3187
3188@rnindex string-ci>?
3323ec06
NJ
3189@deffn {Scheme Procedure} string-ci>? [s1 [s2 . rest]]
3190@deffnx {C Function} scm_i_string_ci_gr_p (s1, s2, rest)
07d83abe
MV
3191Case insensitive lexicographic ordering predicate; return
3192@code{#t} if @var{s1} is lexicographically greater than
3193@var{s2} regardless of case.
3194@end deffn
3195
3196@rnindex string-ci>=?
3323ec06
NJ
3197@deffn {Scheme Procedure} string-ci>=? [s1 [s2 . rest]]
3198@deffnx {C Function} scm_i_string_ci_geq_p (s1, s2, rest)
07d83abe
MV
3199Case insensitive lexicographic ordering predicate; return
3200@code{#t} if @var{s1} is lexicographically greater than or
3201equal to @var{s2} regardless of case.
3202@end deffn
3203
5676b4fa
MV
3204@deffn {Scheme Procedure} string-compare s1 s2 proc_lt proc_eq proc_gt [start1 [end1 [start2 [end2]]]]
3205@deffnx {C Function} scm_string_compare (s1, s2, proc_lt, proc_eq, proc_gt, start1, end1, start2, end2)
3206Apply @var{proc_lt}, @var{proc_eq}, @var{proc_gt} to the
3207mismatch index, depending upon whether @var{s1} is less than,
3208equal to, or greater than @var{s2}. The mismatch index is the
3209largest index @var{i} such that for every 0 <= @var{j} <
3210@var{i}, @var{s1}[@var{j}] = @var{s2}[@var{j}] -- that is,
3211@var{i} is the first position that does not match.
3212@end deffn
3213
3214@deffn {Scheme Procedure} string-compare-ci s1 s2 proc_lt proc_eq proc_gt [start1 [end1 [start2 [end2]]]]
3215@deffnx {C Function} scm_string_compare_ci (s1, s2, proc_lt, proc_eq, proc_gt, start1, end1, start2, end2)
3216Apply @var{proc_lt}, @var{proc_eq}, @var{proc_gt} to the
3217mismatch index, depending upon whether @var{s1} is less than,
3218equal to, or greater than @var{s2}. The mismatch index is the
3219largest index @var{i} such that for every 0 <= @var{j} <
3220@var{i}, @var{s1}[@var{j}] = @var{s2}[@var{j}] -- that is,
3323ec06
NJ
3221@var{i} is the first position where the lowercased letters
3222do not match.
3223
5676b4fa
MV
3224@end deffn
3225
3226@deffn {Scheme Procedure} string= s1 s2 [start1 [end1 [start2 [end2]]]]
3227@deffnx {C Function} scm_string_eq (s1, s2, start1, end1, start2, end2)
3228Return @code{#f} if @var{s1} and @var{s2} are not equal, a true
3229value otherwise.
3230@end deffn
3231
3232@deffn {Scheme Procedure} string<> s1 s2 [start1 [end1 [start2 [end2]]]]
3233@deffnx {C Function} scm_string_neq (s1, s2, start1, end1, start2, end2)
3234Return @code{#f} if @var{s1} and @var{s2} are equal, a true
3235value otherwise.
3236@end deffn
3237
3238@deffn {Scheme Procedure} string< s1 s2 [start1 [end1 [start2 [end2]]]]
3239@deffnx {C Function} scm_string_lt (s1, s2, start1, end1, start2, end2)
3240Return @code{#f} if @var{s1} is greater or equal to @var{s2}, a
3241true value otherwise.
3242@end deffn
3243
3244@deffn {Scheme Procedure} string> s1 s2 [start1 [end1 [start2 [end2]]]]
3245@deffnx {C Function} scm_string_gt (s1, s2, start1, end1, start2, end2)
3246Return @code{#f} if @var{s1} is less or equal to @var{s2}, a
3247true value otherwise.
3248@end deffn
3249
3250@deffn {Scheme Procedure} string<= s1 s2 [start1 [end1 [start2 [end2]]]]
3251@deffnx {C Function} scm_string_le (s1, s2, start1, end1, start2, end2)
3252Return @code{#f} if @var{s1} is greater to @var{s2}, a true
3253value otherwise.
3254@end deffn
3255
3256@deffn {Scheme Procedure} string>= s1 s2 [start1 [end1 [start2 [end2]]]]
3257@deffnx {C Function} scm_string_ge (s1, s2, start1, end1, start2, end2)
3258Return @code{#f} if @var{s1} is less to @var{s2}, a true value
3259otherwise.
3260@end deffn
3261
3262@deffn {Scheme Procedure} string-ci= s1 s2 [start1 [end1 [start2 [end2]]]]
3263@deffnx {C Function} scm_string_ci_eq (s1, s2, start1, end1, start2, end2)
3264Return @code{#f} if @var{s1} and @var{s2} are not equal, a true
3265value otherwise. The character comparison is done
3266case-insensitively.
3267@end deffn
3268
3269@deffn {Scheme Procedure} string-ci<> s1 s2 [start1 [end1 [start2 [end2]]]]
3270@deffnx {C Function} scm_string_ci_neq (s1, s2, start1, end1, start2, end2)
3271Return @code{#f} if @var{s1} and @var{s2} are equal, a true
3272value otherwise. The character comparison is done
3273case-insensitively.
3274@end deffn
3275
3276@deffn {Scheme Procedure} string-ci< s1 s2 [start1 [end1 [start2 [end2]]]]
3277@deffnx {C Function} scm_string_ci_lt (s1, s2, start1, end1, start2, end2)
3278Return @code{#f} if @var{s1} is greater or equal to @var{s2}, a
3279true value otherwise. The character comparison is done
3280case-insensitively.
3281@end deffn
3282
3283@deffn {Scheme Procedure} string-ci> s1 s2 [start1 [end1 [start2 [end2]]]]
3284@deffnx {C Function} scm_string_ci_gt (s1, s2, start1, end1, start2, end2)
3285Return @code{#f} if @var{s1} is less or equal to @var{s2}, a
3286true value otherwise. The character comparison is done
3287case-insensitively.
3288@end deffn
3289
3290@deffn {Scheme Procedure} string-ci<= s1 s2 [start1 [end1 [start2 [end2]]]]
3291@deffnx {C Function} scm_string_ci_le (s1, s2, start1, end1, start2, end2)
3292Return @code{#f} if @var{s1} is greater to @var{s2}, a true
3293value otherwise. The character comparison is done
3294case-insensitively.
3295@end deffn
3296
3297@deffn {Scheme Procedure} string-ci>= s1 s2 [start1 [end1 [start2 [end2]]]]
3298@deffnx {C Function} scm_string_ci_ge (s1, s2, start1, end1, start2, end2)
3299Return @code{#f} if @var{s1} is less to @var{s2}, a true value
3300otherwise. The character comparison is done
3301case-insensitively.
3302@end deffn
3303
3304@deffn {Scheme Procedure} string-hash s [bound [start [end]]]
3305@deffnx {C Function} scm_substring_hash (s, bound, start, end)
3306Compute a hash value for @var{S}. the optional argument @var{bound} is a non-negative exact integer specifying the range of the hash function. A positive value restricts the return value to the range [0,bound).
3307@end deffn
3308
3309@deffn {Scheme Procedure} string-hash-ci s [bound [start [end]]]
3310@deffnx {C Function} scm_substring_hash_ci (s, bound, start, end)
3311Compute a hash value for @var{S}. the optional argument @var{bound} is a non-negative exact integer specifying the range of the hash function. A positive value restricts the return value to the range [0,bound).
3312@end deffn
07d83abe 3313
edb7bb47
JG
3314Because the same visual appearance of an abstract Unicode character can
3315be obtained via multiple sequences of Unicode characters, even the
3316case-insensitive string comparison functions described above may return
3317@code{#f} when presented with strings containing different
3318representations of the same character. For example, the Unicode
3319character ``LATIN SMALL LETTER S WITH DOT BELOW AND DOT ABOVE'' can be
3320represented with a single character (U+1E69) or by the character ``LATIN
3321SMALL LETTER S'' (U+0073) followed by the combining marks ``COMBINING
3322DOT BELOW'' (U+0323) and ``COMBINING DOT ABOVE'' (U+0307).
3323
3324For this reason, it is often desirable to ensure that the strings
3325to be compared are using a mutually consistent representation for every
3326character. The Unicode standard defines two methods of normalizing the
3327contents of strings: Decomposition, which breaks composite characters
3328into a set of constituent characters with an ordering defined by the
3329Unicode Standard; and composition, which performs the converse.
3330
3331There are two decomposition operations. ``Canonical decomposition''
3332produces character sequences that share the same visual appearance as
3333the original characters, while ``compatiblity decomposition'' produces
3334ones whose visual appearances may differ from the originals but which
3335represent the same abstract character.
3336
3337These operations are encapsulated in the following set of normalization
3338forms:
3339
3340@table @dfn
3341@item NFD
3342Characters are decomposed to their canonical forms.
3343
3344@item NFKD
3345Characters are decomposed to their compatibility forms.
3346
3347@item NFC
3348Characters are decomposed to their canonical forms, then composed.
3349
3350@item NFKC
3351Characters are decomposed to their compatibility forms, then composed.
3352
3353@end table
3354
3355The functions below put their arguments into one of the forms described
3356above.
3357
3358@deffn {Scheme Procedure} string-normalize-nfd s
3359@deffnx {C Function} scm_string_normalize_nfd (s)
3360Return the @code{NFD} normalized form of @var{s}.
3361@end deffn
3362
3363@deffn {Scheme Procedure} string-normalize-nfkd s
3364@deffnx {C Function} scm_string_normalize_nfkd (s)
3365Return the @code{NFKD} normalized form of @var{s}.
3366@end deffn
3367
3368@deffn {Scheme Procedure} string-normalize-nfc s
3369@deffnx {C Function} scm_string_normalize_nfc (s)
3370Return the @code{NFC} normalized form of @var{s}.
3371@end deffn
3372
3373@deffn {Scheme Procedure} string-normalize-nfkc s
3374@deffnx {C Function} scm_string_normalize_nfkc (s)
3375Return the @code{NFKC} normalized form of @var{s}.
3376@end deffn
3377
07d83abe
MV
3378@node String Searching
3379@subsubsection String Searching
3380
5676b4fa
MV
3381@deffn {Scheme Procedure} string-index s char_pred [start [end]]
3382@deffnx {C Function} scm_string_index (s, char_pred, start, end)
3383Search through the string @var{s} from left to right, returning
be3eb25c 3384the index of the first occurrence of a character which
07d83abe 3385
5676b4fa
MV
3386@itemize @bullet
3387@item
3388equals @var{char_pred}, if it is character,
07d83abe 3389
5676b4fa 3390@item
be3eb25c 3391satisfies the predicate @var{char_pred}, if it is a procedure,
07d83abe 3392
5676b4fa
MV
3393@item
3394is in the set @var{char_pred}, if it is a character set.
3395@end itemize
3396@end deffn
07d83abe 3397
5676b4fa
MV
3398@deffn {Scheme Procedure} string-rindex s char_pred [start [end]]
3399@deffnx {C Function} scm_string_rindex (s, char_pred, start, end)
3400Search through the string @var{s} from right to left, returning
be3eb25c 3401the index of the last occurrence of a character which
5676b4fa
MV
3402
3403@itemize @bullet
3404@item
3405equals @var{char_pred}, if it is character,
3406
3407@item
be3eb25c 3408satisfies the predicate @var{char_pred}, if it is a procedure,
5676b4fa
MV
3409
3410@item
3411is in the set if @var{char_pred} is a character set.
3412@end itemize
07d83abe
MV
3413@end deffn
3414
5676b4fa
MV
3415@deffn {Scheme Procedure} string-prefix-length s1 s2 [start1 [end1 [start2 [end2]]]]
3416@deffnx {C Function} scm_string_prefix_length (s1, s2, start1, end1, start2, end2)
3417Return the length of the longest common prefix of the two
3418strings.
3419@end deffn
07d83abe 3420
5676b4fa
MV
3421@deffn {Scheme Procedure} string-prefix-length-ci s1 s2 [start1 [end1 [start2 [end2]]]]
3422@deffnx {C Function} scm_string_prefix_length_ci (s1, s2, start1, end1, start2, end2)
3423Return the length of the longest common prefix of the two
3424strings, ignoring character case.
3425@end deffn
07d83abe 3426
5676b4fa
MV
3427@deffn {Scheme Procedure} string-suffix-length s1 s2 [start1 [end1 [start2 [end2]]]]
3428@deffnx {C Function} scm_string_suffix_length (s1, s2, start1, end1, start2, end2)
3429Return the length of the longest common suffix of the two
3430strings.
3431@end deffn
07d83abe 3432
5676b4fa
MV
3433@deffn {Scheme Procedure} string-suffix-length-ci s1 s2 [start1 [end1 [start2 [end2]]]]
3434@deffnx {C Function} scm_string_suffix_length_ci (s1, s2, start1, end1, start2, end2)
3435Return the length of the longest common suffix of the two
3436strings, ignoring character case.
3437@end deffn
3438
3439@deffn {Scheme Procedure} string-prefix? s1 s2 [start1 [end1 [start2 [end2]]]]
3440@deffnx {C Function} scm_string_prefix_p (s1, s2, start1, end1, start2, end2)
3441Is @var{s1} a prefix of @var{s2}?
3442@end deffn
3443
3444@deffn {Scheme Procedure} string-prefix-ci? s1 s2 [start1 [end1 [start2 [end2]]]]
3445@deffnx {C Function} scm_string_prefix_ci_p (s1, s2, start1, end1, start2, end2)
3446Is @var{s1} a prefix of @var{s2}, ignoring character case?
3447@end deffn
3448
3449@deffn {Scheme Procedure} string-suffix? s1 s2 [start1 [end1 [start2 [end2]]]]
3450@deffnx {C Function} scm_string_suffix_p (s1, s2, start1, end1, start2, end2)
3451Is @var{s1} a suffix of @var{s2}?
3452@end deffn
3453
3454@deffn {Scheme Procedure} string-suffix-ci? s1 s2 [start1 [end1 [start2 [end2]]]]
3455@deffnx {C Function} scm_string_suffix_ci_p (s1, s2, start1, end1, start2, end2)
3456Is @var{s1} a suffix of @var{s2}, ignoring character case?
3457@end deffn
3458
3459@deffn {Scheme Procedure} string-index-right s char_pred [start [end]]
3460@deffnx {C Function} scm_string_index_right (s, char_pred, start, end)
3461Search through the string @var{s} from right to left, returning
be3eb25c 3462the index of the last occurrence of a character which
5676b4fa
MV
3463
3464@itemize @bullet
3465@item
3466equals @var{char_pred}, if it is character,
3467
3468@item
be3eb25c 3469satisfies the predicate @var{char_pred}, if it is a procedure,
5676b4fa
MV
3470
3471@item
3472is in the set if @var{char_pred} is a character set.
3473@end itemize
3474@end deffn
3475
3476@deffn {Scheme Procedure} string-skip s char_pred [start [end]]
3477@deffnx {C Function} scm_string_skip (s, char_pred, start, end)
3478Search through the string @var{s} from left to right, returning
be3eb25c 3479the index of the first occurrence of a character which
5676b4fa
MV
3480
3481@itemize @bullet
3482@item
3483does not equal @var{char_pred}, if it is character,
3484
3485@item
be3eb25c 3486does not satisfy the predicate @var{char_pred}, if it is a
5676b4fa
MV
3487procedure,
3488
3489@item
3490is not in the set if @var{char_pred} is a character set.
3491@end itemize
3492@end deffn
3493
3494@deffn {Scheme Procedure} string-skip-right s char_pred [start [end]]
3495@deffnx {C Function} scm_string_skip_right (s, char_pred, start, end)
3496Search through the string @var{s} from right to left, returning
be3eb25c 3497the index of the last occurrence of a character which
5676b4fa
MV
3498
3499@itemize @bullet
3500@item
3501does not equal @var{char_pred}, if it is character,
3502
3503@item
3504does not satisfy the predicate @var{char_pred}, if it is a
3505procedure,
3506
3507@item
3508is not in the set if @var{char_pred} is a character set.
3509@end itemize
3510@end deffn
3511
3512@deffn {Scheme Procedure} string-count s char_pred [start [end]]
3513@deffnx {C Function} scm_string_count (s, char_pred, start, end)
3514Return the count of the number of characters in the string
3515@var{s} which
3516
3517@itemize @bullet
3518@item
3519equals @var{char_pred}, if it is character,
3520
3521@item
be3eb25c 3522satisfies the predicate @var{char_pred}, if it is a procedure.
5676b4fa
MV
3523
3524@item
3525is in the set @var{char_pred}, if it is a character set.
3526@end itemize
3527@end deffn
3528
3529@deffn {Scheme Procedure} string-contains s1 s2 [start1 [end1 [start2 [end2]]]]
3530@deffnx {C Function} scm_string_contains (s1, s2, start1, end1, start2, end2)
3531Does string @var{s1} contain string @var{s2}? Return the index
3532in @var{s1} where @var{s2} occurs as a substring, or false.
3533The optional start/end indices restrict the operation to the
3534indicated substrings.
3535@end deffn
3536
3537@deffn {Scheme Procedure} string-contains-ci s1 s2 [start1 [end1 [start2 [end2]]]]
3538@deffnx {C Function} scm_string_contains_ci (s1, s2, start1, end1, start2, end2)
3539Does string @var{s1} contain string @var{s2}? Return the index
3540in @var{s1} where @var{s2} occurs as a substring, or false.
3541The optional start/end indices restrict the operation to the
3542indicated substrings. Character comparison is done
3543case-insensitively.
07d83abe
MV
3544@end deffn
3545
3546@node Alphabetic Case Mapping
3547@subsubsection Alphabetic Case Mapping
3548
3549These are procedures for mapping strings to their upper- or lower-case
3550equivalents, respectively, or for capitalizing strings.
3551
67af975c
MG
3552They use the basic case mapping rules for Unicode characters. No
3553special language or context rules are considered. The resulting strings
3554are guaranteed to be the same length as the input strings.
3555
3556@xref{Character Case Mapping, the @code{(ice-9
3557i18n)} module}, for locale-dependent case conversions.
3558
5676b4fa
MV
3559@deffn {Scheme Procedure} string-upcase str [start [end]]
3560@deffnx {C Function} scm_substring_upcase (str, start, end)
07d83abe 3561@deffnx {C Function} scm_string_upcase (str)
5676b4fa 3562Upcase every character in @code{str}.
07d83abe
MV
3563@end deffn
3564
5676b4fa
MV
3565@deffn {Scheme Procedure} string-upcase! str [start [end]]
3566@deffnx {C Function} scm_substring_upcase_x (str, start, end)
07d83abe 3567@deffnx {C Function} scm_string_upcase_x (str)
5676b4fa
MV
3568Destructively upcase every character in @code{str}.
3569
07d83abe 3570@lisp
5676b4fa
MV
3571(string-upcase! y)
3572@result{} "ARRDEFG"
3573y
3574@result{} "ARRDEFG"
07d83abe
MV
3575@end lisp
3576@end deffn
3577
5676b4fa
MV
3578@deffn {Scheme Procedure} string-downcase str [start [end]]
3579@deffnx {C Function} scm_substring_downcase (str, start, end)
07d83abe 3580@deffnx {C Function} scm_string_downcase (str)
5676b4fa 3581Downcase every character in @var{str}.
07d83abe
MV
3582@end deffn
3583
5676b4fa
MV
3584@deffn {Scheme Procedure} string-downcase! str [start [end]]
3585@deffnx {C Function} scm_substring_downcase_x (str, start, end)
07d83abe 3586@deffnx {C Function} scm_string_downcase_x (str)
5676b4fa
MV
3587Destructively downcase every character in @var{str}.
3588
07d83abe 3589@lisp
5676b4fa
MV
3590y
3591@result{} "ARRDEFG"
3592(string-downcase! y)
3593@result{} "arrdefg"
3594y
3595@result{} "arrdefg"
07d83abe
MV
3596@end lisp
3597@end deffn
3598
3599@deffn {Scheme Procedure} string-capitalize str
3600@deffnx {C Function} scm_string_capitalize (str)
3601Return a freshly allocated string with the characters in
3602@var{str}, where the first character of every word is
3603capitalized.
3604@end deffn
3605
3606@deffn {Scheme Procedure} string-capitalize! str
3607@deffnx {C Function} scm_string_capitalize_x (str)
3608Upcase the first character of every word in @var{str}
3609destructively and return @var{str}.
3610
3611@lisp
3612y @result{} "hello world"
3613(string-capitalize! y) @result{} "Hello World"
3614y @result{} "Hello World"
3615@end lisp
3616@end deffn
3617
5676b4fa
MV
3618@deffn {Scheme Procedure} string-titlecase str [start [end]]
3619@deffnx {C Function} scm_string_titlecase (str, start, end)
3620Titlecase every first character in a word in @var{str}.
3621@end deffn
07d83abe 3622
5676b4fa
MV
3623@deffn {Scheme Procedure} string-titlecase! str [start [end]]
3624@deffnx {C Function} scm_string_titlecase_x (str, start, end)
3625Destructively titlecase every first character in a word in
3626@var{str}.
3627@end deffn
3628
3629@node Reversing and Appending Strings
3630@subsubsection Reversing and Appending Strings
07d83abe 3631
5676b4fa
MV
3632@deffn {Scheme Procedure} string-reverse str [start [end]]
3633@deffnx {C Function} scm_string_reverse (str, start, end)
3634Reverse the string @var{str}. The optional arguments
3635@var{start} and @var{end} delimit the region of @var{str} to
3636operate on.
3637@end deffn
3638
3639@deffn {Scheme Procedure} string-reverse! str [start [end]]
3640@deffnx {C Function} scm_string_reverse_x (str, start, end)
3641Reverse the string @var{str} in-place. The optional arguments
3642@var{start} and @var{end} delimit the region of @var{str} to
3643operate on. The return value is unspecified.
3644@end deffn
07d83abe
MV
3645
3646@rnindex string-append
3647@deffn {Scheme Procedure} string-append . args
3648@deffnx {C Function} scm_string_append (args)
3649Return a newly allocated string whose characters form the
3650concatenation of the given strings, @var{args}.
3651
3652@example
3653(let ((h "hello "))
3654 (string-append h "world"))
3655@result{} "hello world"
3656@end example
3657@end deffn
3658
3323ec06
NJ
3659@deffn {Scheme Procedure} string-append/shared . rest
3660@deffnx {C Function} scm_string_append_shared (rest)
5676b4fa
MV
3661Like @code{string-append}, but the result may share memory
3662with the argument strings.
3663@end deffn
3664
3665@deffn {Scheme Procedure} string-concatenate ls
3666@deffnx {C Function} scm_string_concatenate (ls)
3667Append the elements of @var{ls} (which must be strings)
3668together into a single string. Guaranteed to return a freshly
3669allocated string.
3670@end deffn
3671
3672@deffn {Scheme Procedure} string-concatenate-reverse ls [final_string [end]]
3673@deffnx {C Function} scm_string_concatenate_reverse (ls, final_string, end)
3674Without optional arguments, this procedure is equivalent to
3675
aba0dff5 3676@lisp
5676b4fa 3677(string-concatenate (reverse ls))
aba0dff5 3678@end lisp
5676b4fa
MV
3679
3680If the optional argument @var{final_string} is specified, it is
3681consed onto the beginning to @var{ls} before performing the
3682list-reverse and string-concatenate operations. If @var{end}
3683is given, only the characters of @var{final_string} up to index
3684@var{end} are used.
3685
3686Guaranteed to return a freshly allocated string.
3687@end deffn
3688
3689@deffn {Scheme Procedure} string-concatenate/shared ls
3690@deffnx {C Function} scm_string_concatenate_shared (ls)
3691Like @code{string-concatenate}, but the result may share memory
3692with the strings in the list @var{ls}.
3693@end deffn
3694
3695@deffn {Scheme Procedure} string-concatenate-reverse/shared ls [final_string [end]]
3696@deffnx {C Function} scm_string_concatenate_reverse_shared (ls, final_string, end)
3697Like @code{string-concatenate-reverse}, but the result may
72b3aa56 3698share memory with the strings in the @var{ls} arguments.
5676b4fa
MV
3699@end deffn
3700
3701@node Mapping Folding and Unfolding
3702@subsubsection Mapping, Folding, and Unfolding
3703
3704@deffn {Scheme Procedure} string-map proc s [start [end]]
3705@deffnx {C Function} scm_string_map (proc, s, start, end)
3706@var{proc} is a char->char procedure, it is mapped over
3707@var{s}. The order in which the procedure is applied to the
3708string elements is not specified.
3709@end deffn
3710
3711@deffn {Scheme Procedure} string-map! proc s [start [end]]
3712@deffnx {C Function} scm_string_map_x (proc, s, start, end)
3713@var{proc} is a char->char procedure, it is mapped over
3714@var{s}. The order in which the procedure is applied to the
3715string elements is not specified. The string @var{s} is
3716modified in-place, the return value is not specified.
3717@end deffn
3718
3719@deffn {Scheme Procedure} string-for-each proc s [start [end]]
3720@deffnx {C Function} scm_string_for_each (proc, s, start, end)
3721@var{proc} is mapped over @var{s} in left-to-right order. The
3722return value is not specified.
3723@end deffn
3724
3725@deffn {Scheme Procedure} string-for-each-index proc s [start [end]]
3726@deffnx {C Function} scm_string_for_each_index (proc, s, start, end)
2a7820f2
KR
3727Call @code{(@var{proc} i)} for each index i in @var{s}, from left to
3728right.
3729
3730For example, to change characters to alternately upper and lower case,
3731
3732@example
3733(define str (string-copy "studly"))
45867c2a
NJ
3734(string-for-each-index
3735 (lambda (i)
3736 (string-set! str i
3737 ((if (even? i) char-upcase char-downcase)
3738 (string-ref str i))))
3739 str)
2a7820f2
KR
3740str @result{} "StUdLy"
3741@end example
5676b4fa
MV
3742@end deffn
3743
3744@deffn {Scheme Procedure} string-fold kons knil s [start [end]]
3745@deffnx {C Function} scm_string_fold (kons, knil, s, start, end)
3746Fold @var{kons} over the characters of @var{s}, with @var{knil}
3747as the terminating element, from left to right. @var{kons}
3748must expect two arguments: The actual character and the last
3749result of @var{kons}' application.
3750@end deffn
3751
3752@deffn {Scheme Procedure} string-fold-right kons knil s [start [end]]
3753@deffnx {C Function} scm_string_fold_right (kons, knil, s, start, end)
3754Fold @var{kons} over the characters of @var{s}, with @var{knil}
3755as the terminating element, from right to left. @var{kons}
3756must expect two arguments: The actual character and the last
3757result of @var{kons}' application.
3758@end deffn
3759
3760@deffn {Scheme Procedure} string-unfold p f g seed [base [make_final]]
3761@deffnx {C Function} scm_string_unfold (p, f, g, seed, base, make_final)
3762@itemize @bullet
3763@item @var{g} is used to generate a series of @emph{seed}
3764values from the initial @var{seed}: @var{seed}, (@var{g}
3765@var{seed}), (@var{g}^2 @var{seed}), (@var{g}^3 @var{seed}),
3766@dots{}
3767@item @var{p} tells us when to stop -- when it returns true
3768when applied to one of these seed values.
3769@item @var{f} maps each seed value to the corresponding
3770character in the result string. These chars are assembled
3771into the string in a left-to-right order.
3772@item @var{base} is the optional initial/leftmost portion
3773of the constructed string; it default to the empty
3774string.
3775@item @var{make_final} is applied to the terminal seed
3776value (on which @var{p} returns true) to produce
3777the final/rightmost portion of the constructed string.
9a18d8d4 3778The default is nothing extra.
5676b4fa
MV
3779@end itemize
3780@end deffn
3781
3782@deffn {Scheme Procedure} string-unfold-right p f g seed [base [make_final]]
3783@deffnx {C Function} scm_string_unfold_right (p, f, g, seed, base, make_final)
3784@itemize @bullet
3785@item @var{g} is used to generate a series of @emph{seed}
3786values from the initial @var{seed}: @var{seed}, (@var{g}
3787@var{seed}), (@var{g}^2 @var{seed}), (@var{g}^3 @var{seed}),
3788@dots{}
3789@item @var{p} tells us when to stop -- when it returns true
3790when applied to one of these seed values.
3791@item @var{f} maps each seed value to the corresponding
3792character in the result string. These chars are assembled
3793into the string in a right-to-left order.
3794@item @var{base} is the optional initial/rightmost portion
3795of the constructed string; it default to the empty
3796string.
3797@item @var{make_final} is applied to the terminal seed
3798value (on which @var{p} returns true) to produce
3799the final/leftmost portion of the constructed string.
3800It defaults to @code{(lambda (x) )}.
3801@end itemize
3802@end deffn
3803
3804@node Miscellaneous String Operations
3805@subsubsection Miscellaneous String Operations
3806
3807@deffn {Scheme Procedure} xsubstring s from [to [start [end]]]
3808@deffnx {C Function} scm_xsubstring (s, from, to, start, end)
3809This is the @emph{extended substring} procedure that implements
3810replicated copying of a substring of some string.
3811
3812@var{s} is a string, @var{start} and @var{end} are optional
3813arguments that demarcate a substring of @var{s}, defaulting to
38140 and the length of @var{s}. Replicate this substring up and
3815down index space, in both the positive and negative directions.
3816@code{xsubstring} returns the substring of this string
3817beginning at index @var{from}, and ending at @var{to}, which
3818defaults to @var{from} + (@var{end} - @var{start}).
3819@end deffn
3820
3821@deffn {Scheme Procedure} string-xcopy! target tstart s sfrom [sto [start [end]]]
3822@deffnx {C Function} scm_string_xcopy_x (target, tstart, s, sfrom, sto, start, end)
3823Exactly the same as @code{xsubstring}, but the extracted text
3824is written into the string @var{target} starting at index
3825@var{tstart}. The operation is not defined if @code{(eq?
3826@var{target} @var{s})} or these arguments share storage -- you
3827cannot copy a string on top of itself.
3828@end deffn
3829
3830@deffn {Scheme Procedure} string-replace s1 s2 [start1 [end1 [start2 [end2]]]]
3831@deffnx {C Function} scm_string_replace (s1, s2, start1, end1, start2, end2)
3832Return the string @var{s1}, but with the characters
3833@var{start1} @dots{} @var{end1} replaced by the characters
3834@var{start2} @dots{} @var{end2} from @var{s2}.
3835@end deffn
3836
3837@deffn {Scheme Procedure} string-tokenize s [token_set [start [end]]]
3838@deffnx {C Function} scm_string_tokenize (s, token_set, start, end)
3839Split the string @var{s} into a list of substrings, where each
3840substring is a maximal non-empty contiguous sequence of
3841characters from the character set @var{token_set}, which
3842defaults to @code{char-set:graphic}.
3843If @var{start} or @var{end} indices are provided, they restrict
3844@code{string-tokenize} to operating on the indicated substring
3845of @var{s}.
3846@end deffn
3847
3848@deffn {Scheme Procedure} string-filter s char_pred [start [end]]
3849@deffnx {C Function} scm_string_filter (s, char_pred, start, end)
08de3e24 3850Filter the string @var{s}, retaining only those characters which
a88e2a96 3851satisfy @var{char_pred}.
08de3e24
KR
3852
3853If @var{char_pred} is a procedure, it is applied to each character as
3854a predicate, if it is a character, it is tested for equality and if it
3855is a character set, it is tested for membership.
5676b4fa
MV
3856@end deffn
3857
3858@deffn {Scheme Procedure} string-delete s char_pred [start [end]]
3859@deffnx {C Function} scm_string_delete (s, char_pred, start, end)
a88e2a96 3860Delete characters satisfying @var{char_pred} from @var{s}.
08de3e24
KR
3861
3862If @var{char_pred} is a procedure, it is applied to each character as
3863a predicate, if it is a character, it is tested for equality and if it
3864is a character set, it is tested for membership.
5676b4fa
MV
3865@end deffn
3866
91210d62
MV
3867@node Conversion to/from C
3868@subsubsection Conversion to/from C
3869
3870When creating a Scheme string from a C string or when converting a
3871Scheme string to a C string, the concept of character encoding becomes
3872important.
3873
3874In C, a string is just a sequence of bytes, and the character encoding
3875describes the relation between these bytes and the actual characters
c88453e8
MV
3876that make up the string. For Scheme strings, character encoding is
3877not an issue (most of the time), since in Scheme you never get to see
3878the bytes, only the characters.
91210d62 3879
67af975c
MG
3880Converting to C and converting from C each have their own challenges.
3881
3882When converting from C to Scheme, it is important that the sequence of
3883bytes in the C string be valid with respect to its encoding. ASCII
3884strings, for example, can't have any bytes greater than 127. An ASCII
3885byte greater than 127 is considered @emph{ill-formed} and cannot be
3886converted into a Scheme character.
3887
3888Problems can occur in the reverse operation as well. Not all character
3889encodings can hold all possible Scheme characters. Some encodings, like
3890ASCII for example, can only describe a small subset of all possible
3891characters. So, when converting to C, one must first decide what to do
3892with Scheme characters that can't be represented in the C string.
91210d62 3893
c88453e8
MV
3894Converting a Scheme string to a C string will often allocate fresh
3895memory to hold the result. You must take care that this memory is
3896properly freed eventually. In many cases, this can be achieved by
661ae7ab
MV
3897using @code{scm_dynwind_free} inside an appropriate dynwind context,
3898@xref{Dynamic Wind}.
91210d62
MV
3899
3900@deftypefn {C Function} SCM scm_from_locale_string (const char *str)
3901@deftypefnx {C Function} SCM scm_from_locale_stringn (const char *str, size_t len)
67af975c
MG
3902Creates a new Scheme string that has the same contents as @var{str} when
3903interpreted in the locale character encoding of the
3904@code{current-input-port}.
91210d62
MV
3905
3906For @code{scm_from_locale_string}, @var{str} must be null-terminated.
3907
3908For @code{scm_from_locale_stringn}, @var{len} specifies the length of
3909@var{str} in bytes, and @var{str} does not need to be null-terminated.
3910If @var{len} is @code{(size_t)-1}, then @var{str} does need to be
3911null-terminated and the real length will be found with @code{strlen}.
67af975c
MG
3912
3913If the C string is ill-formed, an error will be raised.
91210d62
MV
3914@end deftypefn
3915
3916@deftypefn {C Function} SCM scm_take_locale_string (char *str)
3917@deftypefnx {C Function} SCM scm_take_locale_stringn (char *str, size_t len)
3918Like @code{scm_from_locale_string} and @code{scm_from_locale_stringn},
3919respectively, but also frees @var{str} with @code{free} eventually.
3920Thus, you can use this function when you would free @var{str} anyway
3921immediately after creating the Scheme string. In certain cases, Guile
3922can then use @var{str} directly as its internal representation.
3923@end deftypefn
3924
4846ae2c
KR
3925@deftypefn {C Function} {char *} scm_to_locale_string (SCM str)
3926@deftypefnx {C Function} {char *} scm_to_locale_stringn (SCM str, size_t *lenp)
67af975c
MG
3927Returns a C string with the same contents as @var{str} in the locale
3928encoding of the @code{current-output-port}. The C string must be freed
3929with @code{free} eventually, maybe by using @code{scm_dynwind_free},
3930@xref{Dynamic Wind}.
91210d62
MV
3931
3932For @code{scm_to_locale_string}, the returned string is
3933null-terminated and an error is signalled when @var{str} contains
3934@code{#\nul} characters.
3935
3936For @code{scm_to_locale_stringn} and @var{lenp} not @code{NULL},
3937@var{str} might contain @code{#\nul} characters and the length of the
3938returned string in bytes is stored in @code{*@var{lenp}}. The
3939returned string will not be null-terminated in this case. If
3940@var{lenp} is @code{NULL}, @code{scm_to_locale_stringn} behaves like
3941@code{scm_to_locale_string}.
67af975c
MG
3942
3943If a character in @var{str} cannot be represented in the locale encoding
3944of the current output port, the port conversion strategy of the current
3945output port will determine the result, @xref{Ports}. If output port's
3946conversion strategy is @code{error}, an error will be raised. If it is
3947@code{subsitute}, a replacement character, such as a question mark, will
3948be inserted in its place. If it is @code{escape}, a hex escape will be
3949inserted in its place.
91210d62
MV
3950@end deftypefn
3951
3952@deftypefn {C Function} size_t scm_to_locale_stringbuf (SCM str, char *buf, size_t max_len)
3953Puts @var{str} as a C string in the current locale encoding into the
3954memory pointed to by @var{buf}. The buffer at @var{buf} has room for
3955@var{max_len} bytes and @code{scm_to_local_stringbuf} will never store
3956more than that. No terminating @code{'\0'} will be stored.
3957
3958The return value of @code{scm_to_locale_stringbuf} is the number of
3959bytes that are needed for all of @var{str}, regardless of whether
3960@var{buf} was large enough to hold them. Thus, when the return value
3961is larger than @var{max_len}, only @var{max_len} bytes have been
3962stored and you probably need to try again with a larger buffer.
3963@end deftypefn
07d83abe 3964
5b6b22e8
MG
3965@node String Internals
3966@subsubsection String Internals
3967
3968Guile stores each string in memory as a contiguous array of Unicode code
3969points along with an associated set of attributes. If all of the code
3970points of a string have an integer range between 0 and 255 inclusive,
3971the code point array is stored as one byte per code point: it is stored
3972as an ISO-8859-1 (aka Latin-1) string. If any of the code points of the
3973string has an integer value greater that 255, the code point array is
3974stored as four bytes per code point: it is stored as a UTF-32 string.
3975
3976Conversion between the one-byte-per-code-point and
3977four-bytes-per-code-point representations happens automatically as
3978necessary.
3979
3980No API is provided to set the internal representation of strings;
3981however, there are pair of procedures available to query it. These are
3982debugging procedures. Using them in production code is discouraged,
3983since the details of Guile's internal representation of strings may
3984change from release to release.
3985
3986@deffn {Scheme Procedure} string-bytes-per-char str
3987@deffnx {C Function} scm_string_bytes_per_char (str)
3988Return the number of bytes used to encode a Unicode code point in string
3989@var{str}. The result is one or four.
3990@end deffn
3991
3992@deffn {Scheme Procedure} %string-dump str
3993@deffnx {C Function} scm_sys_string_dump (str)
3994Returns an association list containing debugging information for
3995@var{str}. The association list has the following entries.
3996@table @code
3997
3998@item string
3999The string itself.
4000
4001@item start
4002The start index of the string into its stringbuf
4003
4004@item length
4005The length of the string
4006
4007@item shared
4008If this string is a substring, it returns its
4009parent string. Otherwise, it returns @code{#f}
4010
4011@item read-only
4012@code{#t} if the string is read-only
4013
4014@item stringbuf-chars
4015A new string containing this string's stringbuf's characters
4016
4017@item stringbuf-length
4018The number of characters in this stringbuf
4019
4020@item stringbuf-shared
4021@code{#t} if this stringbuf is shared
4022
4023@item stringbuf-wide
4024@code{#t} if this stringbuf's characters are stored in a 32-bit buffer,
4025or @code{#f} if they are stored in an 8-bit buffer
4026@end table
4027@end deffn
4028
4029
b242715b
LC
4030@node Bytevectors
4031@subsection Bytevectors
4032
4033@cindex bytevector
4034@cindex R6RS
4035
4036A @dfn{bytevector} is a raw bit string. The @code{(rnrs bytevector)}
4037module provides the programming interface specified by the
5fa2deb3 4038@uref{http://www.r6rs.org/, Revised^6 Report on the Algorithmic Language
b242715b
LC
4039Scheme (R6RS)}. It contains procedures to manipulate bytevectors and
4040interpret their contents in a number of ways: bytevector contents can be
4041accessed as signed or unsigned integer of various sizes and endianness,
4042as IEEE-754 floating point numbers, or as strings. It is a useful tool
4043to encode and decode binary data.
4044
4045The R6RS (Section 4.3.4) specifies an external representation for
4046bytevectors, whereby the octets (integers in the range 0--255) contained
4047in the bytevector are represented as a list prefixed by @code{#vu8}:
4048
4049@lisp
4050#vu8(1 53 204)
4051@end lisp
4052
4053denotes a 3-byte bytevector containing the octets 1, 53, and 204. Like
4054string literals, booleans, etc., bytevectors are ``self-quoting'', i.e.,
4055they do not need to be quoted:
4056
4057@lisp
4058#vu8(1 53 204)
4059@result{} #vu8(1 53 204)
4060@end lisp
4061
4062Bytevectors can be used with the binary input/output primitives of the
4063R6RS (@pxref{R6RS I/O Ports}).
4064
4065@menu
4066* Bytevector Endianness:: Dealing with byte order.
4067* Bytevector Manipulation:: Creating, copying, manipulating bytevectors.
4068* Bytevectors as Integers:: Interpreting bytes as integers.
4069* Bytevectors and Integer Lists:: Converting to/from an integer list.
4070* Bytevectors as Floats:: Interpreting bytes as real numbers.
4071* Bytevectors as Strings:: Interpreting bytes as Unicode strings.
438974d0 4072* Bytevectors as Generalized Vectors:: Guile extension to the bytevector API.
27219b32 4073* Bytevectors as Uniform Vectors:: Bytevectors and SRFI-4.
b242715b
LC
4074@end menu
4075
4076@node Bytevector Endianness
4077@subsubsection Endianness
4078
4079@cindex endianness
4080@cindex byte order
4081@cindex word order
4082
4083Some of the following procedures take an @var{endianness} parameter.
5fa2deb3
AW
4084The @dfn{endianness} is defined as the order of bytes in multi-byte
4085numbers: numbers encoded in @dfn{big endian} have their most
4086significant bytes written first, whereas numbers encoded in
4087@dfn{little endian} have their least significant bytes
4088first@footnote{Big-endian and little-endian are the most common
4089``endiannesses'', but others do exist. For instance, the GNU MP
4090library allows @dfn{word order} to be specified independently of
4091@dfn{byte order} (@pxref{Integer Import and Export,,, gmp, The GNU
4092Multiple Precision Arithmetic Library Manual}).}.
4093
4094Little-endian is the native endianness of the IA32 architecture and
4095its derivatives, while big-endian is native to SPARC and PowerPC,
4096among others. The @code{native-endianness} procedure returns the
4097native endianness of the machine it runs on.
b242715b
LC
4098
4099@deffn {Scheme Procedure} native-endianness
4100@deffnx {C Function} scm_native_endianness ()
4101Return a value denoting the native endianness of the host machine.
4102@end deffn
4103
4104@deffn {Scheme Macro} endianness symbol
4105Return an object denoting the endianness specified by @var{symbol}. If
5fa2deb3
AW
4106@var{symbol} is neither @code{big} nor @code{little} then an error is
4107raised at expand-time.
b242715b
LC
4108@end deffn
4109
4110@defvr {C Variable} scm_endianness_big
4111@defvrx {C Variable} scm_endianness_little
5fa2deb3 4112The objects denoting big- and little-endianness, respectively.
b242715b
LC
4113@end defvr
4114
4115
4116@node Bytevector Manipulation
4117@subsubsection Manipulating Bytevectors
4118
4119Bytevectors can be created, copied, and analyzed with the following
404bb5f8 4120procedures and C functions.
b242715b
LC
4121
4122@deffn {Scheme Procedure} make-bytevector len [fill]
4123@deffnx {C Function} scm_make_bytevector (len, fill)
2d34e924 4124@deffnx {C Function} scm_c_make_bytevector (size_t len)
b242715b 4125Return a new bytevector of @var{len} bytes. Optionally, if @var{fill}
d64fc8b0
LC
4126is given, fill it with @var{fill}; @var{fill} must be in the range
4127[-128,255].
b242715b
LC
4128@end deffn
4129
4130@deffn {Scheme Procedure} bytevector? obj
4131@deffnx {C Function} scm_bytevector_p (obj)
4132Return true if @var{obj} is a bytevector.
4133@end deffn
4134
404bb5f8
LC
4135@deftypefn {C Function} int scm_is_bytevector (SCM obj)
4136Equivalent to @code{scm_is_true (scm_bytevector_p (obj))}.
4137@end deftypefn
4138
b242715b
LC
4139@deffn {Scheme Procedure} bytevector-length bv
4140@deffnx {C Function} scm_bytevector_length (bv)
4141Return the length in bytes of bytevector @var{bv}.
4142@end deffn
4143
404bb5f8
LC
4144@deftypefn {C Function} size_t scm_c_bytevector_length (SCM bv)
4145Likewise, return the length in bytes of bytevector @var{bv}.
4146@end deftypefn
4147
b242715b
LC
4148@deffn {Scheme Procedure} bytevector=? bv1 bv2
4149@deffnx {C Function} scm_bytevector_eq_p (bv1, bv2)
4150Return is @var{bv1} equals to @var{bv2}---i.e., if they have the same
4151length and contents.
4152@end deffn
4153
4154@deffn {Scheme Procedure} bytevector-fill! bv fill
4155@deffnx {C Function} scm_bytevector_fill_x (bv, fill)
4156Fill bytevector @var{bv} with @var{fill}, a byte.
4157@end deffn
4158
4159@deffn {Scheme Procedure} bytevector-copy! source source-start target target-start len
4160@deffnx {C Function} scm_bytevector_copy_x (source, source_start, target, target_start, len)
4161Copy @var{len} bytes from @var{source} into @var{target}, starting
4162reading from @var{source-start} (a positive index within @var{source})
4163and start writing at @var{target-start}.
4164@end deffn
4165
4166@deffn {Scheme Procedure} bytevector-copy bv
4167@deffnx {C Function} scm_bytevector_copy (bv)
4168Return a newly allocated copy of @var{bv}.
4169@end deffn
4170
404bb5f8
LC
4171@deftypefn {C Function} scm_t_uint8 scm_c_bytevector_ref (SCM bv, size_t index)
4172Return the byte at @var{index} in bytevector @var{bv}.
4173@end deftypefn
4174
4175@deftypefn {C Function} void scm_c_bytevector_set_x (SCM bv, size_t index, scm_t_uint8 value)
4176Set the byte at @var{index} in @var{bv} to @var{value}.
4177@end deftypefn
4178
b242715b
LC
4179Low-level C macros are available. They do not perform any
4180type-checking; as such they should be used with care.
4181
4182@deftypefn {C Macro} size_t SCM_BYTEVECTOR_LENGTH (bv)
4183Return the length in bytes of bytevector @var{bv}.
4184@end deftypefn
4185
4186@deftypefn {C Macro} {signed char *} SCM_BYTEVECTOR_CONTENTS (bv)
4187Return a pointer to the contents of bytevector @var{bv}.
4188@end deftypefn
4189
4190
4191@node Bytevectors as Integers
4192@subsubsection Interpreting Bytevector Contents as Integers
4193
4194The contents of a bytevector can be interpreted as a sequence of
4195integers of any given size, sign, and endianness.
4196
4197@lisp
4198(let ((bv (make-bytevector 4)))
4199 (bytevector-u8-set! bv 0 #x12)
4200 (bytevector-u8-set! bv 1 #x34)
4201 (bytevector-u8-set! bv 2 #x56)
4202 (bytevector-u8-set! bv 3 #x78)
4203
4204 (map (lambda (number)
4205 (number->string number 16))
4206 (list (bytevector-u8-ref bv 0)
4207 (bytevector-u16-ref bv 0 (endianness big))
4208 (bytevector-u32-ref bv 0 (endianness little)))))
4209
4210@result{} ("12" "1234" "78563412")
4211@end lisp
4212
4213The most generic procedures to interpret bytevector contents as integers
4214are described below.
4215
4216@deffn {Scheme Procedure} bytevector-uint-ref bv index endianness size
4217@deffnx {Scheme Procedure} bytevector-sint-ref bv index endianness size
4218@deffnx {C Function} scm_bytevector_uint_ref (bv, index, endianness, size)
4219@deffnx {C Function} scm_bytevector_sint_ref (bv, index, endianness, size)
4220Return the @var{size}-byte long unsigned (resp. signed) integer at
4221index @var{index} in @var{bv}, decoded according to @var{endianness}.
4222@end deffn
4223
4224@deffn {Scheme Procedure} bytevector-uint-set! bv index value endianness size
4225@deffnx {Scheme Procedure} bytevector-sint-set! bv index value endianness size
4226@deffnx {C Function} scm_bytevector_uint_set_x (bv, index, value, endianness, size)
4227@deffnx {C Function} scm_bytevector_sint_set_x (bv, index, value, endianness, size)
4228Set the @var{size}-byte long unsigned (resp. signed) integer at
4229@var{index} to @var{value}, encoded according to @var{endianness}.
4230@end deffn
4231
4232The following procedures are similar to the ones above, but specialized
4233to a given integer size:
4234
4235@deffn {Scheme Procedure} bytevector-u8-ref bv index
4236@deffnx {Scheme Procedure} bytevector-s8-ref bv index
4237@deffnx {Scheme Procedure} bytevector-u16-ref bv index endianness
4238@deffnx {Scheme Procedure} bytevector-s16-ref bv index endianness
4239@deffnx {Scheme Procedure} bytevector-u32-ref bv index endianness
4240@deffnx {Scheme Procedure} bytevector-s32-ref bv index endianness
4241@deffnx {Scheme Procedure} bytevector-u64-ref bv index endianness
4242@deffnx {Scheme Procedure} bytevector-s64-ref bv index endianness
4243@deffnx {C Function} scm_bytevector_u8_ref (bv, index)
4244@deffnx {C Function} scm_bytevector_s8_ref (bv, index)
4245@deffnx {C Function} scm_bytevector_u16_ref (bv, index, endianness)
4246@deffnx {C Function} scm_bytevector_s16_ref (bv, index, endianness)
4247@deffnx {C Function} scm_bytevector_u32_ref (bv, index, endianness)
4248@deffnx {C Function} scm_bytevector_s32_ref (bv, index, endianness)
4249@deffnx {C Function} scm_bytevector_u64_ref (bv, index, endianness)
4250@deffnx {C Function} scm_bytevector_s64_ref (bv, index, endianness)
4251Return the unsigned @var{n}-bit (signed) integer (where @var{n} is 8,
425216, 32 or 64) from @var{bv} at @var{index}, decoded according to
4253@var{endianness}.
4254@end deffn
4255
4256@deffn {Scheme Procedure} bytevector-u8-set! bv index value
4257@deffnx {Scheme Procedure} bytevector-s8-set! bv index value
4258@deffnx {Scheme Procedure} bytevector-u16-set! bv index value endianness
4259@deffnx {Scheme Procedure} bytevector-s16-set! bv index value endianness
4260@deffnx {Scheme Procedure} bytevector-u32-set! bv index value endianness
4261@deffnx {Scheme Procedure} bytevector-s32-set! bv index value endianness
4262@deffnx {Scheme Procedure} bytevector-u64-set! bv index value endianness
4263@deffnx {Scheme Procedure} bytevector-s64-set! bv index value endianness
4264@deffnx {C Function} scm_bytevector_u8_set_x (bv, index, value)
4265@deffnx {C Function} scm_bytevector_s8_set_x (bv, index, value)
4266@deffnx {C Function} scm_bytevector_u16_set_x (bv, index, value, endianness)
4267@deffnx {C Function} scm_bytevector_s16_set_x (bv, index, value, endianness)
4268@deffnx {C Function} scm_bytevector_u32_set_x (bv, index, value, endianness)
4269@deffnx {C Function} scm_bytevector_s32_set_x (bv, index, value, endianness)
4270@deffnx {C Function} scm_bytevector_u64_set_x (bv, index, value, endianness)
4271@deffnx {C Function} scm_bytevector_s64_set_x (bv, index, value, endianness)
4272Store @var{value} as an @var{n}-bit (signed) integer (where @var{n} is
42738, 16, 32 or 64) in @var{bv} at @var{index}, encoded according to
4274@var{endianness}.
4275@end deffn
4276
4277Finally, a variant specialized for the host's endianness is available
4278for each of these functions (with the exception of the @code{u8}
4279accessors, for obvious reasons):
4280
4281@deffn {Scheme Procedure} bytevector-u16-native-ref bv index
4282@deffnx {Scheme Procedure} bytevector-s16-native-ref bv index
4283@deffnx {Scheme Procedure} bytevector-u32-native-ref bv index
4284@deffnx {Scheme Procedure} bytevector-s32-native-ref bv index
4285@deffnx {Scheme Procedure} bytevector-u64-native-ref bv index
4286@deffnx {Scheme Procedure} bytevector-s64-native-ref bv index
4287@deffnx {C Function} scm_bytevector_u16_native_ref (bv, index)
4288@deffnx {C Function} scm_bytevector_s16_native_ref (bv, index)
4289@deffnx {C Function} scm_bytevector_u32_native_ref (bv, index)
4290@deffnx {C Function} scm_bytevector_s32_native_ref (bv, index)
4291@deffnx {C Function} scm_bytevector_u64_native_ref (bv, index)
4292@deffnx {C Function} scm_bytevector_s64_native_ref (bv, index)
4293Return the unsigned @var{n}-bit (signed) integer (where @var{n} is 8,
429416, 32 or 64) from @var{bv} at @var{index}, decoded according to the
4295host's native endianness.
4296@end deffn
4297
4298@deffn {Scheme Procedure} bytevector-u16-native-set! bv index value
4299@deffnx {Scheme Procedure} bytevector-s16-native-set! bv index value
4300@deffnx {Scheme Procedure} bytevector-u32-native-set! bv index value
4301@deffnx {Scheme Procedure} bytevector-s32-native-set! bv index value
4302@deffnx {Scheme Procedure} bytevector-u64-native-set! bv index value
4303@deffnx {Scheme Procedure} bytevector-s64-native-set! bv index value
4304@deffnx {C Function} scm_bytevector_u16_native_set_x (bv, index, value)
4305@deffnx {C Function} scm_bytevector_s16_native_set_x (bv, index, value)
4306@deffnx {C Function} scm_bytevector_u32_native_set_x (bv, index, value)
4307@deffnx {C Function} scm_bytevector_s32_native_set_x (bv, index, value)
4308@deffnx {C Function} scm_bytevector_u64_native_set_x (bv, index, value)
4309@deffnx {C Function} scm_bytevector_s64_native_set_x (bv, index, value)
4310Store @var{value} as an @var{n}-bit (signed) integer (where @var{n} is
43118, 16, 32 or 64) in @var{bv} at @var{index}, encoded according to the
4312host's native endianness.
4313@end deffn
4314
4315
4316@node Bytevectors and Integer Lists
4317@subsubsection Converting Bytevectors to/from Integer Lists
4318
4319Bytevector contents can readily be converted to/from lists of signed or
4320unsigned integers:
4321
4322@lisp
4323(bytevector->sint-list (u8-list->bytevector (make-list 4 255))
4324 (endianness little) 2)
4325@result{} (-1 -1)
4326@end lisp
4327
4328@deffn {Scheme Procedure} bytevector->u8-list bv
4329@deffnx {C Function} scm_bytevector_to_u8_list (bv)
4330Return a newly allocated list of unsigned 8-bit integers from the
4331contents of @var{bv}.
4332@end deffn
4333
4334@deffn {Scheme Procedure} u8-list->bytevector lst
4335@deffnx {C Function} scm_u8_list_to_bytevector (lst)
4336Return a newly allocated bytevector consisting of the unsigned 8-bit
4337integers listed in @var{lst}.
4338@end deffn
4339
4340@deffn {Scheme Procedure} bytevector->uint-list bv endianness size
4341@deffnx {Scheme Procedure} bytevector->sint-list bv endianness size
4342@deffnx {C Function} scm_bytevector_to_uint_list (bv, endianness, size)
4343@deffnx {C Function} scm_bytevector_to_sint_list (bv, endianness, size)
4344Return a list of unsigned (resp. signed) integers of @var{size} bytes
4345representing the contents of @var{bv}, decoded according to
4346@var{endianness}.
4347@end deffn
4348
4349@deffn {Scheme Procedure} uint-list->bytevector lst endianness size
4350@deffnx {Scheme Procedure} sint-list->bytevector lst endianness size
4351@deffnx {C Function} scm_uint_list_to_bytevector (lst, endianness, size)
4352@deffnx {C Function} scm_sint_list_to_bytevector (lst, endianness, size)
4353Return a new bytevector containing the unsigned (resp. signed) integers
4354listed in @var{lst} and encoded on @var{size} bytes according to
4355@var{endianness}.
4356@end deffn
4357
4358@node Bytevectors as Floats
4359@subsubsection Interpreting Bytevector Contents as Floating Point Numbers
4360
4361@cindex IEEE-754 floating point numbers
4362
4363Bytevector contents can also be accessed as IEEE-754 single- or
4364double-precision floating point numbers (respectively 32 and 64-bit
4365long) using the procedures described here.
4366
4367@deffn {Scheme Procedure} bytevector-ieee-single-ref bv index endianness
4368@deffnx {Scheme Procedure} bytevector-ieee-double-ref bv index endianness
4369@deffnx {C Function} scm_bytevector_ieee_single_ref (bv, index, endianness)
4370@deffnx {C Function} scm_bytevector_ieee_double_ref (bv, index, endianness)
4371Return the IEEE-754 single-precision floating point number from @var{bv}
4372at @var{index} according to @var{endianness}.
4373@end deffn
4374
4375@deffn {Scheme Procedure} bytevector-ieee-single-set! bv index value endianness
4376@deffnx {Scheme Procedure} bytevector-ieee-double-set! bv index value endianness
4377@deffnx {C Function} scm_bytevector_ieee_single_set_x (bv, index, value, endianness)
4378@deffnx {C Function} scm_bytevector_ieee_double_set_x (bv, index, value, endianness)
4379Store real number @var{value} in @var{bv} at @var{index} according to
4380@var{endianness}.
4381@end deffn
4382
4383Specialized procedures are also available:
4384
4385@deffn {Scheme Procedure} bytevector-ieee-single-native-ref bv index
4386@deffnx {Scheme Procedure} bytevector-ieee-double-native-ref bv index
4387@deffnx {C Function} scm_bytevector_ieee_single_native_ref (bv, index)
4388@deffnx {C Function} scm_bytevector_ieee_double_native_ref (bv, index)
4389Return the IEEE-754 single-precision floating point number from @var{bv}
4390at @var{index} according to the host's native endianness.
4391@end deffn
4392
4393@deffn {Scheme Procedure} bytevector-ieee-single-native-set! bv index value
4394@deffnx {Scheme Procedure} bytevector-ieee-double-native-set! bv index value
4395@deffnx {C Function} scm_bytevector_ieee_single_native_set_x (bv, index, value)
4396@deffnx {C Function} scm_bytevector_ieee_double_native_set_x (bv, index, value)
4397Store real number @var{value} in @var{bv} at @var{index} according to
4398the host's native endianness.
4399@end deffn
4400
4401
4402@node Bytevectors as Strings
4403@subsubsection Interpreting Bytevector Contents as Unicode Strings
4404
4405@cindex Unicode string encoding
4406
4407Bytevector contents can also be interpreted as Unicode strings encoded
d3b5628c 4408in one of the most commonly available encoding formats.
b242715b
LC
4409
4410@lisp
4411(utf8->string (u8-list->bytevector '(99 97 102 101)))
4412@result{} "cafe"
4413
4414(string->utf8 "caf@'e") ;; SMALL LATIN LETTER E WITH ACUTE ACCENT
4415@result{} #vu8(99 97 102 195 169)
4416@end lisp
4417
4418@deffn {Scheme Procedure} string->utf8 str
524aa8ae
LC
4419@deffnx {Scheme Procedure} string->utf16 str [endianness]
4420@deffnx {Scheme Procedure} string->utf32 str [endianness]
b242715b 4421@deffnx {C Function} scm_string_to_utf8 (str)
524aa8ae
LC
4422@deffnx {C Function} scm_string_to_utf16 (str, endianness)
4423@deffnx {C Function} scm_string_to_utf32 (str, endianness)
b242715b 4424Return a newly allocated bytevector that contains the UTF-8, UTF-16, or
524aa8ae
LC
4425UTF-32 (aka. UCS-4) encoding of @var{str}. For UTF-16 and UTF-32,
4426@var{endianness} should be the symbol @code{big} or @code{little}; when omitted,
4427it defaults to big endian.
b242715b
LC
4428@end deffn
4429
4430@deffn {Scheme Procedure} utf8->string utf
524aa8ae
LC
4431@deffnx {Scheme Procedure} utf16->string utf [endianness]
4432@deffnx {Scheme Procedure} utf32->string utf [endianness]
b242715b 4433@deffnx {C Function} scm_utf8_to_string (utf)
524aa8ae
LC
4434@deffnx {C Function} scm_utf16_to_string (utf, endianness)
4435@deffnx {C Function} scm_utf32_to_string (utf, endianness)
b242715b 4436Return a newly allocated string that contains from the UTF-8-, UTF-16-,
524aa8ae
LC
4437or UTF-32-decoded contents of bytevector @var{utf}. For UTF-16 and UTF-32,
4438@var{endianness} should be the symbol @code{big} or @code{little}; when omitted,
4439it defaults to big endian.
b242715b
LC
4440@end deffn
4441
438974d0
LC
4442@node Bytevectors as Generalized Vectors
4443@subsubsection Accessing Bytevectors with the Generalized Vector API
4444
4445As an extension to the R6RS, Guile allows bytevectors to be manipulated
4446with the @dfn{generalized vector} procedures (@pxref{Generalized
4447Vectors}). This also allows bytevectors to be accessed using the
4448generic @dfn{array} procedures (@pxref{Array Procedures}). When using
4449these APIs, bytes are accessed one at a time as 8-bit unsigned integers:
4450
4451@example
4452(define bv #vu8(0 1 2 3))
4453
4454(generalized-vector? bv)
4455@result{} #t
4456
4457(generalized-vector-ref bv 2)
4458@result{} 2
4459
4460(generalized-vector-set! bv 2 77)
4461(array-ref bv 2)
4462@result{} 77
4463
4464(array-type bv)
4465@result{} vu8
4466@end example
4467
b242715b 4468
27219b32
AW
4469@node Bytevectors as Uniform Vectors
4470@subsubsection Accessing Bytevectors with the SRFI-4 API
4471
4472Bytevectors may also be accessed with the SRFI-4 API. @xref{SRFI-4 and
4473Bytevectors}, for more information.
4474
4475
07d83abe
MV
4476@node Regular Expressions
4477@subsection Regular Expressions
4478@tpindex Regular expressions
4479
4480@cindex regular expressions
4481@cindex regex
4482@cindex emacs regexp
4483
4484A @dfn{regular expression} (or @dfn{regexp}) is a pattern that
4485describes a whole class of strings. A full description of regular
4486expressions and their syntax is beyond the scope of this manual;
4487an introduction can be found in the Emacs manual (@pxref{Regexps,
4488, Syntax of Regular Expressions, emacs, The GNU Emacs Manual}), or
4489in many general Unix reference books.
4490
4491If your system does not include a POSIX regular expression library,
4492and you have not linked Guile with a third-party regexp library such
4493as Rx, these functions will not be available. You can tell whether
4494your Guile installation includes regular expression support by
4495checking whether @code{(provided? 'regex)} returns true.
4496
4497The following regexp and string matching features are provided by the
4498@code{(ice-9 regex)} module. Before using the described functions,
4499you should load this module by executing @code{(use-modules (ice-9
4500regex))}.
4501
4502@menu
4503* Regexp Functions:: Functions that create and match regexps.
4504* Match Structures:: Finding what was matched by a regexp.
4505* Backslash Escapes:: Removing the special meaning of regexp
4506 meta-characters.
4507@end menu
4508
4509
4510@node Regexp Functions
4511@subsubsection Regexp Functions
4512
4513By default, Guile supports POSIX extended regular expressions.
4514That means that the characters @samp{(}, @samp{)}, @samp{+} and
4515@samp{?} are special, and must be escaped if you wish to match the
4516literal characters.
4517
4518This regular expression interface was modeled after that
4519implemented by SCSH, the Scheme Shell. It is intended to be
4520upwardly compatible with SCSH regular expressions.
4521
083f9d74
KR
4522Zero bytes (@code{#\nul}) cannot be used in regex patterns or input
4523strings, since the underlying C functions treat that as the end of
4524string. If there's a zero byte an error is thrown.
4525
4526Patterns and input strings are treated as being in the locale
4527character set if @code{setlocale} has been called (@pxref{Locales}),
4528and in a multibyte locale this includes treating multi-byte sequences
4529as a single character. (Guile strings are currently merely bytes,
4530though this may change in the future, @xref{Conversion to/from C}.)
4531
07d83abe
MV
4532@deffn {Scheme Procedure} string-match pattern str [start]
4533Compile the string @var{pattern} into a regular expression and compare
4534it with @var{str}. The optional numeric argument @var{start} specifies
4535the position of @var{str} at which to begin matching.
4536
4537@code{string-match} returns a @dfn{match structure} which
4538describes what, if anything, was matched by the regular
4539expression. @xref{Match Structures}. If @var{str} does not match
4540@var{pattern} at all, @code{string-match} returns @code{#f}.
4541@end deffn
4542
4543Two examples of a match follow. In the first example, the pattern
4544matches the four digits in the match string. In the second, the pattern
4545matches nothing.
4546
4547@example
4548(string-match "[0-9][0-9][0-9][0-9]" "blah2002")
4549@result{} #("blah2002" (4 . 8))
4550
4551(string-match "[A-Za-z]" "123456")
4552@result{} #f
4553@end example
4554
4555Each time @code{string-match} is called, it must compile its
4556@var{pattern} argument into a regular expression structure. This
4557operation is expensive, which makes @code{string-match} inefficient if
4558the same regular expression is used several times (for example, in a
4559loop). For better performance, you can compile a regular expression in
4560advance and then match strings against the compiled regexp.
4561
4562@deffn {Scheme Procedure} make-regexp pat flag@dots{}
4563@deffnx {C Function} scm_make_regexp (pat, flaglst)
4564Compile the regular expression described by @var{pat}, and
4565return the compiled regexp structure. If @var{pat} does not
4566describe a legal regular expression, @code{make-regexp} throws
4567a @code{regular-expression-syntax} error.
4568
4569The @var{flag} arguments change the behavior of the compiled
4570regular expression. The following values may be supplied:
4571
4572@defvar regexp/icase
4573Consider uppercase and lowercase letters to be the same when
4574matching.
4575@end defvar
4576
4577@defvar regexp/newline
4578If a newline appears in the target string, then permit the
4579@samp{^} and @samp{$} operators to match immediately after or
4580immediately before the newline, respectively. Also, the
4581@samp{.} and @samp{[^...]} operators will never match a newline
4582character. The intent of this flag is to treat the target
4583string as a buffer containing many lines of text, and the
4584regular expression as a pattern that may match a single one of
4585those lines.
4586@end defvar
4587
4588@defvar regexp/basic
4589Compile a basic (``obsolete'') regexp instead of the extended
4590(``modern'') regexps that are the default. Basic regexps do
4591not consider @samp{|}, @samp{+} or @samp{?} to be special
4592characters, and require the @samp{@{...@}} and @samp{(...)}
4593metacharacters to be backslash-escaped (@pxref{Backslash
4594Escapes}). There are several other differences between basic
4595and extended regular expressions, but these are the most
4596significant.
4597@end defvar
4598
4599@defvar regexp/extended
4600Compile an extended regular expression rather than a basic
4601regexp. This is the default behavior; this flag will not
4602usually be needed. If a call to @code{make-regexp} includes
4603both @code{regexp/basic} and @code{regexp/extended} flags, the
4604one which comes last will override the earlier one.
4605@end defvar
4606@end deffn
4607
4608@deffn {Scheme Procedure} regexp-exec rx str [start [flags]]
4609@deffnx {C Function} scm_regexp_exec (rx, str, start, flags)
4610Match the compiled regular expression @var{rx} against
4611@code{str}. If the optional integer @var{start} argument is
4612provided, begin matching from that position in the string.
4613Return a match structure describing the results of the match,
4614or @code{#f} if no match could be found.
4615
36c7474e
KR
4616The @var{flags} argument changes the matching behavior. The following
4617flag values may be supplied, use @code{logior} (@pxref{Bitwise
4618Operations}) to combine them,
07d83abe
MV
4619
4620@defvar regexp/notbol
36c7474e
KR
4621Consider that the @var{start} offset into @var{str} is not the
4622beginning of a line and should not match operator @samp{^}.
4623
4624If @var{rx} was created with the @code{regexp/newline} option above,
4625@samp{^} will still match after a newline in @var{str}.
07d83abe
MV
4626@end defvar
4627
4628@defvar regexp/noteol
36c7474e
KR
4629Consider that the end of @var{str} is not the end of a line and should
4630not match operator @samp{$}.
4631
4632If @var{rx} was created with the @code{regexp/newline} option above,
4633@samp{$} will still match before a newline in @var{str}.
07d83abe
MV
4634@end defvar
4635@end deffn
4636
4637@lisp
4638;; Regexp to match uppercase letters
4639(define r (make-regexp "[A-Z]*"))
4640
4641;; Regexp to match letters, ignoring case
4642(define ri (make-regexp "[A-Z]*" regexp/icase))
4643
4644;; Search for bob using regexp r
4645(match:substring (regexp-exec r "bob"))
4646@result{} "" ; no match
4647
4648;; Search for bob using regexp ri
4649(match:substring (regexp-exec ri "Bob"))
4650@result{} "Bob" ; matched case insensitive
4651@end lisp
4652
4653@deffn {Scheme Procedure} regexp? obj
4654@deffnx {C Function} scm_regexp_p (obj)
4655Return @code{#t} if @var{obj} is a compiled regular expression,
4656or @code{#f} otherwise.
4657@end deffn
4658
a285fb86
KR
4659@sp 1
4660@deffn {Scheme Procedure} list-matches regexp str [flags]
4661Return a list of match structures which are the non-overlapping
4662matches of @var{regexp} in @var{str}. @var{regexp} can be either a
4663pattern string or a compiled regexp. The @var{flags} argument is as
4664per @code{regexp-exec} above.
4665
4666@example
4667(map match:substring (list-matches "[a-z]+" "abc 42 def 78"))
4668@result{} ("abc" "def")
4669@end example
4670@end deffn
4671
4672@deffn {Scheme Procedure} fold-matches regexp str init proc [flags]
4673Apply @var{proc} to the non-overlapping matches of @var{regexp} in
4674@var{str}, to build a result. @var{regexp} can be either a pattern
4675string or a compiled regexp. The @var{flags} argument is as per
4676@code{regexp-exec} above.
4677
4678@var{proc} is called as @code{(@var{proc} match prev)} where
4679@var{match} is a match structure and @var{prev} is the previous return
4680from @var{proc}. For the first call @var{prev} is the given
4681@var{init} parameter. @code{fold-matches} returns the final value
4682from @var{proc}.
4683
4684For example to count matches,
4685
4686@example
4687(fold-matches "[a-z][0-9]" "abc x1 def y2" 0
4688 (lambda (match count)
4689 (1+ count)))
4690@result{} 2
4691@end example
4692@end deffn
4693
a13befdc
KR
4694@sp 1
4695Regular expressions are commonly used to find patterns in one string
4696and replace them with the contents of another string. The following
4697functions are convenient ways to do this.
07d83abe
MV
4698
4699@c begin (scm-doc-string "regex.scm" "regexp-substitute")
4700@deffn {Scheme Procedure} regexp-substitute port match [item@dots{}]
a13befdc
KR
4701Write to @var{port} selected parts of the match structure @var{match}.
4702Or if @var{port} is @code{#f} then form a string from those parts and
4703return that.
4704
4705Each @var{item} specifies a part to be written, and may be one of the
4706following,
07d83abe
MV
4707
4708@itemize @bullet
4709@item
4710A string. String arguments are written out verbatim.
4711
4712@item
a13befdc
KR
4713An integer. The submatch with that number is written
4714(@code{match:substring}). Zero is the entire match.
07d83abe
MV
4715
4716@item
4717The symbol @samp{pre}. The portion of the matched string preceding
a13befdc 4718the regexp match is written (@code{match:prefix}).
07d83abe
MV
4719
4720@item
4721The symbol @samp{post}. The portion of the matched string following
a13befdc 4722the regexp match is written (@code{match:suffix}).
07d83abe
MV
4723@end itemize
4724
a13befdc
KR
4725For example, changing a match and retaining the text before and after,
4726
4727@example
4728(regexp-substitute #f (string-match "[0-9]+" "number 25 is good")
4729 'pre "37" 'post)
4730@result{} "number 37 is good"
4731@end example
07d83abe 4732
a13befdc
KR
4733Or matching a @sc{yyyymmdd} format date such as @samp{20020828} and
4734re-ordering and hyphenating the fields.
07d83abe
MV
4735
4736@lisp
45867c2a
NJ
4737(define date-regex
4738 "([0-9][0-9][0-9][0-9])([0-9][0-9])([0-9][0-9])")
07d83abe 4739(define s "Date 20020429 12am.")
a13befdc
KR
4740(regexp-substitute #f (string-match date-regex s)
4741 'pre 2 "-" 3 "-" 1 'post " (" 0 ")")
07d83abe
MV
4742@result{} "Date 04-29-2002 12am. (20020429)"
4743@end lisp
a13befdc
KR
4744@end deffn
4745
07d83abe
MV
4746
4747@c begin (scm-doc-string "regex.scm" "regexp-substitute")
4748@deffn {Scheme Procedure} regexp-substitute/global port regexp target [item@dots{}]
a13befdc
KR
4749@cindex search and replace
4750Write to @var{port} selected parts of matches of @var{regexp} in
4751@var{target}. If @var{port} is @code{#f} then form a string from
4752those parts and return that. @var{regexp} can be a string or a
4753compiled regex.
07d83abe 4754
a13befdc
KR
4755This is similar to @code{regexp-substitute}, but allows global
4756substitutions on @var{target}. Each @var{item} behaves as per
4757@code{regexp-substitute}, with the following differences,
07d83abe
MV
4758
4759@itemize @bullet
4760@item
a13befdc
KR
4761A function. Called as @code{(@var{item} match)} with the match
4762structure for the @var{regexp} match, it should return a string to be
4763written to @var{port}.
07d83abe
MV
4764
4765@item
a13befdc
KR
4766The symbol @samp{post}. This doesn't output anything, but instead
4767causes @code{regexp-substitute/global} to recurse on the unmatched
4768portion of @var{target}.
4769
4770This @emph{must} be supplied to perform a global search and replace on
4771@var{target}; without it @code{regexp-substitute/global} returns after
4772a single match and output.
07d83abe 4773@end itemize
07d83abe 4774
a13befdc
KR
4775For example, to collapse runs of tabs and spaces to a single hyphen
4776each,
4777
4778@example
4779(regexp-substitute/global #f "[ \t]+" "this is the text"
4780 'pre "-" 'post)
4781@result{} "this-is-the-text"
4782@end example
4783
4784Or using a function to reverse the letters in each word,
4785
4786@example
4787(regexp-substitute/global #f "[a-z]+" "to do and not-do"
4788 'pre (lambda (m) (string-reverse (match:substring m))) 'post)
4789@result{} "ot od dna ton-od"
4790@end example
4791
4792Without the @code{post} symbol, just one regexp match is made. For
4793example the following is the date example from
4794@code{regexp-substitute} above, without the need for the separate
4795@code{string-match} call.
07d83abe
MV
4796
4797@lisp
45867c2a
NJ
4798(define date-regex
4799 "([0-9][0-9][0-9][0-9])([0-9][0-9])([0-9][0-9])")
07d83abe
MV
4800(define s "Date 20020429 12am.")
4801(regexp-substitute/global #f date-regex s
a13befdc
KR
4802 'pre 2 "-" 3 "-" 1 'post " (" 0 ")")
4803
07d83abe
MV
4804@result{} "Date 04-29-2002 12am. (20020429)"
4805@end lisp
a13befdc 4806@end deffn
07d83abe
MV
4807
4808
4809@node Match Structures
4810@subsubsection Match Structures
4811
4812@cindex match structures
4813
4814A @dfn{match structure} is the object returned by @code{string-match} and
4815@code{regexp-exec}. It describes which portion of a string, if any,
4816matched the given regular expression. Match structures include: a
4817reference to the string that was checked for matches; the starting and
4818ending positions of the regexp match; and, if the regexp included any
4819parenthesized subexpressions, the starting and ending positions of each
4820submatch.
4821
4822In each of the regexp match functions described below, the @code{match}
4823argument must be a match structure returned by a previous call to
4824@code{string-match} or @code{regexp-exec}. Most of these functions
4825return some information about the original target string that was
4826matched against a regular expression; we will call that string
4827@var{target} for easy reference.
4828
4829@c begin (scm-doc-string "regex.scm" "regexp-match?")
4830@deffn {Scheme Procedure} regexp-match? obj
4831Return @code{#t} if @var{obj} is a match structure returned by a
4832previous call to @code{regexp-exec}, or @code{#f} otherwise.
4833@end deffn
4834
4835@c begin (scm-doc-string "regex.scm" "match:substring")
4836@deffn {Scheme Procedure} match:substring match [n]
4837Return the portion of @var{target} matched by subexpression number
4838@var{n}. Submatch 0 (the default) represents the entire regexp match.
4839If the regular expression as a whole matched, but the subexpression
4840number @var{n} did not match, return @code{#f}.
4841@end deffn
4842
4843@lisp
4844(define s (string-match "[0-9][0-9][0-9][0-9]" "blah2002foo"))
4845(match:substring s)
4846@result{} "2002"
4847
4848;; match starting at offset 6 in the string
4849(match:substring
4850 (string-match "[0-9][0-9][0-9][0-9]" "blah987654" 6))
4851@result{} "7654"
4852@end lisp
4853
4854@c begin (scm-doc-string "regex.scm" "match:start")
4855@deffn {Scheme Procedure} match:start match [n]
4856Return the starting position of submatch number @var{n}.
4857@end deffn
4858
4859In the following example, the result is 4, since the match starts at
4860character index 4:
4861
4862@lisp
4863(define s (string-match "[0-9][0-9][0-9][0-9]" "blah2002foo"))
4864(match:start s)
4865@result{} 4
4866@end lisp
4867
4868@c begin (scm-doc-string "regex.scm" "match:end")
4869@deffn {Scheme Procedure} match:end match [n]
4870Return the ending position of submatch number @var{n}.
4871@end deffn
4872
4873In the following example, the result is 8, since the match runs between
4874characters 4 and 8 (i.e. the ``2002'').
4875
4876@lisp
4877(define s (string-match "[0-9][0-9][0-9][0-9]" "blah2002foo"))
4878(match:end s)
4879@result{} 8
4880@end lisp
4881
4882@c begin (scm-doc-string "regex.scm" "match:prefix")
4883@deffn {Scheme Procedure} match:prefix match
4884Return the unmatched portion of @var{target} preceding the regexp match.
4885
4886@lisp
4887(define s (string-match "[0-9][0-9][0-9][0-9]" "blah2002foo"))
4888(match:prefix s)
4889@result{} "blah"
4890@end lisp
4891@end deffn
4892
4893@c begin (scm-doc-string "regex.scm" "match:suffix")
4894@deffn {Scheme Procedure} match:suffix match
4895Return the unmatched portion of @var{target} following the regexp match.
4896@end deffn
4897
4898@lisp
4899(define s (string-match "[0-9][0-9][0-9][0-9]" "blah2002foo"))
4900(match:suffix s)
4901@result{} "foo"
4902@end lisp
4903
4904@c begin (scm-doc-string "regex.scm" "match:count")
4905@deffn {Scheme Procedure} match:count match
4906Return the number of parenthesized subexpressions from @var{match}.
4907Note that the entire regular expression match itself counts as a
4908subexpression, and failed submatches are included in the count.
4909@end deffn
4910
4911@c begin (scm-doc-string "regex.scm" "match:string")
4912@deffn {Scheme Procedure} match:string match
4913Return the original @var{target} string.
4914@end deffn
4915
4916@lisp
4917(define s (string-match "[0-9][0-9][0-9][0-9]" "blah2002foo"))
4918(match:string s)
4919@result{} "blah2002foo"
4920@end lisp
4921
4922
4923@node Backslash Escapes
4924@subsubsection Backslash Escapes
4925
4926Sometimes you will want a regexp to match characters like @samp{*} or
4927@samp{$} exactly. For example, to check whether a particular string
4928represents a menu entry from an Info node, it would be useful to match
4929it against a regexp like @samp{^* [^:]*::}. However, this won't work;
4930because the asterisk is a metacharacter, it won't match the @samp{*} at
4931the beginning of the string. In this case, we want to make the first
4932asterisk un-magic.
4933
4934You can do this by preceding the metacharacter with a backslash
4935character @samp{\}. (This is also called @dfn{quoting} the
4936metacharacter, and is known as a @dfn{backslash escape}.) When Guile
4937sees a backslash in a regular expression, it considers the following
4938glyph to be an ordinary character, no matter what special meaning it
4939would ordinarily have. Therefore, we can make the above example work by
4940changing the regexp to @samp{^\* [^:]*::}. The @samp{\*} sequence tells
4941the regular expression engine to match only a single asterisk in the
4942target string.
4943
4944Since the backslash is itself a metacharacter, you may force a regexp to
4945match a backslash in the target string by preceding the backslash with
4946itself. For example, to find variable references in a @TeX{} program,
4947you might want to find occurrences of the string @samp{\let\} followed
4948by any number of alphabetic characters. The regular expression
4949@samp{\\let\\[A-Za-z]*} would do this: the double backslashes in the
4950regexp each match a single backslash in the target string.
4951
4952@c begin (scm-doc-string "regex.scm" "regexp-quote")
4953@deffn {Scheme Procedure} regexp-quote str
4954Quote each special character found in @var{str} with a backslash, and
4955return the resulting string.
4956@end deffn
4957
4958@strong{Very important:} Using backslash escapes in Guile source code
4959(as in Emacs Lisp or C) can be tricky, because the backslash character
4960has special meaning for the Guile reader. For example, if Guile
4961encounters the character sequence @samp{\n} in the middle of a string
4962while processing Scheme code, it replaces those characters with a
4963newline character. Similarly, the character sequence @samp{\t} is
4964replaced by a horizontal tab. Several of these @dfn{escape sequences}
4965are processed by the Guile reader before your code is executed.
4966Unrecognized escape sequences are ignored: if the characters @samp{\*}
4967appear in a string, they will be translated to the single character
4968@samp{*}.
4969
4970This translation is obviously undesirable for regular expressions, since
4971we want to be able to include backslashes in a string in order to
4972escape regexp metacharacters. Therefore, to make sure that a backslash
4973is preserved in a string in your Guile program, you must use @emph{two}
4974consecutive backslashes:
4975
4976@lisp
4977(define Info-menu-entry-pattern (make-regexp "^\\* [^:]*"))
4978@end lisp
4979
4980The string in this example is preprocessed by the Guile reader before
4981any code is executed. The resulting argument to @code{make-regexp} is
4982the string @samp{^\* [^:]*}, which is what we really want.
4983
4984This also means that in order to write a regular expression that matches
4985a single backslash character, the regular expression string in the
4986source code must include @emph{four} backslashes. Each consecutive pair
4987of backslashes gets translated by the Guile reader to a single
4988backslash, and the resulting double-backslash is interpreted by the
4989regexp engine as matching a single backslash character. Hence:
4990
4991@lisp
4992(define tex-variable-pattern (make-regexp "\\\\let\\\\=[A-Za-z]*"))
4993@end lisp
4994
4995The reason for the unwieldiness of this syntax is historical. Both
4996regular expression pattern matchers and Unix string processing systems
4997have traditionally used backslashes with the special meanings
4998described above. The POSIX regular expression specification and ANSI C
4999standard both require these semantics. Attempting to abandon either
5000convention would cause other kinds of compatibility problems, possibly
5001more severe ones. Therefore, without extending the Scheme reader to
5002support strings with different quoting conventions (an ungainly and
5003confusing extension when implemented in other languages), we must adhere
5004to this cumbersome escape syntax.
5005
5006
5007@node Symbols
5008@subsection Symbols
5009@tpindex Symbols
5010
5011Symbols in Scheme are widely used in three ways: as items of discrete
5012data, as lookup keys for alists and hash tables, and to denote variable
5013references.
5014
5015A @dfn{symbol} is similar to a string in that it is defined by a
5016sequence of characters. The sequence of characters is known as the
5017symbol's @dfn{name}. In the usual case --- that is, where the symbol's
5018name doesn't include any characters that could be confused with other
5019elements of Scheme syntax --- a symbol is written in a Scheme program by
5020writing the sequence of characters that make up the name, @emph{without}
5021any quotation marks or other special syntax. For example, the symbol
5022whose name is ``multiply-by-2'' is written, simply:
5023
5024@lisp
5025multiply-by-2
5026@end lisp
5027
5028Notice how this differs from a @emph{string} with contents
5029``multiply-by-2'', which is written with double quotation marks, like
5030this:
5031
5032@lisp
5033"multiply-by-2"
5034@end lisp
5035
5036Looking beyond how they are written, symbols are different from strings
5037in two important respects.
5038
5039The first important difference is uniqueness. If the same-looking
5040string is read twice from two different places in a program, the result
5041is two @emph{different} string objects whose contents just happen to be
5042the same. If, on the other hand, the same-looking symbol is read twice
5043from two different places in a program, the result is the @emph{same}
5044symbol object both times.
5045
5046Given two read symbols, you can use @code{eq?} to test whether they are
5047the same (that is, have the same name). @code{eq?} is the most
5048efficient comparison operator in Scheme, and comparing two symbols like
5049this is as fast as comparing, for example, two numbers. Given two
5050strings, on the other hand, you must use @code{equal?} or
5051@code{string=?}, which are much slower comparison operators, to
5052determine whether the strings have the same contents.
5053
5054@lisp
5055(define sym1 (quote hello))
5056(define sym2 (quote hello))
5057(eq? sym1 sym2) @result{} #t
5058
5059(define str1 "hello")
5060(define str2 "hello")
5061(eq? str1 str2) @result{} #f
5062(equal? str1 str2) @result{} #t
5063@end lisp
5064
5065The second important difference is that symbols, unlike strings, are not
5066self-evaluating. This is why we need the @code{(quote @dots{})}s in the
5067example above: @code{(quote hello)} evaluates to the symbol named
5068"hello" itself, whereas an unquoted @code{hello} is @emph{read} as the
5069symbol named "hello" and evaluated as a variable reference @dots{} about
5070which more below (@pxref{Symbol Variables}).
5071
5072@menu
5073* Symbol Data:: Symbols as discrete data.
5074* Symbol Keys:: Symbols as lookup keys.
5075* Symbol Variables:: Symbols as denoting variables.
5076* Symbol Primitives:: Operations related to symbols.
5077* Symbol Props:: Function slots and property lists.
5078* Symbol Read Syntax:: Extended read syntax for symbols.
5079* Symbol Uninterned:: Uninterned symbols.
5080@end menu
5081
5082
5083@node Symbol Data
5084@subsubsection Symbols as Discrete Data
5085
5086Numbers and symbols are similar to the extent that they both lend
5087themselves to @code{eq?} comparison. But symbols are more descriptive
5088than numbers, because a symbol's name can be used directly to describe
5089the concept for which that symbol stands.
5090
5091For example, imagine that you need to represent some colours in a
5092computer program. Using numbers, you would have to choose arbitrarily
5093some mapping between numbers and colours, and then take care to use that
5094mapping consistently:
5095
5096@lisp
5097;; 1=red, 2=green, 3=purple
5098
5099(if (eq? (colour-of car) 1)
5100 ...)
5101@end lisp
5102
5103@noindent
5104You can make the mapping more explicit and the code more readable by
5105defining constants:
5106
5107@lisp
5108(define red 1)
5109(define green 2)
5110(define purple 3)
5111
5112(if (eq? (colour-of car) red)
5113 ...)
5114@end lisp
5115
5116@noindent
5117But the simplest and clearest approach is not to use numbers at all, but
5118symbols whose names specify the colours that they refer to:
5119
5120@lisp
5121(if (eq? (colour-of car) 'red)
5122 ...)
5123@end lisp
5124
5125The descriptive advantages of symbols over numbers increase as the set
5126of concepts that you want to describe grows. Suppose that a car object
5127can have other properties as well, such as whether it has or uses:
5128
5129@itemize @bullet
5130@item
5131automatic or manual transmission
5132@item
5133leaded or unleaded fuel
5134@item
5135power steering (or not).
5136@end itemize
5137
5138@noindent
5139Then a car's combined property set could be naturally represented and
5140manipulated as a list of symbols:
5141
5142@lisp
5143(properties-of car1)
5144@result{}
5145(red manual unleaded power-steering)
5146
5147(if (memq 'power-steering (properties-of car1))
5148 (display "Unfit people can drive this car.\n")
5149 (display "You'll need strong arms to drive this car!\n"))
5150@print{}
5151Unfit people can drive this car.
5152@end lisp
5153
5154Remember, the fundamental property of symbols that we are relying on
5155here is that an occurrence of @code{'red} in one part of a program is an
5156@emph{indistinguishable} symbol from an occurrence of @code{'red} in
5157another part of a program; this means that symbols can usefully be
5158compared using @code{eq?}. At the same time, symbols have naturally
5159descriptive names. This combination of efficiency and descriptive power
5160makes them ideal for use as discrete data.
5161
5162
5163@node Symbol Keys
5164@subsubsection Symbols as Lookup Keys
5165
5166Given their efficiency and descriptive power, it is natural to use
5167symbols as the keys in an association list or hash table.
5168
5169To illustrate this, consider a more structured representation of the car
5170properties example from the preceding subsection. Rather than
5171mixing all the properties up together in a flat list, we could use an
5172association list like this:
5173
5174@lisp
5175(define car1-properties '((colour . red)
5176 (transmission . manual)
5177 (fuel . unleaded)
5178 (steering . power-assisted)))
5179@end lisp
5180
5181Notice how this structure is more explicit and extensible than the flat
5182list. For example it makes clear that @code{manual} refers to the
5183transmission rather than, say, the windows or the locking of the car.
5184It also allows further properties to use the same symbols among their
5185possible values without becoming ambiguous:
5186
5187@lisp
5188(define car1-properties '((colour . red)
5189 (transmission . manual)
5190 (fuel . unleaded)
5191 (steering . power-assisted)
5192 (seat-colour . red)
5193 (locking . manual)))
5194@end lisp
5195
5196With a representation like this, it is easy to use the efficient
5197@code{assq-XXX} family of procedures (@pxref{Association Lists}) to
5198extract or change individual pieces of information:
5199
5200@lisp
5201(assq-ref car1-properties 'fuel) @result{} unleaded
5202(assq-ref car1-properties 'transmission) @result{} manual
5203
5204(assq-set! car1-properties 'seat-colour 'black)
5205@result{}
5206((colour . red)
5207 (transmission . manual)
5208 (fuel . unleaded)
5209 (steering . power-assisted)
5210 (seat-colour . black)
5211 (locking . manual)))
5212@end lisp
5213
5214Hash tables also have keys, and exactly the same arguments apply to the
5215use of symbols in hash tables as in association lists. The hash value
5216that Guile uses to decide where to add a symbol-keyed entry to a hash
5217table can be obtained by calling the @code{symbol-hash} procedure:
5218
5219@deffn {Scheme Procedure} symbol-hash symbol
5220@deffnx {C Function} scm_symbol_hash (symbol)
5221Return a hash value for @var{symbol}.
5222@end deffn
5223
5224See @ref{Hash Tables} for information about hash tables in general, and
5225for why you might choose to use a hash table rather than an association
5226list.
5227
5228
5229@node Symbol Variables
5230@subsubsection Symbols as Denoting Variables
5231
5232When an unquoted symbol in a Scheme program is evaluated, it is
5233interpreted as a variable reference, and the result of the evaluation is
5234the appropriate variable's value.
5235
5236For example, when the expression @code{(string-length "abcd")} is read
5237and evaluated, the sequence of characters @code{string-length} is read
5238as the symbol whose name is "string-length". This symbol is associated
5239with a variable whose value is the procedure that implements string
5240length calculation. Therefore evaluation of the @code{string-length}
5241symbol results in that procedure.
5242
5243The details of the connection between an unquoted symbol and the
5244variable to which it refers are explained elsewhere. See @ref{Binding
5245Constructs}, for how associations between symbols and variables are
5246created, and @ref{Modules}, for how those associations are affected by
5247Guile's module system.
5248
5249
5250@node Symbol Primitives
5251@subsubsection Operations Related to Symbols
5252
5253Given any Scheme value, you can determine whether it is a symbol using
5254the @code{symbol?} primitive:
5255
5256@rnindex symbol?
5257@deffn {Scheme Procedure} symbol? obj
5258@deffnx {C Function} scm_symbol_p (obj)
5259Return @code{#t} if @var{obj} is a symbol, otherwise return
5260@code{#f}.
5261@end deffn
5262
c9dc8c6c
MV
5263@deftypefn {C Function} int scm_is_symbol (SCM val)
5264Equivalent to @code{scm_is_true (scm_symbol_p (val))}.
5265@end deftypefn
5266
07d83abe
MV
5267Once you know that you have a symbol, you can obtain its name as a
5268string by calling @code{symbol->string}. Note that Guile differs by
5269default from R5RS on the details of @code{symbol->string} as regards
5270case-sensitivity:
5271
5272@rnindex symbol->string
5273@deffn {Scheme Procedure} symbol->string s
5274@deffnx {C Function} scm_symbol_to_string (s)
5275Return the name of symbol @var{s} as a string. By default, Guile reads
5276symbols case-sensitively, so the string returned will have the same case
5277variation as the sequence of characters that caused @var{s} to be
5278created.
5279
5280If Guile is set to read symbols case-insensitively (as specified by
5281R5RS), and @var{s} comes into being as part of a literal expression
5282(@pxref{Literal expressions,,,r5rs, The Revised^5 Report on Scheme}) or
5283by a call to the @code{read} or @code{string-ci->symbol} procedures,
5284Guile converts any alphabetic characters in the symbol's name to
5285lower case before creating the symbol object, so the string returned
5286here will be in lower case.
5287
5288If @var{s} was created by @code{string->symbol}, the case of characters
5289in the string returned will be the same as that in the string that was
5290passed to @code{string->symbol}, regardless of Guile's case-sensitivity
5291setting at the time @var{s} was created.
5292
5293It is an error to apply mutation procedures like @code{string-set!} to
5294strings returned by this procedure.
5295@end deffn
5296
5297Most symbols are created by writing them literally in code. However it
5298is also possible to create symbols programmatically using the following
5299@code{string->symbol} and @code{string-ci->symbol} procedures:
5300
5301@rnindex string->symbol
5302@deffn {Scheme Procedure} string->symbol string
5303@deffnx {C Function} scm_string_to_symbol (string)
5304Return the symbol whose name is @var{string}. This procedure can create
5305symbols with names containing special characters or letters in the
5306non-standard case, but it is usually a bad idea to create such symbols
5307because in some implementations of Scheme they cannot be read as
5308themselves.
5309@end deffn
5310
5311@deffn {Scheme Procedure} string-ci->symbol str
5312@deffnx {C Function} scm_string_ci_to_symbol (str)
5313Return the symbol whose name is @var{str}. If Guile is currently
5314reading symbols case-insensitively, @var{str} is converted to lowercase
5315before the returned symbol is looked up or created.
5316@end deffn
5317
5318The following examples illustrate Guile's detailed behaviour as regards
5319the case-sensitivity of symbols:
5320
5321@lisp
5322(read-enable 'case-insensitive) ; R5RS compliant behaviour
5323
5324(symbol->string 'flying-fish) @result{} "flying-fish"
5325(symbol->string 'Martin) @result{} "martin"
5326(symbol->string
5327 (string->symbol "Malvina")) @result{} "Malvina"
5328
5329(eq? 'mISSISSIppi 'mississippi) @result{} #t
5330(string->symbol "mISSISSIppi") @result{} mISSISSIppi
5331(eq? 'bitBlt (string->symbol "bitBlt")) @result{} #f
5332(eq? 'LolliPop
5333 (string->symbol (symbol->string 'LolliPop))) @result{} #t
5334(string=? "K. Harper, M.D."
5335 (symbol->string
5336 (string->symbol "K. Harper, M.D."))) @result{} #t
5337
5338(read-disable 'case-insensitive) ; Guile default behaviour
5339
5340(symbol->string 'flying-fish) @result{} "flying-fish"
5341(symbol->string 'Martin) @result{} "Martin"
5342(symbol->string
5343 (string->symbol "Malvina")) @result{} "Malvina"
5344
5345(eq? 'mISSISSIppi 'mississippi) @result{} #f
5346(string->symbol "mISSISSIppi") @result{} mISSISSIppi
5347(eq? 'bitBlt (string->symbol "bitBlt")) @result{} #t
5348(eq? 'LolliPop
5349 (string->symbol (symbol->string 'LolliPop))) @result{} #t
5350(string=? "K. Harper, M.D."
5351 (symbol->string
5352 (string->symbol "K. Harper, M.D."))) @result{} #t
5353@end lisp
5354
5355From C, there are lower level functions that construct a Scheme symbol
c48c62d0
MV
5356from a C string in the current locale encoding.
5357
5358When you want to do more from C, you should convert between symbols
5359and strings using @code{scm_symbol_to_string} and
5360@code{scm_string_to_symbol} and work with the strings.
07d83abe 5361
c48c62d0
MV
5362@deffn {C Function} scm_from_locale_symbol (const char *name)
5363@deffnx {C Function} scm_from_locale_symboln (const char *name, size_t len)
07d83abe 5364Construct and return a Scheme symbol whose name is specified by
c48c62d0
MV
5365@var{name}. For @code{scm_from_locale_symbol}, @var{name} must be null
5366terminated; for @code{scm_from_locale_symboln} the length of @var{name} is
07d83abe
MV
5367specified explicitly by @var{len}.
5368@end deffn
5369
fd0a5bbc
HWN
5370@deftypefn {C Function} SCM scm_take_locale_symbol (char *str)
5371@deftypefnx {C Function} SCM scm_take_locale_symboln (char *str, size_t len)
5372Like @code{scm_from_locale_symbol} and @code{scm_from_locale_symboln},
5373respectively, but also frees @var{str} with @code{free} eventually.
5374Thus, you can use this function when you would free @var{str} anyway
5375immediately after creating the Scheme string. In certain cases, Guile
5376can then use @var{str} directly as its internal representation.
5377@end deftypefn
5378
071bb6a8
LC
5379The size of a symbol can also be obtained from C:
5380
5381@deftypefn {C Function} size_t scm_c_symbol_length (SCM sym)
5382Return the number of characters in @var{sym}.
5383@end deftypefn
fd0a5bbc 5384
07d83abe
MV
5385Finally, some applications, especially those that generate new Scheme
5386code dynamically, need to generate symbols for use in the generated
5387code. The @code{gensym} primitive meets this need:
5388
5389@deffn {Scheme Procedure} gensym [prefix]
5390@deffnx {C Function} scm_gensym (prefix)
5391Create a new symbol with a name constructed from a prefix and a counter
5392value. The string @var{prefix} can be specified as an optional
5393argument. Default prefix is @samp{@w{ g}}. The counter is increased by 1
5394at each call. There is no provision for resetting the counter.
5395@end deffn
5396
5397The symbols generated by @code{gensym} are @emph{likely} to be unique,
5398since their names begin with a space and it is only otherwise possible
5399to generate such symbols if a programmer goes out of their way to do
5400so. Uniqueness can be guaranteed by instead using uninterned symbols
5401(@pxref{Symbol Uninterned}), though they can't be usefully written out
5402and read back in.
5403
5404
5405@node Symbol Props
5406@subsubsection Function Slots and Property Lists
5407
5408In traditional Lisp dialects, symbols are often understood as having
5409three kinds of value at once:
5410
5411@itemize @bullet
5412@item
5413a @dfn{variable} value, which is used when the symbol appears in
5414code in a variable reference context
5415
5416@item
5417a @dfn{function} value, which is used when the symbol appears in
5418code in a function name position (i.e. as the first element in an
5419unquoted list)
5420
5421@item
5422a @dfn{property list} value, which is used when the symbol is given as
5423the first argument to Lisp's @code{put} or @code{get} functions.
5424@end itemize
5425
5426Although Scheme (as one of its simplifications with respect to Lisp)
5427does away with the distinction between variable and function namespaces,
5428Guile currently retains some elements of the traditional structure in
5429case they turn out to be useful when implementing translators for other
5430languages, in particular Emacs Lisp.
5431
5432Specifically, Guile symbols have two extra slots. for a symbol's
5433property list, and for its ``function value.'' The following procedures
5434are provided to access these slots.
5435
5436@deffn {Scheme Procedure} symbol-fref symbol
5437@deffnx {C Function} scm_symbol_fref (symbol)
5438Return the contents of @var{symbol}'s @dfn{function slot}.
5439@end deffn
5440
5441@deffn {Scheme Procedure} symbol-fset! symbol value
5442@deffnx {C Function} scm_symbol_fset_x (symbol, value)
5443Set the contents of @var{symbol}'s function slot to @var{value}.
5444@end deffn
5445
5446@deffn {Scheme Procedure} symbol-pref symbol
5447@deffnx {C Function} scm_symbol_pref (symbol)
5448Return the @dfn{property list} currently associated with @var{symbol}.
5449@end deffn
5450
5451@deffn {Scheme Procedure} symbol-pset! symbol value
5452@deffnx {C Function} scm_symbol_pset_x (symbol, value)
5453Set @var{symbol}'s property list to @var{value}.
5454@end deffn
5455
5456@deffn {Scheme Procedure} symbol-property sym prop
5457From @var{sym}'s property list, return the value for property
5458@var{prop}. The assumption is that @var{sym}'s property list is an
5459association list whose keys are distinguished from each other using
5460@code{equal?}; @var{prop} should be one of the keys in that list. If
5461the property list has no entry for @var{prop}, @code{symbol-property}
5462returns @code{#f}.
5463@end deffn
5464
5465@deffn {Scheme Procedure} set-symbol-property! sym prop val
5466In @var{sym}'s property list, set the value for property @var{prop} to
5467@var{val}, or add a new entry for @var{prop}, with value @var{val}, if
5468none already exists. For the structure of the property list, see
5469@code{symbol-property}.
5470@end deffn
5471
5472@deffn {Scheme Procedure} symbol-property-remove! sym prop
5473From @var{sym}'s property list, remove the entry for property
5474@var{prop}, if there is one. For the structure of the property list,
5475see @code{symbol-property}.
5476@end deffn
5477
5478Support for these extra slots may be removed in a future release, and it
4695789c
NJ
5479is probably better to avoid using them. For a more modern and Schemely
5480approach to properties, see @ref{Object Properties}.
07d83abe
MV
5481
5482
5483@node Symbol Read Syntax
5484@subsubsection Extended Read Syntax for Symbols
5485
5486The read syntax for a symbol is a sequence of letters, digits, and
5487@dfn{extended alphabetic characters}, beginning with a character that
5488cannot begin a number. In addition, the special cases of @code{+},
5489@code{-}, and @code{...} are read as symbols even though numbers can
5490begin with @code{+}, @code{-} or @code{.}.
5491
5492Extended alphabetic characters may be used within identifiers as if
5493they were letters. The set of extended alphabetic characters is:
5494
5495@example
5496! $ % & * + - . / : < = > ? @@ ^ _ ~
5497@end example
5498
5499In addition to the standard read syntax defined above (which is taken
5500from R5RS (@pxref{Formal syntax,,,r5rs,The Revised^5 Report on
5501Scheme})), Guile provides an extended symbol read syntax that allows the
5502inclusion of unusual characters such as space characters, newlines and
5503parentheses. If (for whatever reason) you need to write a symbol
5504containing characters not mentioned above, you can do so as follows.
5505
5506@itemize @bullet
5507@item
5508Begin the symbol with the characters @code{#@{},
5509
5510@item
5511write the characters of the symbol and
5512
5513@item
5514finish the symbol with the characters @code{@}#}.
5515@end itemize
5516
5517Here are a few examples of this form of read syntax. The first symbol
5518needs to use extended syntax because it contains a space character, the
5519second because it contains a line break, and the last because it looks
5520like a number.
5521
5522@lisp
5523#@{foo bar@}#
5524
5525#@{what
5526ever@}#
5527
5528#@{4242@}#
5529@end lisp
5530
5531Although Guile provides this extended read syntax for symbols,
5532widespread usage of it is discouraged because it is not portable and not
5533very readable.
5534
5535
5536@node Symbol Uninterned
5537@subsubsection Uninterned Symbols
5538
5539What makes symbols useful is that they are automatically kept unique.
5540There are no two symbols that are distinct objects but have the same
5541name. But of course, there is no rule without exception. In addition
5542to the normal symbols that have been discussed up to now, you can also
5543create special @dfn{uninterned} symbols that behave slightly
5544differently.
5545
5546To understand what is different about them and why they might be useful,
5547we look at how normal symbols are actually kept unique.
5548
5549Whenever Guile wants to find the symbol with a specific name, for
5550example during @code{read} or when executing @code{string->symbol}, it
5551first looks into a table of all existing symbols to find out whether a
5552symbol with the given name already exists. When this is the case, Guile
5553just returns that symbol. When not, a new symbol with the name is
5554created and entered into the table so that it can be found later.
5555
5556Sometimes you might want to create a symbol that is guaranteed `fresh',
5557i.e. a symbol that did not exist previously. You might also want to
5558somehow guarantee that no one else will ever unintentionally stumble
5559across your symbol in the future. These properties of a symbol are
5560often needed when generating code during macro expansion. When
5561introducing new temporary variables, you want to guarantee that they
5562don't conflict with variables in other people's code.
5563
5564The simplest way to arrange for this is to create a new symbol but
5565not enter it into the global table of all symbols. That way, no one
5566will ever get access to your symbol by chance. Symbols that are not in
5567the table are called @dfn{uninterned}. Of course, symbols that
5568@emph{are} in the table are called @dfn{interned}.
5569
5570You create new uninterned symbols with the function @code{make-symbol}.
5571You can test whether a symbol is interned or not with
5572@code{symbol-interned?}.
5573
5574Uninterned symbols break the rule that the name of a symbol uniquely
5575identifies the symbol object. Because of this, they can not be written
5576out and read back in like interned symbols. Currently, Guile has no
5577support for reading uninterned symbols. Note that the function
5578@code{gensym} does not return uninterned symbols for this reason.
5579
5580@deffn {Scheme Procedure} make-symbol name
5581@deffnx {C Function} scm_make_symbol (name)
5582Return a new uninterned symbol with the name @var{name}. The returned
5583symbol is guaranteed to be unique and future calls to
5584@code{string->symbol} will not return it.
5585@end deffn
5586
5587@deffn {Scheme Procedure} symbol-interned? symbol
5588@deffnx {C Function} scm_symbol_interned_p (symbol)
5589Return @code{#t} if @var{symbol} is interned, otherwise return
5590@code{#f}.
5591@end deffn
5592
5593For example:
5594
5595@lisp
5596(define foo-1 (string->symbol "foo"))
5597(define foo-2 (string->symbol "foo"))
5598(define foo-3 (make-symbol "foo"))
5599(define foo-4 (make-symbol "foo"))
5600
5601(eq? foo-1 foo-2)
5602@result{} #t
5603; Two interned symbols with the same name are the same object,
5604
5605(eq? foo-1 foo-3)
5606@result{} #f
5607; but a call to make-symbol with the same name returns a
5608; distinct object.
5609
5610(eq? foo-3 foo-4)
5611@result{} #f
5612; A call to make-symbol always returns a new object, even for
5613; the same name.
5614
5615foo-3
5616@result{} #<uninterned-symbol foo 8085290>
5617; Uninterned symbols print differently from interned symbols,
5618
5619(symbol? foo-3)
5620@result{} #t
5621; but they are still symbols,
5622
5623(symbol-interned? foo-3)
5624@result{} #f
5625; just not interned.
5626@end lisp
5627
5628
5629@node Keywords
5630@subsection Keywords
5631@tpindex Keywords
5632
5633Keywords are self-evaluating objects with a convenient read syntax that
5634makes them easy to type.
5635
5636Guile's keyword support conforms to R5RS, and adds a (switchable) read
5637syntax extension to permit keywords to begin with @code{:} as well as
ef4cbc08 5638@code{#:}, or to end with @code{:}.
07d83abe
MV
5639
5640@menu
5641* Why Use Keywords?:: Motivation for keyword usage.
5642* Coding With Keywords:: How to use keywords.
5643* Keyword Read Syntax:: Read syntax for keywords.
5644* Keyword Procedures:: Procedures for dealing with keywords.
07d83abe
MV
5645@end menu
5646
5647@node Why Use Keywords?
5648@subsubsection Why Use Keywords?
5649
5650Keywords are useful in contexts where a program or procedure wants to be
5651able to accept a large number of optional arguments without making its
5652interface unmanageable.
5653
5654To illustrate this, consider a hypothetical @code{make-window}
5655procedure, which creates a new window on the screen for drawing into
5656using some graphical toolkit. There are many parameters that the caller
5657might like to specify, but which could also be sensibly defaulted, for
5658example:
5659
5660@itemize @bullet
5661@item
5662color depth -- Default: the color depth for the screen
5663
5664@item
5665background color -- Default: white
5666
5667@item
5668width -- Default: 600
5669
5670@item
5671height -- Default: 400
5672@end itemize
5673
5674If @code{make-window} did not use keywords, the caller would have to
5675pass in a value for each possible argument, remembering the correct
5676argument order and using a special value to indicate the default value
5677for that argument:
5678
5679@lisp
5680(make-window 'default ;; Color depth
5681 'default ;; Background color
5682 800 ;; Width
5683 100 ;; Height
5684 @dots{}) ;; More make-window arguments
5685@end lisp
5686
5687With keywords, on the other hand, defaulted arguments are omitted, and
5688non-default arguments are clearly tagged by the appropriate keyword. As
5689a result, the invocation becomes much clearer:
5690
5691@lisp
5692(make-window #:width 800 #:height 100)
5693@end lisp
5694
5695On the other hand, for a simpler procedure with few arguments, the use
5696of keywords would be a hindrance rather than a help. The primitive
5697procedure @code{cons}, for example, would not be improved if it had to
5698be invoked as
5699
5700@lisp
5701(cons #:car x #:cdr y)
5702@end lisp
5703
5704So the decision whether to use keywords or not is purely pragmatic: use
5705them if they will clarify the procedure invocation at point of call.
5706
5707@node Coding With Keywords
5708@subsubsection Coding With Keywords
5709
5710If a procedure wants to support keywords, it should take a rest argument
5711and then use whatever means is convenient to extract keywords and their
5712corresponding arguments from the contents of that rest argument.
5713
5714The following example illustrates the principle: the code for
5715@code{make-window} uses a helper procedure called
5716@code{get-keyword-value} to extract individual keyword arguments from
5717the rest argument.
5718
5719@lisp
5720(define (get-keyword-value args keyword default)
5721 (let ((kv (memq keyword args)))
5722 (if (and kv (>= (length kv) 2))
5723 (cadr kv)
5724 default)))
5725
5726(define (make-window . args)
5727 (let ((depth (get-keyword-value args #:depth screen-depth))
5728 (bg (get-keyword-value args #:bg "white"))
5729 (width (get-keyword-value args #:width 800))
5730 (height (get-keyword-value args #:height 100))
5731 @dots{})
5732 @dots{}))
5733@end lisp
5734
5735But you don't need to write @code{get-keyword-value}. The @code{(ice-9
5736optargs)} module provides a set of powerful macros that you can use to
5737implement keyword-supporting procedures like this:
5738
5739@lisp
5740(use-modules (ice-9 optargs))
5741
5742(define (make-window . args)
5743 (let-keywords args #f ((depth screen-depth)
5744 (bg "white")
5745 (width 800)
5746 (height 100))
5747 ...))
5748@end lisp
5749
5750@noindent
5751Or, even more economically, like this:
5752
5753@lisp
5754(use-modules (ice-9 optargs))
5755
5756(define* (make-window #:key (depth screen-depth)
5757 (bg "white")
5758 (width 800)
5759 (height 100))
5760 ...)
5761@end lisp
5762
5763For further details on @code{let-keywords}, @code{define*} and other
5764facilities provided by the @code{(ice-9 optargs)} module, see
5765@ref{Optional Arguments}.
5766
5767
5768@node Keyword Read Syntax
5769@subsubsection Keyword Read Syntax
5770
7719ef22
MV
5771Guile, by default, only recognizes a keyword syntax that is compatible
5772with R5RS. A token of the form @code{#:NAME}, where @code{NAME} has the
5773same syntax as a Scheme symbol (@pxref{Symbol Read Syntax}), is the
5774external representation of the keyword named @code{NAME}. Keyword
5775objects print using this syntax as well, so values containing keyword
5776objects can be read back into Guile. When used in an expression,
5777keywords are self-quoting objects.
07d83abe
MV
5778
5779If the @code{keyword} read option is set to @code{'prefix}, Guile also
5780recognizes the alternative read syntax @code{:NAME}. Otherwise, tokens
5781of the form @code{:NAME} are read as symbols, as required by R5RS.
5782
ef4cbc08
LC
5783@cindex SRFI-88 keyword syntax
5784
5785If the @code{keyword} read option is set to @code{'postfix}, Guile
189681f5
LC
5786recognizes the SRFI-88 read syntax @code{NAME:} (@pxref{SRFI-88}).
5787Otherwise, tokens of this form are read as symbols.
ef4cbc08 5788
07d83abe
MV
5789To enable and disable the alternative non-R5RS keyword syntax, you use
5790the @code{read-set!} procedure documented in @ref{User level options
ef4cbc08
LC
5791interfaces} and @ref{Reader options}. Note that the @code{prefix} and
5792@code{postfix} syntax are mutually exclusive.
07d83abe 5793
aba0dff5 5794@lisp
07d83abe
MV
5795(read-set! keywords 'prefix)
5796
5797#:type
5798@result{}
5799#:type
5800
5801:type
5802@result{}
5803#:type
5804
ef4cbc08
LC
5805(read-set! keywords 'postfix)
5806
5807type:
5808@result{}
5809#:type
5810
5811:type
5812@result{}
5813:type
5814
07d83abe
MV
5815(read-set! keywords #f)
5816
5817#:type
5818@result{}
5819#:type
5820
5821:type
5822@print{}
5823ERROR: In expression :type:
5824ERROR: Unbound variable: :type
5825ABORT: (unbound-variable)
aba0dff5 5826@end lisp
07d83abe
MV
5827
5828@node Keyword Procedures
5829@subsubsection Keyword Procedures
5830
07d83abe
MV
5831@deffn {Scheme Procedure} keyword? obj
5832@deffnx {C Function} scm_keyword_p (obj)
5833Return @code{#t} if the argument @var{obj} is a keyword, else
5834@code{#f}.
5835@end deffn
5836
7719ef22
MV
5837@deffn {Scheme Procedure} keyword->symbol keyword
5838@deffnx {C Function} scm_keyword_to_symbol (keyword)
5839Return the symbol with the same name as @var{keyword}.
07d83abe
MV
5840@end deffn
5841
7719ef22
MV
5842@deffn {Scheme Procedure} symbol->keyword symbol
5843@deffnx {C Function} scm_symbol_to_keyword (symbol)
5844Return the keyword with the same name as @var{symbol}.
5845@end deffn
07d83abe 5846
7719ef22
MV
5847@deftypefn {C Function} int scm_is_keyword (SCM obj)
5848Equivalent to @code{scm_is_true (scm_keyword_p (@var{obj}))}.
07d83abe
MV
5849@end deftypefn
5850
7719ef22
MV
5851@deftypefn {C Function} SCM scm_from_locale_keyword (const char *str)
5852@deftypefnx {C Function} SCM scm_from_locale_keywordn (const char *str, size_t len)
5853Equivalent to @code{scm_symbol_to_keyword (scm_from_locale_symbol
5854(@var{str}))} and @code{scm_symbol_to_keyword (scm_from_locale_symboln
5855(@var{str}, @var{len}))}, respectively.
5856@end deftypefn
07d83abe
MV
5857
5858@node Other Types
5859@subsection ``Functionality-Centric'' Data Types
5860
5861Procedures and macros are documented in their own chapter: see
e4955559 5862@ref{Procedures} and @ref{Macros}.
07d83abe
MV
5863
5864Variable objects are documented as part of the description of Guile's
5865module system: see @ref{Variables}.
5866
5867Asyncs, dynamic roots and fluids are described in the chapter on
5868scheduling: see @ref{Scheduling}.
5869
5870Hooks are documented in the chapter on general utility functions: see
5871@ref{Hooks}.
5872
5873Ports are described in the chapter on I/O: see @ref{Input and Output}.
5874
5875
5876@c Local Variables:
5877@c TeX-master: "guile.texi"
5878@c End: