Merge remote-tracking branch 'origin/stable-2.0'
[bpt/guile.git] / libguile / numbers.c
CommitLineData
07b390d5
LC
1/* Copyright (C) 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
2 * 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,
3 * 2013 Free Software Foundation, Inc.
ba74ef4e
MV
4 *
5 * Portions Copyright 1990, 1991, 1992, 1993 by AT&T Bell Laboratories
6 * and Bellcore. See scm_divide.
7 *
f81e080b 8 *
73be1d9e 9 * This library is free software; you can redistribute it and/or
53befeb7
NJ
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 3 of
12 * the License, or (at your option) any later version.
0f2d19dd 13 *
53befeb7
NJ
14 * This library is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
73be1d9e
MV
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
0f2d19dd 18 *
73be1d9e
MV
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with this library; if not, write to the Free Software
53befeb7
NJ
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
22 * 02110-1301 USA
73be1d9e 23 */
1bbd0b84 24
0f2d19dd 25\f
ca46fb90 26/* General assumptions:
ca46fb90
RB
27 * All objects satisfying SCM_BIGP() are too large to fit in a fixnum.
28 * If an object satisfies integer?, it's either an inum, a bignum, or a real.
29 * If floor (r) == r, r is an int, and mpz_set_d will DTRT.
c7218482 30 * XXX What about infinities? They are equal to their own floor! -mhw
f92e85f7 31 * All objects satisfying SCM_FRACTIONP are never an integer.
ca46fb90
RB
32 */
33
34/* TODO:
35
36 - see if special casing bignums and reals in integer-exponent when
37 possible (to use mpz_pow and mpf_pow_ui) is faster.
38
39 - look in to better short-circuiting of common cases in
40 integer-expt and elsewhere.
41
42 - see if direct mpz operations can help in ash and elsewhere.
43
44 */
0f2d19dd 45
dbb605f5 46#ifdef HAVE_CONFIG_H
ee33d62a
RB
47# include <config.h>
48#endif
49
bbec4602 50#include <verify.h>
6f82b8f6 51#include <assert.h>
bbec4602 52
0f2d19dd 53#include <math.h>
fc194577 54#include <string.h>
3f47e526
MG
55#include <unicase.h>
56#include <unictype.h>
f92e85f7 57
8ab3d8a0
KR
58#if HAVE_COMPLEX_H
59#include <complex.h>
60#endif
61
07b390d5
LC
62#include <stdarg.h>
63
a0599745 64#include "libguile/_scm.h"
a0599745
MD
65#include "libguile/feature.h"
66#include "libguile/ports.h"
67#include "libguile/root.h"
68#include "libguile/smob.h"
69#include "libguile/strings.h"
864e7d42 70#include "libguile/bdw-gc.h"
a0599745
MD
71
72#include "libguile/validate.h"
73#include "libguile/numbers.h"
1be6b49c 74#include "libguile/deprecation.h"
f4c627b3 75
f92e85f7
MV
76#include "libguile/eq.h"
77
8ab3d8a0
KR
78/* values per glibc, if not already defined */
79#ifndef M_LOG10E
80#define M_LOG10E 0.43429448190325182765
81#endif
85bdb6ac
MW
82#ifndef M_LN2
83#define M_LN2 0.69314718055994530942
84#endif
8ab3d8a0
KR
85#ifndef M_PI
86#define M_PI 3.14159265358979323846
87#endif
88
cba521fe
MW
89/* FIXME: We assume that FLT_RADIX is 2 */
90verify (FLT_RADIX == 2);
91
e25f3727
AW
92typedef scm_t_signed_bits scm_t_inum;
93#define scm_from_inum(x) (scm_from_signed_integer (x))
94
4cc2e41c
MW
95/* Test an inum to see if it can be converted to a double without loss
96 of precision. Note that this will sometimes return 0 even when 1
97 could have been returned, e.g. for large powers of 2. It is designed
98 to be a fast check to optimize common cases. */
99#define INUM_LOSSLESSLY_CONVERTIBLE_TO_DOUBLE(n) \
100 (SCM_I_FIXNUM_BIT-1 <= DBL_MANT_DIG \
101 || ((n) ^ ((n) >> (SCM_I_FIXNUM_BIT-1))) < (1L << DBL_MANT_DIG))
07b390d5
LC
102
103#if ! HAVE_DECL_MPZ_INITS
104
105/* GMP < 5.0.0 lacks `mpz_inits' and `mpz_clears'. Provide them. */
106
107#define VARARG_MPZ_ITERATOR(func) \
108 static void \
109 func ## s (mpz_t x, ...) \
110 { \
111 va_list ap; \
112 \
113 va_start (ap, x); \
114 while (x != NULL) \
115 { \
116 func (x); \
117 x = va_arg (ap, mpz_ptr); \
118 } \
119 va_end (ap); \
120 }
121
122VARARG_MPZ_ITERATOR (mpz_init)
123VARARG_MPZ_ITERATOR (mpz_clear)
124
125#endif
126
0f2d19dd 127\f
f4c627b3 128
ca46fb90
RB
129/*
130 Wonder if this might be faster for some of our code? A switch on
131 the numtag would jump directly to the right case, and the
132 SCM_I_NUMTAG code might be faster than repeated SCM_FOOP tests...
133
134 #define SCM_I_NUMTAG_NOTNUM 0
135 #define SCM_I_NUMTAG_INUM 1
136 #define SCM_I_NUMTAG_BIG scm_tc16_big
137 #define SCM_I_NUMTAG_REAL scm_tc16_real
138 #define SCM_I_NUMTAG_COMPLEX scm_tc16_complex
139 #define SCM_I_NUMTAG(x) \
e11e83f3 140 (SCM_I_INUMP(x) ? SCM_I_NUMTAG_INUM \
ca46fb90 141 : (SCM_IMP(x) ? SCM_I_NUMTAG_NOTNUM \
534c55a9 142 : (((0xfcff & SCM_CELL_TYPE (x)) == scm_tc7_number) ? SCM_TYP16(x) \
ca46fb90
RB
143 : SCM_I_NUMTAG_NOTNUM)))
144*/
f92e85f7 145/* the macro above will not work as is with fractions */
f4c627b3
DH
146
147
b57bf272
AW
148/* Default to 1, because as we used to hard-code `free' as the
149 deallocator, we know that overriding these functions with
150 instrumented `malloc' / `free' is OK. */
151int scm_install_gmp_memory_functions = 1;
e7efe8e7 152static SCM flo0;
ff62c168 153static SCM exactly_one_half;
a5f6b751 154static SCM flo_log10e;
e7efe8e7 155
34d19ef6 156#define SCM_SWAP(x, y) do { SCM __t = x; x = y; y = __t; } while (0)
09fb7599 157
56e55ac7 158/* FLOBUFLEN is the maximum number of characters neccessary for the
3a9809df
DH
159 * printed or scm_string representation of an inexact number.
160 */
0b799eea 161#define FLOBUFLEN (40+2*(sizeof(double)/sizeof(char)*SCM_CHAR_BIT*3+9)/10)
3a9809df 162
b127c712 163
ad79736c
AW
164#if !defined (HAVE_ASINH)
165static double asinh (double x) { return log (x + sqrt (x * x + 1)); }
166#endif
167#if !defined (HAVE_ACOSH)
168static double acosh (double x) { return log (x + sqrt (x * x - 1)); }
169#endif
170#if !defined (HAVE_ATANH)
171static double atanh (double x) { return 0.5 * log ((1 + x) / (1 - x)); }
172#endif
173
18d78c5e
MW
174/* mpz_cmp_d in GMP before 4.2 didn't recognise infinities, so
175 xmpz_cmp_d uses an explicit check. Starting with GMP 4.2 (released
176 in March 2006), mpz_cmp_d now handles infinities properly. */
f8a8200b 177#if 1
b127c712 178#define xmpz_cmp_d(z, d) \
2e65b52f 179 (isinf (d) ? (d < 0.0 ? 1 : -1) : mpz_cmp_d (z, d))
b127c712
KR
180#else
181#define xmpz_cmp_d(z, d) mpz_cmp_d (z, d)
182#endif
183
f92e85f7 184
4b26c03e 185#if defined (GUILE_I)
03976fee 186#if defined HAVE_COMPLEX_DOUBLE
8ab3d8a0
KR
187
188/* For an SCM object Z which is a complex number (ie. satisfies
189 SCM_COMPLEXP), return its value as a C level "complex double". */
190#define SCM_COMPLEX_VALUE(z) \
4b26c03e 191 (SCM_COMPLEX_REAL (z) + GUILE_I * SCM_COMPLEX_IMAG (z))
8ab3d8a0 192
7a35784c 193static inline SCM scm_from_complex_double (complex double z) SCM_UNUSED;
8ab3d8a0
KR
194
195/* Convert a C "complex double" to an SCM value. */
7a35784c 196static inline SCM
8ab3d8a0
KR
197scm_from_complex_double (complex double z)
198{
199 return scm_c_make_rectangular (creal (z), cimag (z));
200}
bca69a9f 201
8ab3d8a0 202#endif /* HAVE_COMPLEX_DOUBLE */
bca69a9f 203#endif /* GUILE_I */
8ab3d8a0 204
0f2d19dd
JB
205\f
206
713a4259 207static mpz_t z_negative_one;
ac0c002c
DH
208
209\f
b57bf272 210
864e7d42
LC
211/* Clear the `mpz_t' embedded in bignum PTR. */
212static void
6922d92f 213finalize_bignum (void *ptr, void *data)
864e7d42
LC
214{
215 SCM bignum;
216
21041372 217 bignum = SCM_PACK_POINTER (ptr);
864e7d42
LC
218 mpz_clear (SCM_I_BIG_MPZ (bignum));
219}
220
b57bf272
AW
221/* The next three functions (custom_libgmp_*) are passed to
222 mp_set_memory_functions (in GMP) so that memory used by the digits
223 themselves is known to the garbage collector. This is needed so
224 that GC will be run at appropriate times. Otherwise, a program which
225 creates many large bignums would malloc a huge amount of memory
226 before the GC runs. */
227static void *
228custom_gmp_malloc (size_t alloc_size)
229{
230 return scm_malloc (alloc_size);
231}
232
233static void *
234custom_gmp_realloc (void *old_ptr, size_t old_size, size_t new_size)
235{
236 return scm_realloc (old_ptr, new_size);
237}
238
239static void
240custom_gmp_free (void *ptr, size_t size)
241{
242 free (ptr);
243}
244
245
d017fcdf
LC
246/* Return a new uninitialized bignum. */
247static inline SCM
248make_bignum (void)
249{
250 scm_t_bits *p;
251
252 /* Allocate one word for the type tag and enough room for an `mpz_t'. */
253 p = scm_gc_malloc_pointerless (sizeof (scm_t_bits) + sizeof (mpz_t),
254 "bignum");
255 p[0] = scm_tc16_big;
256
6978c673 257 scm_i_set_finalizer (p, finalize_bignum, NULL);
864e7d42 258
d017fcdf
LC
259 return SCM_PACK (p);
260}
ac0c002c 261
864e7d42 262
189171c5 263SCM
ca46fb90
RB
264scm_i_mkbig ()
265{
266 /* Return a newly created bignum. */
d017fcdf 267 SCM z = make_bignum ();
ca46fb90
RB
268 mpz_init (SCM_I_BIG_MPZ (z));
269 return z;
270}
271
e25f3727
AW
272static SCM
273scm_i_inum2big (scm_t_inum x)
274{
275 /* Return a newly created bignum initialized to X. */
276 SCM z = make_bignum ();
277#if SIZEOF_VOID_P == SIZEOF_LONG
278 mpz_init_set_si (SCM_I_BIG_MPZ (z), x);
279#else
280 /* Note that in this case, you'll also have to check all mpz_*_ui and
281 mpz_*_si invocations in Guile. */
282#error creation of mpz not implemented for this inum size
283#endif
284 return z;
285}
286
189171c5 287SCM
c71b0706
MV
288scm_i_long2big (long x)
289{
290 /* Return a newly created bignum initialized to X. */
d017fcdf 291 SCM z = make_bignum ();
c71b0706
MV
292 mpz_init_set_si (SCM_I_BIG_MPZ (z), x);
293 return z;
294}
295
189171c5 296SCM
c71b0706
MV
297scm_i_ulong2big (unsigned long x)
298{
299 /* Return a newly created bignum initialized to X. */
d017fcdf 300 SCM z = make_bignum ();
c71b0706
MV
301 mpz_init_set_ui (SCM_I_BIG_MPZ (z), x);
302 return z;
303}
304
189171c5 305SCM
ca46fb90
RB
306scm_i_clonebig (SCM src_big, int same_sign_p)
307{
308 /* Copy src_big's value, negate it if same_sign_p is false, and return. */
d017fcdf 309 SCM z = make_bignum ();
ca46fb90 310 mpz_init_set (SCM_I_BIG_MPZ (z), SCM_I_BIG_MPZ (src_big));
0aacf84e
MD
311 if (!same_sign_p)
312 mpz_neg (SCM_I_BIG_MPZ (z), SCM_I_BIG_MPZ (z));
ca46fb90
RB
313 return z;
314}
315
189171c5 316int
ca46fb90
RB
317scm_i_bigcmp (SCM x, SCM y)
318{
319 /* Return neg if x < y, pos if x > y, and 0 if x == y */
320 /* presume we already know x and y are bignums */
321 int result = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
322 scm_remember_upto_here_2 (x, y);
323 return result;
324}
325
189171c5 326SCM
ca46fb90
RB
327scm_i_dbl2big (double d)
328{
329 /* results are only defined if d is an integer */
d017fcdf 330 SCM z = make_bignum ();
ca46fb90
RB
331 mpz_init_set_d (SCM_I_BIG_MPZ (z), d);
332 return z;
333}
334
f92e85f7
MV
335/* Convert a integer in double representation to a SCM number. */
336
189171c5 337SCM
f92e85f7
MV
338scm_i_dbl2num (double u)
339{
340 /* SCM_MOST_POSITIVE_FIXNUM+1 and SCM_MOST_NEGATIVE_FIXNUM are both
341 powers of 2, so there's no rounding when making "double" values
342 from them. If plain SCM_MOST_POSITIVE_FIXNUM was used it could
343 get rounded on a 64-bit machine, hence the "+1".
344
345 The use of floor() to force to an integer value ensures we get a
346 "numerically closest" value without depending on how a
347 double->long cast or how mpz_set_d will round. For reference,
348 double->long probably follows the hardware rounding mode,
349 mpz_set_d truncates towards zero. */
350
351 /* XXX - what happens when SCM_MOST_POSITIVE_FIXNUM etc is not
352 representable as a double? */
353
354 if (u < (double) (SCM_MOST_POSITIVE_FIXNUM+1)
355 && u >= (double) SCM_MOST_NEGATIVE_FIXNUM)
e25f3727 356 return SCM_I_MAKINUM ((scm_t_inum) u);
f92e85f7
MV
357 else
358 return scm_i_dbl2big (u);
359}
360
1eb6a33a 361static SCM round_right_shift_exact_integer (SCM n, long count);
f8a8200b 362
1eb6a33a
MW
363/* scm_i_big2dbl_2exp() is like frexp for bignums: it converts the
364 bignum b into a normalized significand and exponent such that
365 b = significand * 2^exponent and 1/2 <= abs(significand) < 1.
366 The return value is the significand rounded to the closest
367 representable double, and the exponent is placed into *expon_p.
368 If b is zero, then the returned exponent and significand are both
369 zero. */
f8a8200b 370
1eb6a33a
MW
371static double
372scm_i_big2dbl_2exp (SCM b, long *expon_p)
ca46fb90 373{
1eb6a33a
MW
374 size_t bits = mpz_sizeinbase (SCM_I_BIG_MPZ (b), 2);
375 size_t shift = 0;
089c9a59
KR
376
377 if (bits > DBL_MANT_DIG)
378 {
1eb6a33a
MW
379 shift = bits - DBL_MANT_DIG;
380 b = round_right_shift_exact_integer (b, shift);
381 if (SCM_I_INUMP (b))
089c9a59 382 {
1eb6a33a
MW
383 int expon;
384 double signif = frexp (SCM_I_INUM (b), &expon);
385 *expon_p = expon + shift;
386 return signif;
089c9a59
KR
387 }
388 }
389
1eb6a33a
MW
390 {
391 long expon;
392 double signif = mpz_get_d_2exp (&expon, SCM_I_BIG_MPZ (b));
393 scm_remember_upto_here_1 (b);
394 *expon_p = expon + shift;
395 return signif;
396 }
397}
398
399/* scm_i_big2dbl() rounds to the closest representable double,
400 in accordance with R5RS exact->inexact. */
401double
402scm_i_big2dbl (SCM b)
403{
404 long expon;
405 double signif = scm_i_big2dbl_2exp (b, &expon);
406 return ldexp (signif, expon);
ca46fb90
RB
407}
408
189171c5 409SCM
ca46fb90
RB
410scm_i_normbig (SCM b)
411{
412 /* convert a big back to a fixnum if it'll fit */
413 /* presume b is a bignum */
414 if (mpz_fits_slong_p (SCM_I_BIG_MPZ (b)))
415 {
e25f3727 416 scm_t_inum val = mpz_get_si (SCM_I_BIG_MPZ (b));
ca46fb90 417 if (SCM_FIXABLE (val))
d956fa6f 418 b = SCM_I_MAKINUM (val);
ca46fb90
RB
419 }
420 return b;
421}
f872b822 422
f92e85f7
MV
423static SCM_C_INLINE_KEYWORD SCM
424scm_i_mpz2num (mpz_t b)
425{
426 /* convert a mpz number to a SCM number. */
427 if (mpz_fits_slong_p (b))
428 {
e25f3727 429 scm_t_inum val = mpz_get_si (b);
f92e85f7 430 if (SCM_FIXABLE (val))
d956fa6f 431 return SCM_I_MAKINUM (val);
f92e85f7
MV
432 }
433
434 {
d017fcdf 435 SCM z = make_bignum ();
f92e85f7
MV
436 mpz_init_set (SCM_I_BIG_MPZ (z), b);
437 return z;
438 }
439}
440
a285b18c
MW
441/* Make the ratio NUMERATOR/DENOMINATOR, where:
442 1. NUMERATOR and DENOMINATOR are exact integers
443 2. NUMERATOR and DENOMINATOR are reduced to lowest terms: gcd(n,d) == 1 */
cba42c93 444static SCM
a285b18c 445scm_i_make_ratio_already_reduced (SCM numerator, SCM denominator)
f92e85f7 446{
a285b18c
MW
447 /* Flip signs so that the denominator is positive. */
448 if (scm_is_false (scm_positive_p (denominator)))
f92e85f7 449 {
a285b18c 450 if (SCM_UNLIKELY (scm_is_eq (denominator, SCM_INUM0)))
f92e85f7 451 scm_num_overflow ("make-ratio");
a285b18c 452 else
f92e85f7 453 {
a285b18c
MW
454 numerator = scm_difference (numerator, SCM_UNDEFINED);
455 denominator = scm_difference (denominator, SCM_UNDEFINED);
f92e85f7 456 }
f92e85f7 457 }
c60e130c 458
a285b18c
MW
459 /* Check for the integer case */
460 if (scm_is_eq (denominator, SCM_INUM1))
461 return numerator;
c60e130c 462
a285b18c
MW
463 return scm_double_cell (scm_tc16_fraction,
464 SCM_UNPACK (numerator),
465 SCM_UNPACK (denominator), 0);
466}
467
468static SCM scm_exact_integer_quotient (SCM x, SCM y);
469
470/* Make the ratio NUMERATOR/DENOMINATOR */
471static SCM
472scm_i_make_ratio (SCM numerator, SCM denominator)
473#define FUNC_NAME "make-ratio"
474{
475 /* Make sure the arguments are proper */
476 if (!SCM_LIKELY (SCM_I_INUMP (numerator) || SCM_BIGP (numerator)))
477 SCM_WRONG_TYPE_ARG (1, numerator);
478 else if (!SCM_LIKELY (SCM_I_INUMP (denominator) || SCM_BIGP (denominator)))
479 SCM_WRONG_TYPE_ARG (2, denominator);
480 else
f92e85f7 481 {
a285b18c
MW
482 SCM the_gcd = scm_gcd (numerator, denominator);
483 if (!(scm_is_eq (the_gcd, SCM_INUM1)))
f92e85f7 484 {
a285b18c
MW
485 /* Reduce to lowest terms */
486 numerator = scm_exact_integer_quotient (numerator, the_gcd);
487 denominator = scm_exact_integer_quotient (denominator, the_gcd);
f92e85f7 488 }
a285b18c 489 return scm_i_make_ratio_already_reduced (numerator, denominator);
f92e85f7 490 }
f92e85f7 491}
c60e130c 492#undef FUNC_NAME
f92e85f7 493
98237784
MW
494static mpz_t scm_i_divide2double_lo2b;
495
496/* Return the double that is closest to the exact rational N/D, with
497 ties rounded toward even mantissas. N and D must be exact
498 integers. */
499static double
500scm_i_divide2double (SCM n, SCM d)
501{
502 int neg;
503 mpz_t nn, dd, lo, hi, x;
504 ssize_t e;
505
c8248c8e 506 if (SCM_LIKELY (SCM_I_INUMP (d)))
f92e85f7 507 {
4cc2e41c
MW
508 if (SCM_LIKELY
509 (SCM_I_INUMP (n)
510 && INUM_LOSSLESSLY_CONVERTIBLE_TO_DOUBLE (SCM_I_INUM (n))
511 && INUM_LOSSLESSLY_CONVERTIBLE_TO_DOUBLE (SCM_I_INUM (d))))
c8248c8e
MW
512 /* If both N and D can be losslessly converted to doubles, then
513 we can rely on IEEE floating point to do proper rounding much
514 faster than we can. */
515 return ((double) SCM_I_INUM (n)) / ((double) SCM_I_INUM (d));
516
98237784
MW
517 if (SCM_UNLIKELY (scm_is_eq (d, SCM_INUM0)))
518 {
519 if (scm_is_true (scm_positive_p (n)))
520 return 1.0 / 0.0;
521 else if (scm_is_true (scm_negative_p (n)))
522 return -1.0 / 0.0;
523 else
524 return 0.0 / 0.0;
525 }
c8248c8e 526
98237784 527 mpz_init_set_si (dd, SCM_I_INUM (d));
f92e85f7 528 }
98237784
MW
529 else
530 mpz_init_set (dd, SCM_I_BIG_MPZ (d));
c60e130c 531
98237784
MW
532 if (SCM_I_INUMP (n))
533 mpz_init_set_si (nn, SCM_I_INUM (n));
534 else
535 mpz_init_set (nn, SCM_I_BIG_MPZ (n));
536
537 neg = (mpz_sgn (nn) < 0) ^ (mpz_sgn (dd) < 0);
538 mpz_abs (nn, nn);
539 mpz_abs (dd, dd);
540
541 /* Now we need to find the value of e such that:
542
543 For e <= 0:
544 b^{p-1} - 1/2b <= b^-e n / d < b^p - 1/2 [1A]
545 (2 b^p - 1) <= 2 b b^-e n / d < (2 b^p - 1) b [2A]
546 (2 b^p - 1) d <= 2 b b^-e n < (2 b^p - 1) d b [3A]
547
548 For e >= 0:
549 b^{p-1} - 1/2b <= n / b^e d < b^p - 1/2 [1B]
550 (2 b^p - 1) <= 2 b n / b^e d < (2 b^p - 1) b [2B]
551 (2 b^p - 1) d b^e <= 2 b n < (2 b^p - 1) d b b^e [3B]
552
553 where: p = DBL_MANT_DIG
554 b = FLT_RADIX (here assumed to be 2)
555
556 After rounding, the mantissa must be an integer between b^{p-1} and
557 (b^p - 1), except for subnormal numbers. In the inequations [1A]
558 and [1B], the middle expression represents the mantissa *before*
559 rounding, and therefore is bounded by the range of values that will
560 round to a floating-point number with the exponent e. The upper
561 bound is (b^p - 1 + 1/2) = (b^p - 1/2), and is exclusive because
562 ties will round up to the next power of b. The lower bound is
563 (b^{p-1} - 1/2b), and is inclusive because ties will round toward
564 this power of b. Here we subtract 1/2b instead of 1/2 because it
565 is in the range of the next smaller exponent, where the
566 representable numbers are closer together by a factor of b.
567
568 Inequations [2A] and [2B] are derived from [1A] and [1B] by
569 multiplying by 2b, and in [3A] and [3B] we multiply by the
570 denominator of the middle value to obtain integer expressions.
571
572 In the code below, we refer to the three expressions in [3A] or
573 [3B] as lo, x, and hi. If the number is normalizable, we will
574 achieve the goal: lo <= x < hi */
575
576 /* Make an initial guess for e */
577 e = mpz_sizeinbase (nn, 2) - mpz_sizeinbase (dd, 2) - (DBL_MANT_DIG-1);
578 if (e < DBL_MIN_EXP - DBL_MANT_DIG)
579 e = DBL_MIN_EXP - DBL_MANT_DIG;
580
581 /* Compute the initial values of lo, x, and hi
582 based on the initial guess of e */
583 mpz_inits (lo, hi, x, NULL);
584 mpz_mul_2exp (x, nn, 2 + ((e < 0) ? -e : 0));
585 mpz_mul (lo, dd, scm_i_divide2double_lo2b);
586 if (e > 0)
587 mpz_mul_2exp (lo, lo, e);
588 mpz_mul_2exp (hi, lo, 1);
589
590 /* Adjust e as needed to satisfy the inequality lo <= x < hi,
591 (but without making e less then the minimum exponent) */
592 while (mpz_cmp (x, lo) < 0 && e > DBL_MIN_EXP - DBL_MANT_DIG)
593 {
594 mpz_mul_2exp (x, x, 1);
595 e--;
596 }
597 while (mpz_cmp (x, hi) >= 0)
598 {
599 /* If we ever used lo's value again,
600 we would need to double lo here. */
601 mpz_mul_2exp (hi, hi, 1);
602 e++;
603 }
604
605 /* Now compute the rounded mantissa:
606 n / b^e d (if e >= 0)
607 n b^-e / d (if e <= 0) */
e2bf3b19 608 {
98237784
MW
609 int cmp;
610 double result;
611
612 if (e < 0)
613 mpz_mul_2exp (nn, nn, -e);
614 else
615 mpz_mul_2exp (dd, dd, e);
616
617 /* mpz does not directly support rounded right
618 shifts, so we have to do it the hard way.
619 For efficiency, we reuse lo and hi.
620 hi == quotient, lo == remainder */
621 mpz_fdiv_qr (hi, lo, nn, dd);
622
623 /* The fractional part of the unrounded mantissa would be
624 remainder/dividend, i.e. lo/dd. So we have a tie if
625 lo/dd = 1/2. Multiplying both sides by 2*dd yields the
626 integer expression 2*lo = dd. Here we do that comparison
627 to decide whether to round up or down. */
628 mpz_mul_2exp (lo, lo, 1);
629 cmp = mpz_cmp (lo, dd);
630 if (cmp > 0 || (cmp == 0 && mpz_odd_p (hi)))
631 mpz_add_ui (hi, hi, 1);
632
633 result = ldexp (mpz_get_d (hi), e);
634 if (neg)
635 result = -result;
636
637 mpz_clears (nn, dd, lo, hi, x, NULL);
638 return result;
e2bf3b19 639 }
f92e85f7
MV
640}
641
f92e85f7
MV
642double
643scm_i_fraction2double (SCM z)
644{
98237784
MW
645 return scm_i_divide2double (SCM_FRACTION_NUMERATOR (z),
646 SCM_FRACTION_DENOMINATOR (z));
f92e85f7
MV
647}
648
00472a22
MW
649static SCM
650scm_i_from_double (double val)
2e274311 651{
00472a22
MW
652 SCM z;
653
d8d7c7bf 654 z = SCM_PACK_POINTER (scm_gc_malloc_pointerless (sizeof (scm_t_double), "real"));
00472a22
MW
655
656 SCM_SET_CELL_TYPE (z, scm_tc16_real);
657 SCM_REAL_VALUE (z) = val;
2e274311 658
00472a22 659 return z;
2e274311
MW
660}
661
2519490c
MW
662SCM_PRIMITIVE_GENERIC (scm_exact_p, "exact?", 1, 0, 0,
663 (SCM x),
942e5b91
MG
664 "Return @code{#t} if @var{x} is an exact number, @code{#f}\n"
665 "otherwise.")
1bbd0b84 666#define FUNC_NAME s_scm_exact_p
0f2d19dd 667{
41df63cf
MW
668 if (SCM_INEXACTP (x))
669 return SCM_BOOL_F;
670 else if (SCM_NUMBERP (x))
0aacf84e 671 return SCM_BOOL_T;
41df63cf 672 else
fa075d40 673 return scm_wta_dispatch_1 (g_scm_exact_p, x, 1, s_scm_exact_p);
41df63cf
MW
674}
675#undef FUNC_NAME
676
022dda69
MG
677int
678scm_is_exact (SCM val)
679{
680 return scm_is_true (scm_exact_p (val));
681}
41df63cf 682
2519490c 683SCM_PRIMITIVE_GENERIC (scm_inexact_p, "inexact?", 1, 0, 0,
41df63cf
MW
684 (SCM x),
685 "Return @code{#t} if @var{x} is an inexact number, @code{#f}\n"
686 "else.")
687#define FUNC_NAME s_scm_inexact_p
688{
689 if (SCM_INEXACTP (x))
f92e85f7 690 return SCM_BOOL_T;
41df63cf 691 else if (SCM_NUMBERP (x))
eb927cb9 692 return SCM_BOOL_F;
41df63cf 693 else
fa075d40 694 return scm_wta_dispatch_1 (g_scm_inexact_p, x, 1, s_scm_inexact_p);
0f2d19dd 695}
1bbd0b84 696#undef FUNC_NAME
0f2d19dd 697
022dda69
MG
698int
699scm_is_inexact (SCM val)
700{
701 return scm_is_true (scm_inexact_p (val));
702}
4219f20d 703
2519490c 704SCM_PRIMITIVE_GENERIC (scm_odd_p, "odd?", 1, 0, 0,
1bbd0b84 705 (SCM n),
942e5b91
MG
706 "Return @code{#t} if @var{n} is an odd number, @code{#f}\n"
707 "otherwise.")
1bbd0b84 708#define FUNC_NAME s_scm_odd_p
0f2d19dd 709{
e11e83f3 710 if (SCM_I_INUMP (n))
0aacf84e 711 {
e25f3727 712 scm_t_inum val = SCM_I_INUM (n);
73e4de09 713 return scm_from_bool ((val & 1L) != 0);
0aacf84e
MD
714 }
715 else if (SCM_BIGP (n))
716 {
717 int odd_p = mpz_odd_p (SCM_I_BIG_MPZ (n));
718 scm_remember_upto_here_1 (n);
73e4de09 719 return scm_from_bool (odd_p);
0aacf84e 720 }
f92e85f7
MV
721 else if (SCM_REALP (n))
722 {
2519490c 723 double val = SCM_REAL_VALUE (n);
19374ad2 724 if (isfinite (val))
2519490c
MW
725 {
726 double rem = fabs (fmod (val, 2.0));
727 if (rem == 1.0)
728 return SCM_BOOL_T;
729 else if (rem == 0.0)
730 return SCM_BOOL_F;
731 }
f92e85f7 732 }
fa075d40 733 return scm_wta_dispatch_1 (g_scm_odd_p, n, 1, s_scm_odd_p);
0f2d19dd 734}
1bbd0b84 735#undef FUNC_NAME
0f2d19dd 736
4219f20d 737
2519490c 738SCM_PRIMITIVE_GENERIC (scm_even_p, "even?", 1, 0, 0,
1bbd0b84 739 (SCM n),
942e5b91
MG
740 "Return @code{#t} if @var{n} is an even number, @code{#f}\n"
741 "otherwise.")
1bbd0b84 742#define FUNC_NAME s_scm_even_p
0f2d19dd 743{
e11e83f3 744 if (SCM_I_INUMP (n))
0aacf84e 745 {
e25f3727 746 scm_t_inum val = SCM_I_INUM (n);
73e4de09 747 return scm_from_bool ((val & 1L) == 0);
0aacf84e
MD
748 }
749 else if (SCM_BIGP (n))
750 {
751 int even_p = mpz_even_p (SCM_I_BIG_MPZ (n));
752 scm_remember_upto_here_1 (n);
73e4de09 753 return scm_from_bool (even_p);
0aacf84e 754 }
f92e85f7
MV
755 else if (SCM_REALP (n))
756 {
2519490c 757 double val = SCM_REAL_VALUE (n);
19374ad2 758 if (isfinite (val))
2519490c
MW
759 {
760 double rem = fabs (fmod (val, 2.0));
761 if (rem == 1.0)
762 return SCM_BOOL_F;
763 else if (rem == 0.0)
764 return SCM_BOOL_T;
765 }
f92e85f7 766 }
fa075d40 767 return scm_wta_dispatch_1 (g_scm_even_p, n, 1, s_scm_even_p);
0f2d19dd 768}
1bbd0b84 769#undef FUNC_NAME
0f2d19dd 770
2519490c
MW
771SCM_PRIMITIVE_GENERIC (scm_finite_p, "finite?", 1, 0, 0,
772 (SCM x),
10391e06
AW
773 "Return @code{#t} if the real number @var{x} is neither\n"
774 "infinite nor a NaN, @code{#f} otherwise.")
7112615f
MW
775#define FUNC_NAME s_scm_finite_p
776{
777 if (SCM_REALP (x))
19374ad2 778 return scm_from_bool (isfinite (SCM_REAL_VALUE (x)));
10391e06 779 else if (scm_is_real (x))
7112615f
MW
780 return SCM_BOOL_T;
781 else
fa075d40 782 return scm_wta_dispatch_1 (g_scm_finite_p, x, 1, s_scm_finite_p);
7112615f
MW
783}
784#undef FUNC_NAME
785
2519490c
MW
786SCM_PRIMITIVE_GENERIC (scm_inf_p, "inf?", 1, 0, 0,
787 (SCM x),
788 "Return @code{#t} if the real number @var{x} is @samp{+inf.0} or\n"
789 "@samp{-inf.0}. Otherwise return @code{#f}.")
7351e207
MV
790#define FUNC_NAME s_scm_inf_p
791{
b1092b3a 792 if (SCM_REALP (x))
2e65b52f 793 return scm_from_bool (isinf (SCM_REAL_VALUE (x)));
10391e06 794 else if (scm_is_real (x))
7351e207 795 return SCM_BOOL_F;
10391e06 796 else
fa075d40 797 return scm_wta_dispatch_1 (g_scm_inf_p, x, 1, s_scm_inf_p);
7351e207
MV
798}
799#undef FUNC_NAME
800
2519490c
MW
801SCM_PRIMITIVE_GENERIC (scm_nan_p, "nan?", 1, 0, 0,
802 (SCM x),
10391e06
AW
803 "Return @code{#t} if the real number @var{x} is a NaN,\n"
804 "or @code{#f} otherwise.")
7351e207
MV
805#define FUNC_NAME s_scm_nan_p
806{
10391e06
AW
807 if (SCM_REALP (x))
808 return scm_from_bool (isnan (SCM_REAL_VALUE (x)));
809 else if (scm_is_real (x))
7351e207 810 return SCM_BOOL_F;
10391e06 811 else
fa075d40 812 return scm_wta_dispatch_1 (g_scm_nan_p, x, 1, s_scm_nan_p);
7351e207
MV
813}
814#undef FUNC_NAME
815
816/* Guile's idea of infinity. */
817static double guile_Inf;
818
819/* Guile's idea of not a number. */
820static double guile_NaN;
821
822static void
823guile_ieee_init (void)
824{
7351e207
MV
825/* Some version of gcc on some old version of Linux used to crash when
826 trying to make Inf and NaN. */
827
240a27d2
KR
828#ifdef INFINITY
829 /* C99 INFINITY, when available.
830 FIXME: The standard allows for INFINITY to be something that overflows
831 at compile time. We ought to have a configure test to check for that
832 before trying to use it. (But in practice we believe this is not a
833 problem on any system guile is likely to target.) */
834 guile_Inf = INFINITY;
56a3dcd4 835#elif defined HAVE_DINFINITY
240a27d2 836 /* OSF */
7351e207 837 extern unsigned int DINFINITY[2];
eaa94eaa 838 guile_Inf = (*((double *) (DINFINITY)));
7351e207
MV
839#else
840 double tmp = 1e+10;
841 guile_Inf = tmp;
842 for (;;)
843 {
844 guile_Inf *= 1e+10;
845 if (guile_Inf == tmp)
846 break;
847 tmp = guile_Inf;
848 }
849#endif
850
240a27d2
KR
851#ifdef NAN
852 /* C99 NAN, when available */
853 guile_NaN = NAN;
56a3dcd4 854#elif defined HAVE_DQNAN
eaa94eaa
LC
855 {
856 /* OSF */
857 extern unsigned int DQNAN[2];
858 guile_NaN = (*((double *)(DQNAN)));
859 }
7351e207
MV
860#else
861 guile_NaN = guile_Inf / guile_Inf;
862#endif
7351e207
MV
863}
864
865SCM_DEFINE (scm_inf, "inf", 0, 0, 0,
866 (void),
867 "Return Inf.")
868#define FUNC_NAME s_scm_inf
869{
870 static int initialized = 0;
871 if (! initialized)
872 {
873 guile_ieee_init ();
874 initialized = 1;
875 }
00472a22 876 return scm_i_from_double (guile_Inf);
7351e207
MV
877}
878#undef FUNC_NAME
879
880SCM_DEFINE (scm_nan, "nan", 0, 0, 0,
881 (void),
882 "Return NaN.")
883#define FUNC_NAME s_scm_nan
884{
885 static int initialized = 0;
0aacf84e 886 if (!initialized)
7351e207
MV
887 {
888 guile_ieee_init ();
889 initialized = 1;
890 }
00472a22 891 return scm_i_from_double (guile_NaN);
7351e207
MV
892}
893#undef FUNC_NAME
894
4219f20d 895
a48d60b1
MD
896SCM_PRIMITIVE_GENERIC (scm_abs, "abs", 1, 0, 0,
897 (SCM x),
898 "Return the absolute value of @var{x}.")
2519490c 899#define FUNC_NAME s_scm_abs
0f2d19dd 900{
e11e83f3 901 if (SCM_I_INUMP (x))
0aacf84e 902 {
e25f3727 903 scm_t_inum xx = SCM_I_INUM (x);
0aacf84e
MD
904 if (xx >= 0)
905 return x;
906 else if (SCM_POSFIXABLE (-xx))
d956fa6f 907 return SCM_I_MAKINUM (-xx);
0aacf84e 908 else
e25f3727 909 return scm_i_inum2big (-xx);
4219f20d 910 }
9b9ef10c
MW
911 else if (SCM_LIKELY (SCM_REALP (x)))
912 {
913 double xx = SCM_REAL_VALUE (x);
914 /* If x is a NaN then xx<0 is false so we return x unchanged */
915 if (xx < 0.0)
00472a22 916 return scm_i_from_double (-xx);
9b9ef10c
MW
917 /* Handle signed zeroes properly */
918 else if (SCM_UNLIKELY (xx == 0.0))
919 return flo0;
920 else
921 return x;
922 }
0aacf84e
MD
923 else if (SCM_BIGP (x))
924 {
925 const int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
926 if (sgn < 0)
927 return scm_i_clonebig (x, 0);
928 else
929 return x;
4219f20d 930 }
f92e85f7
MV
931 else if (SCM_FRACTIONP (x))
932 {
73e4de09 933 if (scm_is_false (scm_negative_p (SCM_FRACTION_NUMERATOR (x))))
f92e85f7 934 return x;
a285b18c
MW
935 return scm_i_make_ratio_already_reduced
936 (scm_difference (SCM_FRACTION_NUMERATOR (x), SCM_UNDEFINED),
937 SCM_FRACTION_DENOMINATOR (x));
f92e85f7 938 }
0aacf84e 939 else
fa075d40 940 return scm_wta_dispatch_1 (g_scm_abs, x, 1, s_scm_abs);
0f2d19dd 941}
a48d60b1 942#undef FUNC_NAME
0f2d19dd 943
4219f20d 944
2519490c
MW
945SCM_PRIMITIVE_GENERIC (scm_quotient, "quotient", 2, 0, 0,
946 (SCM x, SCM y),
947 "Return the quotient of the numbers @var{x} and @var{y}.")
948#define FUNC_NAME s_scm_quotient
0f2d19dd 949{
495a39c4 950 if (SCM_LIKELY (scm_is_integer (x)))
0aacf84e 951 {
495a39c4 952 if (SCM_LIKELY (scm_is_integer (y)))
a8da6d93 953 return scm_truncate_quotient (x, y);
0aacf84e 954 else
fa075d40 955 return scm_wta_dispatch_2 (g_scm_quotient, x, y, SCM_ARG2, s_scm_quotient);
f872b822 956 }
0aacf84e 957 else
fa075d40 958 return scm_wta_dispatch_2 (g_scm_quotient, x, y, SCM_ARG1, s_scm_quotient);
0f2d19dd 959}
2519490c 960#undef FUNC_NAME
0f2d19dd 961
2519490c
MW
962SCM_PRIMITIVE_GENERIC (scm_remainder, "remainder", 2, 0, 0,
963 (SCM x, SCM y),
964 "Return the remainder of the numbers @var{x} and @var{y}.\n"
965 "@lisp\n"
966 "(remainder 13 4) @result{} 1\n"
967 "(remainder -13 4) @result{} -1\n"
968 "@end lisp")
969#define FUNC_NAME s_scm_remainder
0f2d19dd 970{
495a39c4 971 if (SCM_LIKELY (scm_is_integer (x)))
0aacf84e 972 {
495a39c4 973 if (SCM_LIKELY (scm_is_integer (y)))
a8da6d93 974 return scm_truncate_remainder (x, y);
0aacf84e 975 else
fa075d40 976 return scm_wta_dispatch_2 (g_scm_remainder, x, y, SCM_ARG2, s_scm_remainder);
f872b822 977 }
0aacf84e 978 else
fa075d40 979 return scm_wta_dispatch_2 (g_scm_remainder, x, y, SCM_ARG1, s_scm_remainder);
0f2d19dd 980}
2519490c 981#undef FUNC_NAME
0f2d19dd 982
89a7e495 983
2519490c
MW
984SCM_PRIMITIVE_GENERIC (scm_modulo, "modulo", 2, 0, 0,
985 (SCM x, SCM y),
986 "Return the modulo of the numbers @var{x} and @var{y}.\n"
987 "@lisp\n"
988 "(modulo 13 4) @result{} 1\n"
989 "(modulo -13 4) @result{} 3\n"
990 "@end lisp")
991#define FUNC_NAME s_scm_modulo
0f2d19dd 992{
495a39c4 993 if (SCM_LIKELY (scm_is_integer (x)))
0aacf84e 994 {
495a39c4 995 if (SCM_LIKELY (scm_is_integer (y)))
a8da6d93 996 return scm_floor_remainder (x, y);
0aacf84e 997 else
fa075d40 998 return scm_wta_dispatch_2 (g_scm_modulo, x, y, SCM_ARG2, s_scm_modulo);
828865c3 999 }
0aacf84e 1000 else
fa075d40 1001 return scm_wta_dispatch_2 (g_scm_modulo, x, y, SCM_ARG1, s_scm_modulo);
0f2d19dd 1002}
2519490c 1003#undef FUNC_NAME
0f2d19dd 1004
a285b18c
MW
1005/* Return the exact integer q such that n = q*d, for exact integers n
1006 and d, where d is known in advance to divide n evenly (with zero
1007 remainder). For large integers, this can be computed more
1008 efficiently than when the remainder is unknown. */
1009static SCM
1010scm_exact_integer_quotient (SCM n, SCM d)
1011#define FUNC_NAME "exact-integer-quotient"
1012{
1013 if (SCM_LIKELY (SCM_I_INUMP (n)))
1014 {
1015 scm_t_inum nn = SCM_I_INUM (n);
1016 if (SCM_LIKELY (SCM_I_INUMP (d)))
1017 {
1018 scm_t_inum dd = SCM_I_INUM (d);
1019 if (SCM_UNLIKELY (dd == 0))
1020 scm_num_overflow ("exact-integer-quotient");
1021 else
1022 {
1023 scm_t_inum qq = nn / dd;
1024 if (SCM_LIKELY (SCM_FIXABLE (qq)))
1025 return SCM_I_MAKINUM (qq);
1026 else
1027 return scm_i_inum2big (qq);
1028 }
1029 }
1030 else if (SCM_LIKELY (SCM_BIGP (d)))
1031 {
1032 /* n is an inum and d is a bignum. Given that d is known to
1033 divide n evenly, there are only two possibilities: n is 0,
1034 or else n is fixnum-min and d is abs(fixnum-min). */
1035 if (nn == 0)
1036 return SCM_INUM0;
1037 else
1038 return SCM_I_MAKINUM (-1);
1039 }
1040 else
1041 SCM_WRONG_TYPE_ARG (2, d);
1042 }
1043 else if (SCM_LIKELY (SCM_BIGP (n)))
1044 {
1045 if (SCM_LIKELY (SCM_I_INUMP (d)))
1046 {
1047 scm_t_inum dd = SCM_I_INUM (d);
1048 if (SCM_UNLIKELY (dd == 0))
1049 scm_num_overflow ("exact-integer-quotient");
1050 else if (SCM_UNLIKELY (dd == 1))
1051 return n;
1052 else
1053 {
1054 SCM q = scm_i_mkbig ();
1055 if (dd > 0)
1056 mpz_divexact_ui (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (n), dd);
1057 else
1058 {
1059 mpz_divexact_ui (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (n), -dd);
1060 mpz_neg (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (q));
1061 }
1062 scm_remember_upto_here_1 (n);
1063 return scm_i_normbig (q);
1064 }
1065 }
1066 else if (SCM_LIKELY (SCM_BIGP (d)))
1067 {
1068 SCM q = scm_i_mkbig ();
1069 mpz_divexact (SCM_I_BIG_MPZ (q),
1070 SCM_I_BIG_MPZ (n),
1071 SCM_I_BIG_MPZ (d));
1072 scm_remember_upto_here_2 (n, d);
1073 return scm_i_normbig (q);
1074 }
1075 else
1076 SCM_WRONG_TYPE_ARG (2, d);
1077 }
1078 else
1079 SCM_WRONG_TYPE_ARG (1, n);
1080}
1081#undef FUNC_NAME
1082
5fbf680b
MW
1083/* two_valued_wta_dispatch_2 is a version of SCM_WTA_DISPATCH_2 for
1084 two-valued functions. It is called from primitive generics that take
1085 two arguments and return two values, when the core procedure is
1086 unable to handle the given argument types. If there are GOOPS
1087 methods for this primitive generic, it dispatches to GOOPS and, if
1088 successful, expects two values to be returned, which are placed in
1089 *rp1 and *rp2. If there are no GOOPS methods, it throws a
1090 wrong-type-arg exception.
1091
1092 FIXME: This obviously belongs somewhere else, but until we decide on
1093 the right API, it is here as a static function, because it is needed
1094 by the *_divide functions below.
1095*/
1096static void
1097two_valued_wta_dispatch_2 (SCM gf, SCM a1, SCM a2, int pos,
1098 const char *subr, SCM *rp1, SCM *rp2)
1099{
fa075d40
AW
1100 SCM vals = scm_wta_dispatch_2 (gf, a1, a2, pos, subr);
1101
1102 scm_i_extract_values_2 (vals, rp1, rp2);
5fbf680b
MW
1103}
1104
a8da6d93
MW
1105SCM_DEFINE (scm_euclidean_quotient, "euclidean-quotient", 2, 0, 0,
1106 (SCM x, SCM y),
1107 "Return the integer @var{q} such that\n"
1108 "@math{@var{x} = @var{q}*@var{y} + @var{r}}\n"
1109 "where @math{0 <= @var{r} < abs(@var{y})}.\n"
1110 "@lisp\n"
1111 "(euclidean-quotient 123 10) @result{} 12\n"
1112 "(euclidean-quotient 123 -10) @result{} -12\n"
1113 "(euclidean-quotient -123 10) @result{} -13\n"
1114 "(euclidean-quotient -123 -10) @result{} 13\n"
1115 "(euclidean-quotient -123.2 -63.5) @result{} 2.0\n"
1116 "(euclidean-quotient 16/3 -10/7) @result{} -3\n"
1117 "@end lisp")
ff62c168
MW
1118#define FUNC_NAME s_scm_euclidean_quotient
1119{
a8da6d93
MW
1120 if (scm_is_false (scm_negative_p (y)))
1121 return scm_floor_quotient (x, y);
ff62c168 1122 else
a8da6d93 1123 return scm_ceiling_quotient (x, y);
ff62c168
MW
1124}
1125#undef FUNC_NAME
1126
a8da6d93
MW
1127SCM_DEFINE (scm_euclidean_remainder, "euclidean-remainder", 2, 0, 0,
1128 (SCM x, SCM y),
1129 "Return the real number @var{r} such that\n"
1130 "@math{0 <= @var{r} < abs(@var{y})} and\n"
1131 "@math{@var{x} = @var{q}*@var{y} + @var{r}}\n"
1132 "for some integer @var{q}.\n"
1133 "@lisp\n"
1134 "(euclidean-remainder 123 10) @result{} 3\n"
1135 "(euclidean-remainder 123 -10) @result{} 3\n"
1136 "(euclidean-remainder -123 10) @result{} 7\n"
1137 "(euclidean-remainder -123 -10) @result{} 7\n"
1138 "(euclidean-remainder -123.2 -63.5) @result{} 3.8\n"
1139 "(euclidean-remainder 16/3 -10/7) @result{} 22/21\n"
1140 "@end lisp")
ff62c168
MW
1141#define FUNC_NAME s_scm_euclidean_remainder
1142{
a8da6d93
MW
1143 if (scm_is_false (scm_negative_p (y)))
1144 return scm_floor_remainder (x, y);
ff62c168 1145 else
a8da6d93 1146 return scm_ceiling_remainder (x, y);
ff62c168
MW
1147}
1148#undef FUNC_NAME
1149
a8da6d93
MW
1150SCM_DEFINE (scm_i_euclidean_divide, "euclidean/", 2, 0, 0,
1151 (SCM x, SCM y),
1152 "Return the integer @var{q} and the real number @var{r}\n"
1153 "such that @math{@var{x} = @var{q}*@var{y} + @var{r}}\n"
1154 "and @math{0 <= @var{r} < abs(@var{y})}.\n"
1155 "@lisp\n"
1156 "(euclidean/ 123 10) @result{} 12 and 3\n"
1157 "(euclidean/ 123 -10) @result{} -12 and 3\n"
1158 "(euclidean/ -123 10) @result{} -13 and 7\n"
1159 "(euclidean/ -123 -10) @result{} 13 and 7\n"
1160 "(euclidean/ -123.2 -63.5) @result{} 2.0 and 3.8\n"
1161 "(euclidean/ 16/3 -10/7) @result{} -3 and 22/21\n"
1162 "@end lisp")
5fbf680b
MW
1163#define FUNC_NAME s_scm_i_euclidean_divide
1164{
a8da6d93
MW
1165 if (scm_is_false (scm_negative_p (y)))
1166 return scm_i_floor_divide (x, y);
1167 else
1168 return scm_i_ceiling_divide (x, y);
5fbf680b
MW
1169}
1170#undef FUNC_NAME
1171
5fbf680b
MW
1172void
1173scm_euclidean_divide (SCM x, SCM y, SCM *qp, SCM *rp)
ff62c168 1174{
a8da6d93
MW
1175 if (scm_is_false (scm_negative_p (y)))
1176 return scm_floor_divide (x, y, qp, rp);
ff62c168 1177 else
a8da6d93 1178 return scm_ceiling_divide (x, y, qp, rp);
ff62c168
MW
1179}
1180
8f9da340
MW
1181static SCM scm_i_inexact_floor_quotient (double x, double y);
1182static SCM scm_i_exact_rational_floor_quotient (SCM x, SCM y);
1183
1184SCM_PRIMITIVE_GENERIC (scm_floor_quotient, "floor-quotient", 2, 0, 0,
1185 (SCM x, SCM y),
1186 "Return the floor of @math{@var{x} / @var{y}}.\n"
1187 "@lisp\n"
1188 "(floor-quotient 123 10) @result{} 12\n"
1189 "(floor-quotient 123 -10) @result{} -13\n"
1190 "(floor-quotient -123 10) @result{} -13\n"
1191 "(floor-quotient -123 -10) @result{} 12\n"
1192 "(floor-quotient -123.2 -63.5) @result{} 1.0\n"
1193 "(floor-quotient 16/3 -10/7) @result{} -4\n"
1194 "@end lisp")
1195#define FUNC_NAME s_scm_floor_quotient
1196{
1197 if (SCM_LIKELY (SCM_I_INUMP (x)))
1198 {
1199 scm_t_inum xx = SCM_I_INUM (x);
1200 if (SCM_LIKELY (SCM_I_INUMP (y)))
1201 {
1202 scm_t_inum yy = SCM_I_INUM (y);
1203 scm_t_inum xx1 = xx;
1204 scm_t_inum qq;
1205 if (SCM_LIKELY (yy > 0))
1206 {
1207 if (SCM_UNLIKELY (xx < 0))
1208 xx1 = xx - yy + 1;
1209 }
1210 else if (SCM_UNLIKELY (yy == 0))
1211 scm_num_overflow (s_scm_floor_quotient);
1212 else if (xx > 0)
1213 xx1 = xx - yy - 1;
1214 qq = xx1 / yy;
1215 if (SCM_LIKELY (SCM_FIXABLE (qq)))
1216 return SCM_I_MAKINUM (qq);
1217 else
1218 return scm_i_inum2big (qq);
1219 }
1220 else if (SCM_BIGP (y))
1221 {
1222 int sign = mpz_sgn (SCM_I_BIG_MPZ (y));
1223 scm_remember_upto_here_1 (y);
1224 if (sign > 0)
1225 return SCM_I_MAKINUM ((xx < 0) ? -1 : 0);
1226 else
1227 return SCM_I_MAKINUM ((xx > 0) ? -1 : 0);
1228 }
1229 else if (SCM_REALP (y))
1230 return scm_i_inexact_floor_quotient (xx, SCM_REAL_VALUE (y));
1231 else if (SCM_FRACTIONP (y))
1232 return scm_i_exact_rational_floor_quotient (x, y);
1233 else
fa075d40
AW
1234 return scm_wta_dispatch_2 (g_scm_floor_quotient, x, y, SCM_ARG2,
1235 s_scm_floor_quotient);
8f9da340
MW
1236 }
1237 else if (SCM_BIGP (x))
1238 {
1239 if (SCM_LIKELY (SCM_I_INUMP (y)))
1240 {
1241 scm_t_inum yy = SCM_I_INUM (y);
1242 if (SCM_UNLIKELY (yy == 0))
1243 scm_num_overflow (s_scm_floor_quotient);
1244 else if (SCM_UNLIKELY (yy == 1))
1245 return x;
1246 else
1247 {
1248 SCM q = scm_i_mkbig ();
1249 if (yy > 0)
1250 mpz_fdiv_q_ui (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (x), yy);
1251 else
1252 {
1253 mpz_cdiv_q_ui (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (x), -yy);
1254 mpz_neg (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (q));
1255 }
1256 scm_remember_upto_here_1 (x);
1257 return scm_i_normbig (q);
1258 }
1259 }
1260 else if (SCM_BIGP (y))
1261 {
1262 SCM q = scm_i_mkbig ();
1263 mpz_fdiv_q (SCM_I_BIG_MPZ (q),
1264 SCM_I_BIG_MPZ (x),
1265 SCM_I_BIG_MPZ (y));
1266 scm_remember_upto_here_2 (x, y);
1267 return scm_i_normbig (q);
1268 }
1269 else if (SCM_REALP (y))
1270 return scm_i_inexact_floor_quotient
1271 (scm_i_big2dbl (x), SCM_REAL_VALUE (y));
1272 else if (SCM_FRACTIONP (y))
1273 return scm_i_exact_rational_floor_quotient (x, y);
1274 else
fa075d40
AW
1275 return scm_wta_dispatch_2 (g_scm_floor_quotient, x, y, SCM_ARG2,
1276 s_scm_floor_quotient);
8f9da340
MW
1277 }
1278 else if (SCM_REALP (x))
1279 {
1280 if (SCM_REALP (y) || SCM_I_INUMP (y) ||
1281 SCM_BIGP (y) || SCM_FRACTIONP (y))
1282 return scm_i_inexact_floor_quotient
1283 (SCM_REAL_VALUE (x), scm_to_double (y));
1284 else
fa075d40
AW
1285 return scm_wta_dispatch_2 (g_scm_floor_quotient, x, y, SCM_ARG2,
1286 s_scm_floor_quotient);
8f9da340
MW
1287 }
1288 else if (SCM_FRACTIONP (x))
1289 {
1290 if (SCM_REALP (y))
1291 return scm_i_inexact_floor_quotient
1292 (scm_i_fraction2double (x), SCM_REAL_VALUE (y));
1293 else if (SCM_I_INUMP (y) || SCM_BIGP (y) || SCM_FRACTIONP (y))
1294 return scm_i_exact_rational_floor_quotient (x, y);
1295 else
fa075d40
AW
1296 return scm_wta_dispatch_2 (g_scm_floor_quotient, x, y, SCM_ARG2,
1297 s_scm_floor_quotient);
8f9da340
MW
1298 }
1299 else
fa075d40
AW
1300 return scm_wta_dispatch_2 (g_scm_floor_quotient, x, y, SCM_ARG1,
1301 s_scm_floor_quotient);
8f9da340
MW
1302}
1303#undef FUNC_NAME
1304
1305static SCM
1306scm_i_inexact_floor_quotient (double x, double y)
1307{
1308 if (SCM_UNLIKELY (y == 0))
1309 scm_num_overflow (s_scm_floor_quotient); /* or return a NaN? */
1310 else
00472a22 1311 return scm_i_from_double (floor (x / y));
8f9da340
MW
1312}
1313
1314static SCM
1315scm_i_exact_rational_floor_quotient (SCM x, SCM y)
1316{
1317 return scm_floor_quotient
1318 (scm_product (scm_numerator (x), scm_denominator (y)),
1319 scm_product (scm_numerator (y), scm_denominator (x)));
1320}
1321
1322static SCM scm_i_inexact_floor_remainder (double x, double y);
1323static SCM scm_i_exact_rational_floor_remainder (SCM x, SCM y);
1324
1325SCM_PRIMITIVE_GENERIC (scm_floor_remainder, "floor-remainder", 2, 0, 0,
1326 (SCM x, SCM y),
1327 "Return the real number @var{r} such that\n"
1328 "@math{@var{x} = @var{q}*@var{y} + @var{r}}\n"
1329 "where @math{@var{q} = floor(@var{x} / @var{y})}.\n"
1330 "@lisp\n"
1331 "(floor-remainder 123 10) @result{} 3\n"
1332 "(floor-remainder 123 -10) @result{} -7\n"
1333 "(floor-remainder -123 10) @result{} 7\n"
1334 "(floor-remainder -123 -10) @result{} -3\n"
1335 "(floor-remainder -123.2 -63.5) @result{} -59.7\n"
1336 "(floor-remainder 16/3 -10/7) @result{} -8/21\n"
1337 "@end lisp")
1338#define FUNC_NAME s_scm_floor_remainder
1339{
1340 if (SCM_LIKELY (SCM_I_INUMP (x)))
1341 {
1342 scm_t_inum xx = SCM_I_INUM (x);
1343 if (SCM_LIKELY (SCM_I_INUMP (y)))
1344 {
1345 scm_t_inum yy = SCM_I_INUM (y);
1346 if (SCM_UNLIKELY (yy == 0))
1347 scm_num_overflow (s_scm_floor_remainder);
1348 else
1349 {
1350 scm_t_inum rr = xx % yy;
1351 int needs_adjustment;
1352
1353 if (SCM_LIKELY (yy > 0))
1354 needs_adjustment = (rr < 0);
1355 else
1356 needs_adjustment = (rr > 0);
1357
1358 if (needs_adjustment)
1359 rr += yy;
1360 return SCM_I_MAKINUM (rr);
1361 }
1362 }
1363 else if (SCM_BIGP (y))
1364 {
1365 int sign = mpz_sgn (SCM_I_BIG_MPZ (y));
1366 scm_remember_upto_here_1 (y);
1367 if (sign > 0)
1368 {
1369 if (xx < 0)
1370 {
1371 SCM r = scm_i_mkbig ();
1372 mpz_sub_ui (SCM_I_BIG_MPZ (r), SCM_I_BIG_MPZ (y), -xx);
1373 scm_remember_upto_here_1 (y);
1374 return scm_i_normbig (r);
1375 }
1376 else
1377 return x;
1378 }
1379 else if (xx <= 0)
1380 return x;
1381 else
1382 {
1383 SCM r = scm_i_mkbig ();
1384 mpz_add_ui (SCM_I_BIG_MPZ (r), SCM_I_BIG_MPZ (y), xx);
1385 scm_remember_upto_here_1 (y);
1386 return scm_i_normbig (r);
1387 }
1388 }
1389 else if (SCM_REALP (y))
1390 return scm_i_inexact_floor_remainder (xx, SCM_REAL_VALUE (y));
1391 else if (SCM_FRACTIONP (y))
1392 return scm_i_exact_rational_floor_remainder (x, y);
1393 else
fa075d40
AW
1394 return scm_wta_dispatch_2 (g_scm_floor_remainder, x, y, SCM_ARG2,
1395 s_scm_floor_remainder);
8f9da340
MW
1396 }
1397 else if (SCM_BIGP (x))
1398 {
1399 if (SCM_LIKELY (SCM_I_INUMP (y)))
1400 {
1401 scm_t_inum yy = SCM_I_INUM (y);
1402 if (SCM_UNLIKELY (yy == 0))
1403 scm_num_overflow (s_scm_floor_remainder);
1404 else
1405 {
1406 scm_t_inum rr;
1407 if (yy > 0)
1408 rr = mpz_fdiv_ui (SCM_I_BIG_MPZ (x), yy);
1409 else
1410 rr = -mpz_cdiv_ui (SCM_I_BIG_MPZ (x), -yy);
1411 scm_remember_upto_here_1 (x);
1412 return SCM_I_MAKINUM (rr);
1413 }
1414 }
1415 else if (SCM_BIGP (y))
1416 {
1417 SCM r = scm_i_mkbig ();
1418 mpz_fdiv_r (SCM_I_BIG_MPZ (r),
1419 SCM_I_BIG_MPZ (x),
1420 SCM_I_BIG_MPZ (y));
1421 scm_remember_upto_here_2 (x, y);
1422 return scm_i_normbig (r);
1423 }
1424 else if (SCM_REALP (y))
1425 return scm_i_inexact_floor_remainder
1426 (scm_i_big2dbl (x), SCM_REAL_VALUE (y));
1427 else if (SCM_FRACTIONP (y))
1428 return scm_i_exact_rational_floor_remainder (x, y);
1429 else
fa075d40
AW
1430 return scm_wta_dispatch_2 (g_scm_floor_remainder, x, y, SCM_ARG2,
1431 s_scm_floor_remainder);
8f9da340
MW
1432 }
1433 else if (SCM_REALP (x))
1434 {
1435 if (SCM_REALP (y) || SCM_I_INUMP (y) ||
1436 SCM_BIGP (y) || SCM_FRACTIONP (y))
1437 return scm_i_inexact_floor_remainder
1438 (SCM_REAL_VALUE (x), scm_to_double (y));
1439 else
fa075d40
AW
1440 return scm_wta_dispatch_2 (g_scm_floor_remainder, x, y, SCM_ARG2,
1441 s_scm_floor_remainder);
8f9da340
MW
1442 }
1443 else if (SCM_FRACTIONP (x))
1444 {
1445 if (SCM_REALP (y))
1446 return scm_i_inexact_floor_remainder
1447 (scm_i_fraction2double (x), SCM_REAL_VALUE (y));
1448 else if (SCM_I_INUMP (y) || SCM_BIGP (y) || SCM_FRACTIONP (y))
1449 return scm_i_exact_rational_floor_remainder (x, y);
1450 else
fa075d40
AW
1451 return scm_wta_dispatch_2 (g_scm_floor_remainder, x, y, SCM_ARG2,
1452 s_scm_floor_remainder);
8f9da340
MW
1453 }
1454 else
fa075d40
AW
1455 return scm_wta_dispatch_2 (g_scm_floor_remainder, x, y, SCM_ARG1,
1456 s_scm_floor_remainder);
8f9da340
MW
1457}
1458#undef FUNC_NAME
1459
1460static SCM
1461scm_i_inexact_floor_remainder (double x, double y)
1462{
1463 /* Although it would be more efficient to use fmod here, we can't
1464 because it would in some cases produce results inconsistent with
1465 scm_i_inexact_floor_quotient, such that x != q * y + r (not even
1466 close). In particular, when x is very close to a multiple of y,
1467 then r might be either 0.0 or y, but those two cases must
1468 correspond to different choices of q. If r = 0.0 then q must be
1469 x/y, and if r = y then q must be x/y-1. If quotient chooses one
1470 and remainder chooses the other, it would be bad. */
1471 if (SCM_UNLIKELY (y == 0))
1472 scm_num_overflow (s_scm_floor_remainder); /* or return a NaN? */
1473 else
00472a22 1474 return scm_i_from_double (x - y * floor (x / y));
8f9da340
MW
1475}
1476
1477static SCM
1478scm_i_exact_rational_floor_remainder (SCM x, SCM y)
1479{
1480 SCM xd = scm_denominator (x);
1481 SCM yd = scm_denominator (y);
1482 SCM r1 = scm_floor_remainder (scm_product (scm_numerator (x), yd),
1483 scm_product (scm_numerator (y), xd));
1484 return scm_divide (r1, scm_product (xd, yd));
1485}
1486
1487
1488static void scm_i_inexact_floor_divide (double x, double y,
1489 SCM *qp, SCM *rp);
1490static void scm_i_exact_rational_floor_divide (SCM x, SCM y,
1491 SCM *qp, SCM *rp);
1492
1493SCM_PRIMITIVE_GENERIC (scm_i_floor_divide, "floor/", 2, 0, 0,
1494 (SCM x, SCM y),
1495 "Return the integer @var{q} and the real number @var{r}\n"
1496 "such that @math{@var{x} = @var{q}*@var{y} + @var{r}}\n"
1497 "and @math{@var{q} = floor(@var{x} / @var{y})}.\n"
1498 "@lisp\n"
1499 "(floor/ 123 10) @result{} 12 and 3\n"
1500 "(floor/ 123 -10) @result{} -13 and -7\n"
1501 "(floor/ -123 10) @result{} -13 and 7\n"
1502 "(floor/ -123 -10) @result{} 12 and -3\n"
1503 "(floor/ -123.2 -63.5) @result{} 1.0 and -59.7\n"
1504 "(floor/ 16/3 -10/7) @result{} -4 and -8/21\n"
1505 "@end lisp")
1506#define FUNC_NAME s_scm_i_floor_divide
1507{
1508 SCM q, r;
1509
1510 scm_floor_divide(x, y, &q, &r);
1511 return scm_values (scm_list_2 (q, r));
1512}
1513#undef FUNC_NAME
1514
1515#define s_scm_floor_divide s_scm_i_floor_divide
1516#define g_scm_floor_divide g_scm_i_floor_divide
1517
1518void
1519scm_floor_divide (SCM x, SCM y, SCM *qp, SCM *rp)
1520{
1521 if (SCM_LIKELY (SCM_I_INUMP (x)))
1522 {
1523 scm_t_inum xx = SCM_I_INUM (x);
1524 if (SCM_LIKELY (SCM_I_INUMP (y)))
1525 {
1526 scm_t_inum yy = SCM_I_INUM (y);
1527 if (SCM_UNLIKELY (yy == 0))
1528 scm_num_overflow (s_scm_floor_divide);
1529 else
1530 {
1531 scm_t_inum qq = xx / yy;
1532 scm_t_inum rr = xx % yy;
1533 int needs_adjustment;
1534
1535 if (SCM_LIKELY (yy > 0))
1536 needs_adjustment = (rr < 0);
1537 else
1538 needs_adjustment = (rr > 0);
1539
1540 if (needs_adjustment)
1541 {
1542 rr += yy;
1543 qq--;
1544 }
1545
1546 if (SCM_LIKELY (SCM_FIXABLE (qq)))
1547 *qp = SCM_I_MAKINUM (qq);
1548 else
1549 *qp = scm_i_inum2big (qq);
1550 *rp = SCM_I_MAKINUM (rr);
1551 }
1552 return;
1553 }
1554 else if (SCM_BIGP (y))
1555 {
1556 int sign = mpz_sgn (SCM_I_BIG_MPZ (y));
1557 scm_remember_upto_here_1 (y);
1558 if (sign > 0)
1559 {
1560 if (xx < 0)
1561 {
1562 SCM r = scm_i_mkbig ();
1563 mpz_sub_ui (SCM_I_BIG_MPZ (r), SCM_I_BIG_MPZ (y), -xx);
1564 scm_remember_upto_here_1 (y);
1565 *qp = SCM_I_MAKINUM (-1);
1566 *rp = scm_i_normbig (r);
1567 }
1568 else
1569 {
1570 *qp = SCM_INUM0;
1571 *rp = x;
1572 }
1573 }
1574 else if (xx <= 0)
1575 {
1576 *qp = SCM_INUM0;
1577 *rp = x;
1578 }
1579 else
1580 {
1581 SCM r = scm_i_mkbig ();
1582 mpz_add_ui (SCM_I_BIG_MPZ (r), SCM_I_BIG_MPZ (y), xx);
1583 scm_remember_upto_here_1 (y);
1584 *qp = SCM_I_MAKINUM (-1);
1585 *rp = scm_i_normbig (r);
1586 }
1587 return;
1588 }
1589 else if (SCM_REALP (y))
1590 return scm_i_inexact_floor_divide (xx, SCM_REAL_VALUE (y), qp, rp);
1591 else if (SCM_FRACTIONP (y))
1592 return scm_i_exact_rational_floor_divide (x, y, qp, rp);
1593 else
1594 return two_valued_wta_dispatch_2 (g_scm_floor_divide, x, y, SCM_ARG2,
1595 s_scm_floor_divide, qp, rp);
1596 }
1597 else if (SCM_BIGP (x))
1598 {
1599 if (SCM_LIKELY (SCM_I_INUMP (y)))
1600 {
1601 scm_t_inum yy = SCM_I_INUM (y);
1602 if (SCM_UNLIKELY (yy == 0))
1603 scm_num_overflow (s_scm_floor_divide);
1604 else
1605 {
1606 SCM q = scm_i_mkbig ();
1607 SCM r = scm_i_mkbig ();
1608 if (yy > 0)
1609 mpz_fdiv_qr_ui (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (r),
1610 SCM_I_BIG_MPZ (x), yy);
1611 else
1612 {
1613 mpz_cdiv_qr_ui (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (r),
1614 SCM_I_BIG_MPZ (x), -yy);
1615 mpz_neg (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (q));
1616 }
1617 scm_remember_upto_here_1 (x);
1618 *qp = scm_i_normbig (q);
1619 *rp = scm_i_normbig (r);
1620 }
1621 return;
1622 }
1623 else if (SCM_BIGP (y))
1624 {
1625 SCM q = scm_i_mkbig ();
1626 SCM r = scm_i_mkbig ();
1627 mpz_fdiv_qr (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (r),
1628 SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
1629 scm_remember_upto_here_2 (x, y);
1630 *qp = scm_i_normbig (q);
1631 *rp = scm_i_normbig (r);
1632 return;
1633 }
1634 else if (SCM_REALP (y))
1635 return scm_i_inexact_floor_divide
1636 (scm_i_big2dbl (x), SCM_REAL_VALUE (y), qp, rp);
1637 else if (SCM_FRACTIONP (y))
1638 return scm_i_exact_rational_floor_divide (x, y, qp, rp);
1639 else
1640 return two_valued_wta_dispatch_2 (g_scm_floor_divide, x, y, SCM_ARG2,
1641 s_scm_floor_divide, qp, rp);
1642 }
1643 else if (SCM_REALP (x))
1644 {
1645 if (SCM_REALP (y) || SCM_I_INUMP (y) ||
1646 SCM_BIGP (y) || SCM_FRACTIONP (y))
1647 return scm_i_inexact_floor_divide
1648 (SCM_REAL_VALUE (x), scm_to_double (y), qp, rp);
1649 else
1650 return two_valued_wta_dispatch_2 (g_scm_floor_divide, x, y, SCM_ARG2,
1651 s_scm_floor_divide, qp, rp);
1652 }
1653 else if (SCM_FRACTIONP (x))
1654 {
1655 if (SCM_REALP (y))
1656 return scm_i_inexact_floor_divide
1657 (scm_i_fraction2double (x), SCM_REAL_VALUE (y), qp, rp);
1658 else if (SCM_I_INUMP (y) || SCM_BIGP (y) || SCM_FRACTIONP (y))
1659 return scm_i_exact_rational_floor_divide (x, y, qp, rp);
1660 else
1661 return two_valued_wta_dispatch_2 (g_scm_floor_divide, x, y, SCM_ARG2,
1662 s_scm_floor_divide, qp, rp);
1663 }
1664 else
1665 return two_valued_wta_dispatch_2 (g_scm_floor_divide, x, y, SCM_ARG1,
1666 s_scm_floor_divide, qp, rp);
1667}
1668
1669static void
1670scm_i_inexact_floor_divide (double x, double y, SCM *qp, SCM *rp)
1671{
1672 if (SCM_UNLIKELY (y == 0))
1673 scm_num_overflow (s_scm_floor_divide); /* or return a NaN? */
1674 else
1675 {
1676 double q = floor (x / y);
1677 double r = x - q * y;
00472a22
MW
1678 *qp = scm_i_from_double (q);
1679 *rp = scm_i_from_double (r);
8f9da340
MW
1680 }
1681}
1682
1683static void
1684scm_i_exact_rational_floor_divide (SCM x, SCM y, SCM *qp, SCM *rp)
1685{
1686 SCM r1;
1687 SCM xd = scm_denominator (x);
1688 SCM yd = scm_denominator (y);
1689
1690 scm_floor_divide (scm_product (scm_numerator (x), yd),
1691 scm_product (scm_numerator (y), xd),
1692 qp, &r1);
1693 *rp = scm_divide (r1, scm_product (xd, yd));
1694}
1695
1696static SCM scm_i_inexact_ceiling_quotient (double x, double y);
1697static SCM scm_i_exact_rational_ceiling_quotient (SCM x, SCM y);
1698
1699SCM_PRIMITIVE_GENERIC (scm_ceiling_quotient, "ceiling-quotient", 2, 0, 0,
1700 (SCM x, SCM y),
1701 "Return the ceiling of @math{@var{x} / @var{y}}.\n"
1702 "@lisp\n"
1703 "(ceiling-quotient 123 10) @result{} 13\n"
1704 "(ceiling-quotient 123 -10) @result{} -12\n"
1705 "(ceiling-quotient -123 10) @result{} -12\n"
1706 "(ceiling-quotient -123 -10) @result{} 13\n"
1707 "(ceiling-quotient -123.2 -63.5) @result{} 2.0\n"
1708 "(ceiling-quotient 16/3 -10/7) @result{} -3\n"
1709 "@end lisp")
1710#define FUNC_NAME s_scm_ceiling_quotient
1711{
1712 if (SCM_LIKELY (SCM_I_INUMP (x)))
1713 {
1714 scm_t_inum xx = SCM_I_INUM (x);
1715 if (SCM_LIKELY (SCM_I_INUMP (y)))
1716 {
1717 scm_t_inum yy = SCM_I_INUM (y);
1718 if (SCM_UNLIKELY (yy == 0))
1719 scm_num_overflow (s_scm_ceiling_quotient);
1720 else
1721 {
1722 scm_t_inum xx1 = xx;
1723 scm_t_inum qq;
1724 if (SCM_LIKELY (yy > 0))
1725 {
1726 if (SCM_LIKELY (xx >= 0))
1727 xx1 = xx + yy - 1;
1728 }
8f9da340
MW
1729 else if (xx < 0)
1730 xx1 = xx + yy + 1;
1731 qq = xx1 / yy;
1732 if (SCM_LIKELY (SCM_FIXABLE (qq)))
1733 return SCM_I_MAKINUM (qq);
1734 else
1735 return scm_i_inum2big (qq);
1736 }
1737 }
1738 else if (SCM_BIGP (y))
1739 {
1740 int sign = mpz_sgn (SCM_I_BIG_MPZ (y));
1741 scm_remember_upto_here_1 (y);
1742 if (SCM_LIKELY (sign > 0))
1743 {
1744 if (SCM_LIKELY (xx > 0))
1745 return SCM_INUM1;
1746 else if (SCM_UNLIKELY (xx == SCM_MOST_NEGATIVE_FIXNUM)
1747 && SCM_UNLIKELY (mpz_cmp_ui (SCM_I_BIG_MPZ (y),
1748 - SCM_MOST_NEGATIVE_FIXNUM) == 0))
1749 {
1750 /* Special case: x == fixnum-min && y == abs (fixnum-min) */
1751 scm_remember_upto_here_1 (y);
1752 return SCM_I_MAKINUM (-1);
1753 }
1754 else
1755 return SCM_INUM0;
1756 }
1757 else if (xx >= 0)
1758 return SCM_INUM0;
1759 else
1760 return SCM_INUM1;
1761 }
1762 else if (SCM_REALP (y))
1763 return scm_i_inexact_ceiling_quotient (xx, SCM_REAL_VALUE (y));
1764 else if (SCM_FRACTIONP (y))
1765 return scm_i_exact_rational_ceiling_quotient (x, y);
1766 else
fa075d40
AW
1767 return scm_wta_dispatch_2 (g_scm_ceiling_quotient, x, y, SCM_ARG2,
1768 s_scm_ceiling_quotient);
8f9da340
MW
1769 }
1770 else if (SCM_BIGP (x))
1771 {
1772 if (SCM_LIKELY (SCM_I_INUMP (y)))
1773 {
1774 scm_t_inum yy = SCM_I_INUM (y);
1775 if (SCM_UNLIKELY (yy == 0))
1776 scm_num_overflow (s_scm_ceiling_quotient);
1777 else if (SCM_UNLIKELY (yy == 1))
1778 return x;
1779 else
1780 {
1781 SCM q = scm_i_mkbig ();
1782 if (yy > 0)
1783 mpz_cdiv_q_ui (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (x), yy);
1784 else
1785 {
1786 mpz_fdiv_q_ui (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (x), -yy);
1787 mpz_neg (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (q));
1788 }
1789 scm_remember_upto_here_1 (x);
1790 return scm_i_normbig (q);
1791 }
1792 }
1793 else if (SCM_BIGP (y))
1794 {
1795 SCM q = scm_i_mkbig ();
1796 mpz_cdiv_q (SCM_I_BIG_MPZ (q),
1797 SCM_I_BIG_MPZ (x),
1798 SCM_I_BIG_MPZ (y));
1799 scm_remember_upto_here_2 (x, y);
1800 return scm_i_normbig (q);
1801 }
1802 else if (SCM_REALP (y))
1803 return scm_i_inexact_ceiling_quotient
1804 (scm_i_big2dbl (x), SCM_REAL_VALUE (y));
1805 else if (SCM_FRACTIONP (y))
1806 return scm_i_exact_rational_ceiling_quotient (x, y);
1807 else
fa075d40
AW
1808 return scm_wta_dispatch_2 (g_scm_ceiling_quotient, x, y, SCM_ARG2,
1809 s_scm_ceiling_quotient);
8f9da340
MW
1810 }
1811 else if (SCM_REALP (x))
1812 {
1813 if (SCM_REALP (y) || SCM_I_INUMP (y) ||
1814 SCM_BIGP (y) || SCM_FRACTIONP (y))
1815 return scm_i_inexact_ceiling_quotient
1816 (SCM_REAL_VALUE (x), scm_to_double (y));
1817 else
fa075d40
AW
1818 return scm_wta_dispatch_2 (g_scm_ceiling_quotient, x, y, SCM_ARG2,
1819 s_scm_ceiling_quotient);
8f9da340
MW
1820 }
1821 else if (SCM_FRACTIONP (x))
1822 {
1823 if (SCM_REALP (y))
1824 return scm_i_inexact_ceiling_quotient
1825 (scm_i_fraction2double (x), SCM_REAL_VALUE (y));
1826 else if (SCM_I_INUMP (y) || SCM_BIGP (y) || SCM_FRACTIONP (y))
1827 return scm_i_exact_rational_ceiling_quotient (x, y);
1828 else
fa075d40
AW
1829 return scm_wta_dispatch_2 (g_scm_ceiling_quotient, x, y, SCM_ARG2,
1830 s_scm_ceiling_quotient);
8f9da340
MW
1831 }
1832 else
fa075d40
AW
1833 return scm_wta_dispatch_2 (g_scm_ceiling_quotient, x, y, SCM_ARG1,
1834 s_scm_ceiling_quotient);
8f9da340
MW
1835}
1836#undef FUNC_NAME
1837
1838static SCM
1839scm_i_inexact_ceiling_quotient (double x, double y)
1840{
1841 if (SCM_UNLIKELY (y == 0))
1842 scm_num_overflow (s_scm_ceiling_quotient); /* or return a NaN? */
1843 else
00472a22 1844 return scm_i_from_double (ceil (x / y));
8f9da340
MW
1845}
1846
1847static SCM
1848scm_i_exact_rational_ceiling_quotient (SCM x, SCM y)
1849{
1850 return scm_ceiling_quotient
1851 (scm_product (scm_numerator (x), scm_denominator (y)),
1852 scm_product (scm_numerator (y), scm_denominator (x)));
1853}
1854
1855static SCM scm_i_inexact_ceiling_remainder (double x, double y);
1856static SCM scm_i_exact_rational_ceiling_remainder (SCM x, SCM y);
1857
1858SCM_PRIMITIVE_GENERIC (scm_ceiling_remainder, "ceiling-remainder", 2, 0, 0,
1859 (SCM x, SCM y),
1860 "Return the real number @var{r} such that\n"
1861 "@math{@var{x} = @var{q}*@var{y} + @var{r}}\n"
1862 "where @math{@var{q} = ceiling(@var{x} / @var{y})}.\n"
1863 "@lisp\n"
1864 "(ceiling-remainder 123 10) @result{} -7\n"
1865 "(ceiling-remainder 123 -10) @result{} 3\n"
1866 "(ceiling-remainder -123 10) @result{} -3\n"
1867 "(ceiling-remainder -123 -10) @result{} 7\n"
1868 "(ceiling-remainder -123.2 -63.5) @result{} 3.8\n"
1869 "(ceiling-remainder 16/3 -10/7) @result{} 22/21\n"
1870 "@end lisp")
1871#define FUNC_NAME s_scm_ceiling_remainder
1872{
1873 if (SCM_LIKELY (SCM_I_INUMP (x)))
1874 {
1875 scm_t_inum xx = SCM_I_INUM (x);
1876 if (SCM_LIKELY (SCM_I_INUMP (y)))
1877 {
1878 scm_t_inum yy = SCM_I_INUM (y);
1879 if (SCM_UNLIKELY (yy == 0))
1880 scm_num_overflow (s_scm_ceiling_remainder);
1881 else
1882 {
1883 scm_t_inum rr = xx % yy;
1884 int needs_adjustment;
1885
1886 if (SCM_LIKELY (yy > 0))
1887 needs_adjustment = (rr > 0);
1888 else
1889 needs_adjustment = (rr < 0);
1890
1891 if (needs_adjustment)
1892 rr -= yy;
1893 return SCM_I_MAKINUM (rr);
1894 }
1895 }
1896 else if (SCM_BIGP (y))
1897 {
1898 int sign = mpz_sgn (SCM_I_BIG_MPZ (y));
1899 scm_remember_upto_here_1 (y);
1900 if (SCM_LIKELY (sign > 0))
1901 {
1902 if (SCM_LIKELY (xx > 0))
1903 {
1904 SCM r = scm_i_mkbig ();
1905 mpz_sub_ui (SCM_I_BIG_MPZ (r), SCM_I_BIG_MPZ (y), xx);
1906 scm_remember_upto_here_1 (y);
1907 mpz_neg (SCM_I_BIG_MPZ (r), SCM_I_BIG_MPZ (r));
1908 return scm_i_normbig (r);
1909 }
1910 else if (SCM_UNLIKELY (xx == SCM_MOST_NEGATIVE_FIXNUM)
1911 && SCM_UNLIKELY (mpz_cmp_ui (SCM_I_BIG_MPZ (y),
1912 - SCM_MOST_NEGATIVE_FIXNUM) == 0))
1913 {
1914 /* Special case: x == fixnum-min && y == abs (fixnum-min) */
1915 scm_remember_upto_here_1 (y);
1916 return SCM_INUM0;
1917 }
1918 else
1919 return x;
1920 }
1921 else if (xx >= 0)
1922 return x;
1923 else
1924 {
1925 SCM r = scm_i_mkbig ();
1926 mpz_add_ui (SCM_I_BIG_MPZ (r), SCM_I_BIG_MPZ (y), -xx);
1927 scm_remember_upto_here_1 (y);
1928 mpz_neg (SCM_I_BIG_MPZ (r), SCM_I_BIG_MPZ (r));
1929 return scm_i_normbig (r);
1930 }
1931 }
1932 else if (SCM_REALP (y))
1933 return scm_i_inexact_ceiling_remainder (xx, SCM_REAL_VALUE (y));
1934 else if (SCM_FRACTIONP (y))
1935 return scm_i_exact_rational_ceiling_remainder (x, y);
1936 else
fa075d40
AW
1937 return scm_wta_dispatch_2 (g_scm_ceiling_remainder, x, y, SCM_ARG2,
1938 s_scm_ceiling_remainder);
8f9da340
MW
1939 }
1940 else if (SCM_BIGP (x))
1941 {
1942 if (SCM_LIKELY (SCM_I_INUMP (y)))
1943 {
1944 scm_t_inum yy = SCM_I_INUM (y);
1945 if (SCM_UNLIKELY (yy == 0))
1946 scm_num_overflow (s_scm_ceiling_remainder);
1947 else
1948 {
1949 scm_t_inum rr;
1950 if (yy > 0)
1951 rr = -mpz_cdiv_ui (SCM_I_BIG_MPZ (x), yy);
1952 else
1953 rr = mpz_fdiv_ui (SCM_I_BIG_MPZ (x), -yy);
1954 scm_remember_upto_here_1 (x);
1955 return SCM_I_MAKINUM (rr);
1956 }
1957 }
1958 else if (SCM_BIGP (y))
1959 {
1960 SCM r = scm_i_mkbig ();
1961 mpz_cdiv_r (SCM_I_BIG_MPZ (r),
1962 SCM_I_BIG_MPZ (x),
1963 SCM_I_BIG_MPZ (y));
1964 scm_remember_upto_here_2 (x, y);
1965 return scm_i_normbig (r);
1966 }
1967 else if (SCM_REALP (y))
1968 return scm_i_inexact_ceiling_remainder
1969 (scm_i_big2dbl (x), SCM_REAL_VALUE (y));
1970 else if (SCM_FRACTIONP (y))
1971 return scm_i_exact_rational_ceiling_remainder (x, y);
1972 else
fa075d40
AW
1973 return scm_wta_dispatch_2 (g_scm_ceiling_remainder, x, y, SCM_ARG2,
1974 s_scm_ceiling_remainder);
8f9da340
MW
1975 }
1976 else if (SCM_REALP (x))
1977 {
1978 if (SCM_REALP (y) || SCM_I_INUMP (y) ||
1979 SCM_BIGP (y) || SCM_FRACTIONP (y))
1980 return scm_i_inexact_ceiling_remainder
1981 (SCM_REAL_VALUE (x), scm_to_double (y));
1982 else
fa075d40
AW
1983 return scm_wta_dispatch_2 (g_scm_ceiling_remainder, x, y, SCM_ARG2,
1984 s_scm_ceiling_remainder);
8f9da340
MW
1985 }
1986 else if (SCM_FRACTIONP (x))
1987 {
1988 if (SCM_REALP (y))
1989 return scm_i_inexact_ceiling_remainder
1990 (scm_i_fraction2double (x), SCM_REAL_VALUE (y));
1991 else if (SCM_I_INUMP (y) || SCM_BIGP (y) || SCM_FRACTIONP (y))
1992 return scm_i_exact_rational_ceiling_remainder (x, y);
1993 else
fa075d40
AW
1994 return scm_wta_dispatch_2 (g_scm_ceiling_remainder, x, y, SCM_ARG2,
1995 s_scm_ceiling_remainder);
8f9da340
MW
1996 }
1997 else
fa075d40
AW
1998 return scm_wta_dispatch_2 (g_scm_ceiling_remainder, x, y, SCM_ARG1,
1999 s_scm_ceiling_remainder);
8f9da340
MW
2000}
2001#undef FUNC_NAME
2002
2003static SCM
2004scm_i_inexact_ceiling_remainder (double x, double y)
2005{
2006 /* Although it would be more efficient to use fmod here, we can't
2007 because it would in some cases produce results inconsistent with
2008 scm_i_inexact_ceiling_quotient, such that x != q * y + r (not even
2009 close). In particular, when x is very close to a multiple of y,
2010 then r might be either 0.0 or -y, but those two cases must
2011 correspond to different choices of q. If r = 0.0 then q must be
2012 x/y, and if r = -y then q must be x/y+1. If quotient chooses one
2013 and remainder chooses the other, it would be bad. */
2014 if (SCM_UNLIKELY (y == 0))
2015 scm_num_overflow (s_scm_ceiling_remainder); /* or return a NaN? */
2016 else
00472a22 2017 return scm_i_from_double (x - y * ceil (x / y));
8f9da340
MW
2018}
2019
2020static SCM
2021scm_i_exact_rational_ceiling_remainder (SCM x, SCM y)
2022{
2023 SCM xd = scm_denominator (x);
2024 SCM yd = scm_denominator (y);
2025 SCM r1 = scm_ceiling_remainder (scm_product (scm_numerator (x), yd),
2026 scm_product (scm_numerator (y), xd));
2027 return scm_divide (r1, scm_product (xd, yd));
2028}
2029
2030static void scm_i_inexact_ceiling_divide (double x, double y,
2031 SCM *qp, SCM *rp);
2032static void scm_i_exact_rational_ceiling_divide (SCM x, SCM y,
2033 SCM *qp, SCM *rp);
2034
2035SCM_PRIMITIVE_GENERIC (scm_i_ceiling_divide, "ceiling/", 2, 0, 0,
2036 (SCM x, SCM y),
2037 "Return the integer @var{q} and the real number @var{r}\n"
2038 "such that @math{@var{x} = @var{q}*@var{y} + @var{r}}\n"
2039 "and @math{@var{q} = ceiling(@var{x} / @var{y})}.\n"
2040 "@lisp\n"
2041 "(ceiling/ 123 10) @result{} 13 and -7\n"
2042 "(ceiling/ 123 -10) @result{} -12 and 3\n"
2043 "(ceiling/ -123 10) @result{} -12 and -3\n"
2044 "(ceiling/ -123 -10) @result{} 13 and 7\n"
2045 "(ceiling/ -123.2 -63.5) @result{} 2.0 and 3.8\n"
2046 "(ceiling/ 16/3 -10/7) @result{} -3 and 22/21\n"
2047 "@end lisp")
2048#define FUNC_NAME s_scm_i_ceiling_divide
2049{
2050 SCM q, r;
2051
2052 scm_ceiling_divide(x, y, &q, &r);
2053 return scm_values (scm_list_2 (q, r));
2054}
2055#undef FUNC_NAME
2056
2057#define s_scm_ceiling_divide s_scm_i_ceiling_divide
2058#define g_scm_ceiling_divide g_scm_i_ceiling_divide
2059
2060void
2061scm_ceiling_divide (SCM x, SCM y, SCM *qp, SCM *rp)
2062{
2063 if (SCM_LIKELY (SCM_I_INUMP (x)))
2064 {
2065 scm_t_inum xx = SCM_I_INUM (x);
2066 if (SCM_LIKELY (SCM_I_INUMP (y)))
2067 {
2068 scm_t_inum yy = SCM_I_INUM (y);
2069 if (SCM_UNLIKELY (yy == 0))
2070 scm_num_overflow (s_scm_ceiling_divide);
2071 else
2072 {
2073 scm_t_inum qq = xx / yy;
2074 scm_t_inum rr = xx % yy;
2075 int needs_adjustment;
2076
2077 if (SCM_LIKELY (yy > 0))
2078 needs_adjustment = (rr > 0);
2079 else
2080 needs_adjustment = (rr < 0);
2081
2082 if (needs_adjustment)
2083 {
2084 rr -= yy;
2085 qq++;
2086 }
2087 if (SCM_LIKELY (SCM_FIXABLE (qq)))
2088 *qp = SCM_I_MAKINUM (qq);
2089 else
2090 *qp = scm_i_inum2big (qq);
2091 *rp = SCM_I_MAKINUM (rr);
2092 }
2093 return;
2094 }
2095 else if (SCM_BIGP (y))
2096 {
2097 int sign = mpz_sgn (SCM_I_BIG_MPZ (y));
2098 scm_remember_upto_here_1 (y);
2099 if (SCM_LIKELY (sign > 0))
2100 {
2101 if (SCM_LIKELY (xx > 0))
2102 {
2103 SCM r = scm_i_mkbig ();
2104 mpz_sub_ui (SCM_I_BIG_MPZ (r), SCM_I_BIG_MPZ (y), xx);
2105 scm_remember_upto_here_1 (y);
2106 mpz_neg (SCM_I_BIG_MPZ (r), SCM_I_BIG_MPZ (r));
2107 *qp = SCM_INUM1;
2108 *rp = scm_i_normbig (r);
2109 }
2110 else if (SCM_UNLIKELY (xx == SCM_MOST_NEGATIVE_FIXNUM)
2111 && SCM_UNLIKELY (mpz_cmp_ui (SCM_I_BIG_MPZ (y),
2112 - SCM_MOST_NEGATIVE_FIXNUM) == 0))
2113 {
2114 /* Special case: x == fixnum-min && y == abs (fixnum-min) */
2115 scm_remember_upto_here_1 (y);
2116 *qp = SCM_I_MAKINUM (-1);
2117 *rp = SCM_INUM0;
2118 }
2119 else
2120 {
2121 *qp = SCM_INUM0;
2122 *rp = x;
2123 }
2124 }
2125 else if (xx >= 0)
2126 {
2127 *qp = SCM_INUM0;
2128 *rp = x;
2129 }
2130 else
2131 {
2132 SCM r = scm_i_mkbig ();
2133 mpz_add_ui (SCM_I_BIG_MPZ (r), SCM_I_BIG_MPZ (y), -xx);
2134 scm_remember_upto_here_1 (y);
2135 mpz_neg (SCM_I_BIG_MPZ (r), SCM_I_BIG_MPZ (r));
2136 *qp = SCM_INUM1;
2137 *rp = scm_i_normbig (r);
2138 }
2139 return;
2140 }
2141 else if (SCM_REALP (y))
2142 return scm_i_inexact_ceiling_divide (xx, SCM_REAL_VALUE (y), qp, rp);
2143 else if (SCM_FRACTIONP (y))
2144 return scm_i_exact_rational_ceiling_divide (x, y, qp, rp);
2145 else
2146 return two_valued_wta_dispatch_2 (g_scm_ceiling_divide, x, y, SCM_ARG2,
2147 s_scm_ceiling_divide, qp, rp);
2148 }
2149 else if (SCM_BIGP (x))
2150 {
2151 if (SCM_LIKELY (SCM_I_INUMP (y)))
2152 {
2153 scm_t_inum yy = SCM_I_INUM (y);
2154 if (SCM_UNLIKELY (yy == 0))
2155 scm_num_overflow (s_scm_ceiling_divide);
2156 else
2157 {
2158 SCM q = scm_i_mkbig ();
2159 SCM r = scm_i_mkbig ();
2160 if (yy > 0)
2161 mpz_cdiv_qr_ui (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (r),
2162 SCM_I_BIG_MPZ (x), yy);
2163 else
2164 {
2165 mpz_fdiv_qr_ui (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (r),
2166 SCM_I_BIG_MPZ (x), -yy);
2167 mpz_neg (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (q));
2168 }
2169 scm_remember_upto_here_1 (x);
2170 *qp = scm_i_normbig (q);
2171 *rp = scm_i_normbig (r);
2172 }
2173 return;
2174 }
2175 else if (SCM_BIGP (y))
2176 {
2177 SCM q = scm_i_mkbig ();
2178 SCM r = scm_i_mkbig ();
2179 mpz_cdiv_qr (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (r),
2180 SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
2181 scm_remember_upto_here_2 (x, y);
2182 *qp = scm_i_normbig (q);
2183 *rp = scm_i_normbig (r);
2184 return;
2185 }
2186 else if (SCM_REALP (y))
2187 return scm_i_inexact_ceiling_divide
2188 (scm_i_big2dbl (x), SCM_REAL_VALUE (y), qp, rp);
2189 else if (SCM_FRACTIONP (y))
2190 return scm_i_exact_rational_ceiling_divide (x, y, qp, rp);
2191 else
2192 return two_valued_wta_dispatch_2 (g_scm_ceiling_divide, x, y, SCM_ARG2,
2193 s_scm_ceiling_divide, qp, rp);
2194 }
2195 else if (SCM_REALP (x))
2196 {
2197 if (SCM_REALP (y) || SCM_I_INUMP (y) ||
2198 SCM_BIGP (y) || SCM_FRACTIONP (y))
2199 return scm_i_inexact_ceiling_divide
2200 (SCM_REAL_VALUE (x), scm_to_double (y), qp, rp);
2201 else
2202 return two_valued_wta_dispatch_2 (g_scm_ceiling_divide, x, y, SCM_ARG2,
2203 s_scm_ceiling_divide, qp, rp);
2204 }
2205 else if (SCM_FRACTIONP (x))
2206 {
2207 if (SCM_REALP (y))
2208 return scm_i_inexact_ceiling_divide
2209 (scm_i_fraction2double (x), SCM_REAL_VALUE (y), qp, rp);
2210 else if (SCM_I_INUMP (y) || SCM_BIGP (y) || SCM_FRACTIONP (y))
2211 return scm_i_exact_rational_ceiling_divide (x, y, qp, rp);
2212 else
2213 return two_valued_wta_dispatch_2 (g_scm_ceiling_divide, x, y, SCM_ARG2,
2214 s_scm_ceiling_divide, qp, rp);
2215 }
2216 else
2217 return two_valued_wta_dispatch_2 (g_scm_ceiling_divide, x, y, SCM_ARG1,
2218 s_scm_ceiling_divide, qp, rp);
2219}
2220
2221static void
2222scm_i_inexact_ceiling_divide (double x, double y, SCM *qp, SCM *rp)
2223{
2224 if (SCM_UNLIKELY (y == 0))
2225 scm_num_overflow (s_scm_ceiling_divide); /* or return a NaN? */
2226 else
2227 {
2228 double q = ceil (x / y);
2229 double r = x - q * y;
00472a22
MW
2230 *qp = scm_i_from_double (q);
2231 *rp = scm_i_from_double (r);
8f9da340
MW
2232 }
2233}
2234
2235static void
2236scm_i_exact_rational_ceiling_divide (SCM x, SCM y, SCM *qp, SCM *rp)
2237{
2238 SCM r1;
2239 SCM xd = scm_denominator (x);
2240 SCM yd = scm_denominator (y);
2241
2242 scm_ceiling_divide (scm_product (scm_numerator (x), yd),
2243 scm_product (scm_numerator (y), xd),
2244 qp, &r1);
2245 *rp = scm_divide (r1, scm_product (xd, yd));
2246}
2247
2248static SCM scm_i_inexact_truncate_quotient (double x, double y);
2249static SCM scm_i_exact_rational_truncate_quotient (SCM x, SCM y);
2250
2251SCM_PRIMITIVE_GENERIC (scm_truncate_quotient, "truncate-quotient", 2, 0, 0,
2252 (SCM x, SCM y),
2253 "Return @math{@var{x} / @var{y}} rounded toward zero.\n"
2254 "@lisp\n"
2255 "(truncate-quotient 123 10) @result{} 12\n"
2256 "(truncate-quotient 123 -10) @result{} -12\n"
2257 "(truncate-quotient -123 10) @result{} -12\n"
2258 "(truncate-quotient -123 -10) @result{} 12\n"
2259 "(truncate-quotient -123.2 -63.5) @result{} 1.0\n"
2260 "(truncate-quotient 16/3 -10/7) @result{} -3\n"
2261 "@end lisp")
2262#define FUNC_NAME s_scm_truncate_quotient
2263{
2264 if (SCM_LIKELY (SCM_I_INUMP (x)))
2265 {
2266 scm_t_inum xx = SCM_I_INUM (x);
2267 if (SCM_LIKELY (SCM_I_INUMP (y)))
2268 {
2269 scm_t_inum yy = SCM_I_INUM (y);
2270 if (SCM_UNLIKELY (yy == 0))
2271 scm_num_overflow (s_scm_truncate_quotient);
2272 else
2273 {
2274 scm_t_inum qq = xx / yy;
2275 if (SCM_LIKELY (SCM_FIXABLE (qq)))
2276 return SCM_I_MAKINUM (qq);
2277 else
2278 return scm_i_inum2big (qq);
2279 }
2280 }
2281 else if (SCM_BIGP (y))
2282 {
2283 if (SCM_UNLIKELY (xx == SCM_MOST_NEGATIVE_FIXNUM)
2284 && SCM_UNLIKELY (mpz_cmp_ui (SCM_I_BIG_MPZ (y),
2285 - SCM_MOST_NEGATIVE_FIXNUM) == 0))
2286 {
2287 /* Special case: x == fixnum-min && y == abs (fixnum-min) */
2288 scm_remember_upto_here_1 (y);
2289 return SCM_I_MAKINUM (-1);
2290 }
2291 else
2292 return SCM_INUM0;
2293 }
2294 else if (SCM_REALP (y))
2295 return scm_i_inexact_truncate_quotient (xx, SCM_REAL_VALUE (y));
2296 else if (SCM_FRACTIONP (y))
2297 return scm_i_exact_rational_truncate_quotient (x, y);
2298 else
fa075d40
AW
2299 return scm_wta_dispatch_2 (g_scm_truncate_quotient, x, y, SCM_ARG2,
2300 s_scm_truncate_quotient);
8f9da340
MW
2301 }
2302 else if (SCM_BIGP (x))
2303 {
2304 if (SCM_LIKELY (SCM_I_INUMP (y)))
2305 {
2306 scm_t_inum yy = SCM_I_INUM (y);
2307 if (SCM_UNLIKELY (yy == 0))
2308 scm_num_overflow (s_scm_truncate_quotient);
2309 else if (SCM_UNLIKELY (yy == 1))
2310 return x;
2311 else
2312 {
2313 SCM q = scm_i_mkbig ();
2314 if (yy > 0)
2315 mpz_tdiv_q_ui (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (x), yy);
2316 else
2317 {
2318 mpz_tdiv_q_ui (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (x), -yy);
2319 mpz_neg (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (q));
2320 }
2321 scm_remember_upto_here_1 (x);
2322 return scm_i_normbig (q);
2323 }
2324 }
2325 else if (SCM_BIGP (y))
2326 {
2327 SCM q = scm_i_mkbig ();
2328 mpz_tdiv_q (SCM_I_BIG_MPZ (q),
2329 SCM_I_BIG_MPZ (x),
2330 SCM_I_BIG_MPZ (y));
2331 scm_remember_upto_here_2 (x, y);
2332 return scm_i_normbig (q);
2333 }
2334 else if (SCM_REALP (y))
2335 return scm_i_inexact_truncate_quotient
2336 (scm_i_big2dbl (x), SCM_REAL_VALUE (y));
2337 else if (SCM_FRACTIONP (y))
2338 return scm_i_exact_rational_truncate_quotient (x, y);
2339 else
fa075d40
AW
2340 return scm_wta_dispatch_2 (g_scm_truncate_quotient, x, y, SCM_ARG2,
2341 s_scm_truncate_quotient);
8f9da340
MW
2342 }
2343 else if (SCM_REALP (x))
2344 {
2345 if (SCM_REALP (y) || SCM_I_INUMP (y) ||
2346 SCM_BIGP (y) || SCM_FRACTIONP (y))
2347 return scm_i_inexact_truncate_quotient
2348 (SCM_REAL_VALUE (x), scm_to_double (y));
2349 else
fa075d40
AW
2350 return scm_wta_dispatch_2 (g_scm_truncate_quotient, x, y, SCM_ARG2,
2351 s_scm_truncate_quotient);
8f9da340
MW
2352 }
2353 else if (SCM_FRACTIONP (x))
2354 {
2355 if (SCM_REALP (y))
2356 return scm_i_inexact_truncate_quotient
2357 (scm_i_fraction2double (x), SCM_REAL_VALUE (y));
2358 else if (SCM_I_INUMP (y) || SCM_BIGP (y) || SCM_FRACTIONP (y))
2359 return scm_i_exact_rational_truncate_quotient (x, y);
2360 else
fa075d40
AW
2361 return scm_wta_dispatch_2 (g_scm_truncate_quotient, x, y, SCM_ARG2,
2362 s_scm_truncate_quotient);
8f9da340
MW
2363 }
2364 else
fa075d40
AW
2365 return scm_wta_dispatch_2 (g_scm_truncate_quotient, x, y, SCM_ARG1,
2366 s_scm_truncate_quotient);
8f9da340
MW
2367}
2368#undef FUNC_NAME
2369
2370static SCM
2371scm_i_inexact_truncate_quotient (double x, double y)
2372{
2373 if (SCM_UNLIKELY (y == 0))
2374 scm_num_overflow (s_scm_truncate_quotient); /* or return a NaN? */
2375 else
00472a22 2376 return scm_i_from_double (trunc (x / y));
8f9da340
MW
2377}
2378
2379static SCM
2380scm_i_exact_rational_truncate_quotient (SCM x, SCM y)
2381{
2382 return scm_truncate_quotient
2383 (scm_product (scm_numerator (x), scm_denominator (y)),
2384 scm_product (scm_numerator (y), scm_denominator (x)));
2385}
2386
2387static SCM scm_i_inexact_truncate_remainder (double x, double y);
2388static SCM scm_i_exact_rational_truncate_remainder (SCM x, SCM y);
2389
2390SCM_PRIMITIVE_GENERIC (scm_truncate_remainder, "truncate-remainder", 2, 0, 0,
2391 (SCM x, SCM y),
2392 "Return the real number @var{r} such that\n"
2393 "@math{@var{x} = @var{q}*@var{y} + @var{r}}\n"
2394 "where @math{@var{q} = truncate(@var{x} / @var{y})}.\n"
2395 "@lisp\n"
2396 "(truncate-remainder 123 10) @result{} 3\n"
2397 "(truncate-remainder 123 -10) @result{} 3\n"
2398 "(truncate-remainder -123 10) @result{} -3\n"
2399 "(truncate-remainder -123 -10) @result{} -3\n"
2400 "(truncate-remainder -123.2 -63.5) @result{} -59.7\n"
2401 "(truncate-remainder 16/3 -10/7) @result{} 22/21\n"
2402 "@end lisp")
2403#define FUNC_NAME s_scm_truncate_remainder
2404{
2405 if (SCM_LIKELY (SCM_I_INUMP (x)))
2406 {
2407 scm_t_inum xx = SCM_I_INUM (x);
2408 if (SCM_LIKELY (SCM_I_INUMP (y)))
2409 {
2410 scm_t_inum yy = SCM_I_INUM (y);
2411 if (SCM_UNLIKELY (yy == 0))
2412 scm_num_overflow (s_scm_truncate_remainder);
2413 else
2414 return SCM_I_MAKINUM (xx % yy);
2415 }
2416 else if (SCM_BIGP (y))
2417 {
2418 if (SCM_UNLIKELY (xx == SCM_MOST_NEGATIVE_FIXNUM)
2419 && SCM_UNLIKELY (mpz_cmp_ui (SCM_I_BIG_MPZ (y),
2420 - SCM_MOST_NEGATIVE_FIXNUM) == 0))
2421 {
2422 /* Special case: x == fixnum-min && y == abs (fixnum-min) */
2423 scm_remember_upto_here_1 (y);
2424 return SCM_INUM0;
2425 }
2426 else
2427 return x;
2428 }
2429 else if (SCM_REALP (y))
2430 return scm_i_inexact_truncate_remainder (xx, SCM_REAL_VALUE (y));
2431 else if (SCM_FRACTIONP (y))
2432 return scm_i_exact_rational_truncate_remainder (x, y);
2433 else
fa075d40
AW
2434 return scm_wta_dispatch_2 (g_scm_truncate_remainder, x, y, SCM_ARG2,
2435 s_scm_truncate_remainder);
8f9da340
MW
2436 }
2437 else if (SCM_BIGP (x))
2438 {
2439 if (SCM_LIKELY (SCM_I_INUMP (y)))
2440 {
2441 scm_t_inum yy = SCM_I_INUM (y);
2442 if (SCM_UNLIKELY (yy == 0))
2443 scm_num_overflow (s_scm_truncate_remainder);
2444 else
2445 {
2446 scm_t_inum rr = (mpz_tdiv_ui (SCM_I_BIG_MPZ (x),
2447 (yy > 0) ? yy : -yy)
2448 * mpz_sgn (SCM_I_BIG_MPZ (x)));
2449 scm_remember_upto_here_1 (x);
2450 return SCM_I_MAKINUM (rr);
2451 }
2452 }
2453 else if (SCM_BIGP (y))
2454 {
2455 SCM r = scm_i_mkbig ();
2456 mpz_tdiv_r (SCM_I_BIG_MPZ (r),
2457 SCM_I_BIG_MPZ (x),
2458 SCM_I_BIG_MPZ (y));
2459 scm_remember_upto_here_2 (x, y);
2460 return scm_i_normbig (r);
2461 }
2462 else if (SCM_REALP (y))
2463 return scm_i_inexact_truncate_remainder
2464 (scm_i_big2dbl (x), SCM_REAL_VALUE (y));
2465 else if (SCM_FRACTIONP (y))
2466 return scm_i_exact_rational_truncate_remainder (x, y);
2467 else
fa075d40
AW
2468 return scm_wta_dispatch_2 (g_scm_truncate_remainder, x, y, SCM_ARG2,
2469 s_scm_truncate_remainder);
8f9da340
MW
2470 }
2471 else if (SCM_REALP (x))
2472 {
2473 if (SCM_REALP (y) || SCM_I_INUMP (y) ||
2474 SCM_BIGP (y) || SCM_FRACTIONP (y))
2475 return scm_i_inexact_truncate_remainder
2476 (SCM_REAL_VALUE (x), scm_to_double (y));
2477 else
fa075d40
AW
2478 return scm_wta_dispatch_2 (g_scm_truncate_remainder, x, y, SCM_ARG2,
2479 s_scm_truncate_remainder);
8f9da340
MW
2480 }
2481 else if (SCM_FRACTIONP (x))
2482 {
2483 if (SCM_REALP (y))
2484 return scm_i_inexact_truncate_remainder
2485 (scm_i_fraction2double (x), SCM_REAL_VALUE (y));
2486 else if (SCM_I_INUMP (y) || SCM_BIGP (y) || SCM_FRACTIONP (y))
2487 return scm_i_exact_rational_truncate_remainder (x, y);
2488 else
fa075d40
AW
2489 return scm_wta_dispatch_2 (g_scm_truncate_remainder, x, y, SCM_ARG2,
2490 s_scm_truncate_remainder);
8f9da340
MW
2491 }
2492 else
fa075d40
AW
2493 return scm_wta_dispatch_2 (g_scm_truncate_remainder, x, y, SCM_ARG1,
2494 s_scm_truncate_remainder);
8f9da340
MW
2495}
2496#undef FUNC_NAME
2497
2498static SCM
2499scm_i_inexact_truncate_remainder (double x, double y)
2500{
2501 /* Although it would be more efficient to use fmod here, we can't
2502 because it would in some cases produce results inconsistent with
2503 scm_i_inexact_truncate_quotient, such that x != q * y + r (not even
2504 close). In particular, when x is very close to a multiple of y,
2505 then r might be either 0.0 or sgn(x)*|y|, but those two cases must
2506 correspond to different choices of q. If quotient chooses one and
2507 remainder chooses the other, it would be bad. */
2508 if (SCM_UNLIKELY (y == 0))
2509 scm_num_overflow (s_scm_truncate_remainder); /* or return a NaN? */
2510 else
00472a22 2511 return scm_i_from_double (x - y * trunc (x / y));
8f9da340
MW
2512}
2513
2514static SCM
2515scm_i_exact_rational_truncate_remainder (SCM x, SCM y)
2516{
2517 SCM xd = scm_denominator (x);
2518 SCM yd = scm_denominator (y);
2519 SCM r1 = scm_truncate_remainder (scm_product (scm_numerator (x), yd),
2520 scm_product (scm_numerator (y), xd));
2521 return scm_divide (r1, scm_product (xd, yd));
2522}
2523
2524
2525static void scm_i_inexact_truncate_divide (double x, double y,
2526 SCM *qp, SCM *rp);
2527static void scm_i_exact_rational_truncate_divide (SCM x, SCM y,
2528 SCM *qp, SCM *rp);
2529
2530SCM_PRIMITIVE_GENERIC (scm_i_truncate_divide, "truncate/", 2, 0, 0,
2531 (SCM x, SCM y),
2532 "Return the integer @var{q} and the real number @var{r}\n"
2533 "such that @math{@var{x} = @var{q}*@var{y} + @var{r}}\n"
2534 "and @math{@var{q} = truncate(@var{x} / @var{y})}.\n"
2535 "@lisp\n"
2536 "(truncate/ 123 10) @result{} 12 and 3\n"
2537 "(truncate/ 123 -10) @result{} -12 and 3\n"
2538 "(truncate/ -123 10) @result{} -12 and -3\n"
2539 "(truncate/ -123 -10) @result{} 12 and -3\n"
2540 "(truncate/ -123.2 -63.5) @result{} 1.0 and -59.7\n"
2541 "(truncate/ 16/3 -10/7) @result{} -3 and 22/21\n"
2542 "@end lisp")
2543#define FUNC_NAME s_scm_i_truncate_divide
2544{
2545 SCM q, r;
2546
2547 scm_truncate_divide(x, y, &q, &r);
2548 return scm_values (scm_list_2 (q, r));
2549}
2550#undef FUNC_NAME
2551
2552#define s_scm_truncate_divide s_scm_i_truncate_divide
2553#define g_scm_truncate_divide g_scm_i_truncate_divide
2554
2555void
2556scm_truncate_divide (SCM x, SCM y, SCM *qp, SCM *rp)
2557{
2558 if (SCM_LIKELY (SCM_I_INUMP (x)))
2559 {
2560 scm_t_inum xx = SCM_I_INUM (x);
2561 if (SCM_LIKELY (SCM_I_INUMP (y)))
2562 {
2563 scm_t_inum yy = SCM_I_INUM (y);
2564 if (SCM_UNLIKELY (yy == 0))
2565 scm_num_overflow (s_scm_truncate_divide);
2566 else
2567 {
2568 scm_t_inum qq = xx / yy;
2569 scm_t_inum rr = xx % yy;
2570 if (SCM_LIKELY (SCM_FIXABLE (qq)))
2571 *qp = SCM_I_MAKINUM (qq);
2572 else
2573 *qp = scm_i_inum2big (qq);
2574 *rp = SCM_I_MAKINUM (rr);
2575 }
2576 return;
2577 }
2578 else if (SCM_BIGP (y))
2579 {
2580 if (SCM_UNLIKELY (xx == SCM_MOST_NEGATIVE_FIXNUM)
2581 && SCM_UNLIKELY (mpz_cmp_ui (SCM_I_BIG_MPZ (y),
2582 - SCM_MOST_NEGATIVE_FIXNUM) == 0))
2583 {
2584 /* Special case: x == fixnum-min && y == abs (fixnum-min) */
2585 scm_remember_upto_here_1 (y);
2586 *qp = SCM_I_MAKINUM (-1);
2587 *rp = SCM_INUM0;
2588 }
2589 else
2590 {
2591 *qp = SCM_INUM0;
2592 *rp = x;
2593 }
2594 return;
2595 }
2596 else if (SCM_REALP (y))
2597 return scm_i_inexact_truncate_divide (xx, SCM_REAL_VALUE (y), qp, rp);
2598 else if (SCM_FRACTIONP (y))
2599 return scm_i_exact_rational_truncate_divide (x, y, qp, rp);
2600 else
2601 return two_valued_wta_dispatch_2
2602 (g_scm_truncate_divide, x, y, SCM_ARG2,
2603 s_scm_truncate_divide, qp, rp);
2604 }
2605 else if (SCM_BIGP (x))
2606 {
2607 if (SCM_LIKELY (SCM_I_INUMP (y)))
2608 {
2609 scm_t_inum yy = SCM_I_INUM (y);
2610 if (SCM_UNLIKELY (yy == 0))
2611 scm_num_overflow (s_scm_truncate_divide);
2612 else
2613 {
2614 SCM q = scm_i_mkbig ();
2615 scm_t_inum rr;
2616 if (yy > 0)
2617 rr = mpz_tdiv_q_ui (SCM_I_BIG_MPZ (q),
2618 SCM_I_BIG_MPZ (x), yy);
2619 else
2620 {
2621 rr = mpz_tdiv_q_ui (SCM_I_BIG_MPZ (q),
2622 SCM_I_BIG_MPZ (x), -yy);
2623 mpz_neg (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (q));
2624 }
2625 rr *= mpz_sgn (SCM_I_BIG_MPZ (x));
2626 scm_remember_upto_here_1 (x);
2627 *qp = scm_i_normbig (q);
2628 *rp = SCM_I_MAKINUM (rr);
2629 }
2630 return;
2631 }
2632 else if (SCM_BIGP (y))
2633 {
2634 SCM q = scm_i_mkbig ();
2635 SCM r = scm_i_mkbig ();
2636 mpz_tdiv_qr (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (r),
2637 SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
2638 scm_remember_upto_here_2 (x, y);
2639 *qp = scm_i_normbig (q);
2640 *rp = scm_i_normbig (r);
2641 }
2642 else if (SCM_REALP (y))
2643 return scm_i_inexact_truncate_divide
2644 (scm_i_big2dbl (x), SCM_REAL_VALUE (y), qp, rp);
2645 else if (SCM_FRACTIONP (y))
2646 return scm_i_exact_rational_truncate_divide (x, y, qp, rp);
2647 else
2648 return two_valued_wta_dispatch_2
2649 (g_scm_truncate_divide, x, y, SCM_ARG2,
2650 s_scm_truncate_divide, qp, rp);
2651 }
2652 else if (SCM_REALP (x))
2653 {
2654 if (SCM_REALP (y) || SCM_I_INUMP (y) ||
2655 SCM_BIGP (y) || SCM_FRACTIONP (y))
2656 return scm_i_inexact_truncate_divide
2657 (SCM_REAL_VALUE (x), scm_to_double (y), qp, rp);
2658 else
2659 return two_valued_wta_dispatch_2
2660 (g_scm_truncate_divide, x, y, SCM_ARG2,
2661 s_scm_truncate_divide, qp, rp);
2662 }
2663 else if (SCM_FRACTIONP (x))
2664 {
2665 if (SCM_REALP (y))
2666 return scm_i_inexact_truncate_divide
2667 (scm_i_fraction2double (x), SCM_REAL_VALUE (y), qp, rp);
2668 else if (SCM_I_INUMP (y) || SCM_BIGP (y) || SCM_FRACTIONP (y))
2669 return scm_i_exact_rational_truncate_divide (x, y, qp, rp);
2670 else
2671 return two_valued_wta_dispatch_2
2672 (g_scm_truncate_divide, x, y, SCM_ARG2,
2673 s_scm_truncate_divide, qp, rp);
2674 }
2675 else
2676 return two_valued_wta_dispatch_2 (g_scm_truncate_divide, x, y, SCM_ARG1,
2677 s_scm_truncate_divide, qp, rp);
2678}
2679
2680static void
2681scm_i_inexact_truncate_divide (double x, double y, SCM *qp, SCM *rp)
2682{
2683 if (SCM_UNLIKELY (y == 0))
2684 scm_num_overflow (s_scm_truncate_divide); /* or return a NaN? */
2685 else
2686 {
c15fe499
MW
2687 double q = trunc (x / y);
2688 double r = x - q * y;
00472a22
MW
2689 *qp = scm_i_from_double (q);
2690 *rp = scm_i_from_double (r);
8f9da340
MW
2691 }
2692}
2693
2694static void
2695scm_i_exact_rational_truncate_divide (SCM x, SCM y, SCM *qp, SCM *rp)
2696{
2697 SCM r1;
2698 SCM xd = scm_denominator (x);
2699 SCM yd = scm_denominator (y);
2700
2701 scm_truncate_divide (scm_product (scm_numerator (x), yd),
2702 scm_product (scm_numerator (y), xd),
2703 qp, &r1);
2704 *rp = scm_divide (r1, scm_product (xd, yd));
2705}
2706
ff62c168
MW
2707static SCM scm_i_inexact_centered_quotient (double x, double y);
2708static SCM scm_i_bigint_centered_quotient (SCM x, SCM y);
03ddd15b 2709static SCM scm_i_exact_rational_centered_quotient (SCM x, SCM y);
ff62c168 2710
8f9da340
MW
2711SCM_PRIMITIVE_GENERIC (scm_centered_quotient, "centered-quotient", 2, 0, 0,
2712 (SCM x, SCM y),
2713 "Return the integer @var{q} such that\n"
2714 "@math{@var{x} = @var{q}*@var{y} + @var{r}} where\n"
2715 "@math{-abs(@var{y}/2) <= @var{r} < abs(@var{y}/2)}.\n"
2716 "@lisp\n"
2717 "(centered-quotient 123 10) @result{} 12\n"
2718 "(centered-quotient 123 -10) @result{} -12\n"
2719 "(centered-quotient -123 10) @result{} -12\n"
2720 "(centered-quotient -123 -10) @result{} 12\n"
2721 "(centered-quotient -123.2 -63.5) @result{} 2.0\n"
2722 "(centered-quotient 16/3 -10/7) @result{} -4\n"
2723 "@end lisp")
2724#define FUNC_NAME s_scm_centered_quotient
2725{
2726 if (SCM_LIKELY (SCM_I_INUMP (x)))
2727 {
2728 scm_t_inum xx = SCM_I_INUM (x);
2729 if (SCM_LIKELY (SCM_I_INUMP (y)))
2730 {
2731 scm_t_inum yy = SCM_I_INUM (y);
2732 if (SCM_UNLIKELY (yy == 0))
2733 scm_num_overflow (s_scm_centered_quotient);
2734 else
2735 {
2736 scm_t_inum qq = xx / yy;
2737 scm_t_inum rr = xx % yy;
2738 if (SCM_LIKELY (xx > 0))
2739 {
2740 if (SCM_LIKELY (yy > 0))
2741 {
2742 if (rr >= (yy + 1) / 2)
2743 qq++;
2744 }
2745 else
2746 {
2747 if (rr >= (1 - yy) / 2)
2748 qq--;
2749 }
2750 }
2751 else
2752 {
2753 if (SCM_LIKELY (yy > 0))
2754 {
2755 if (rr < -yy / 2)
2756 qq--;
2757 }
2758 else
2759 {
2760 if (rr < yy / 2)
2761 qq++;
2762 }
2763 }
2764 if (SCM_LIKELY (SCM_FIXABLE (qq)))
2765 return SCM_I_MAKINUM (qq);
2766 else
2767 return scm_i_inum2big (qq);
2768 }
2769 }
2770 else if (SCM_BIGP (y))
2771 {
2772 /* Pass a denormalized bignum version of x (even though it
2773 can fit in a fixnum) to scm_i_bigint_centered_quotient */
2774 return scm_i_bigint_centered_quotient (scm_i_long2big (xx), y);
2775 }
2776 else if (SCM_REALP (y))
2777 return scm_i_inexact_centered_quotient (xx, SCM_REAL_VALUE (y));
2778 else if (SCM_FRACTIONP (y))
2779 return scm_i_exact_rational_centered_quotient (x, y);
2780 else
fa075d40
AW
2781 return scm_wta_dispatch_2 (g_scm_centered_quotient, x, y, SCM_ARG2,
2782 s_scm_centered_quotient);
8f9da340
MW
2783 }
2784 else if (SCM_BIGP (x))
2785 {
2786 if (SCM_LIKELY (SCM_I_INUMP (y)))
2787 {
2788 scm_t_inum yy = SCM_I_INUM (y);
2789 if (SCM_UNLIKELY (yy == 0))
2790 scm_num_overflow (s_scm_centered_quotient);
2791 else if (SCM_UNLIKELY (yy == 1))
2792 return x;
2793 else
2794 {
2795 SCM q = scm_i_mkbig ();
2796 scm_t_inum rr;
2797 /* Arrange for rr to initially be non-positive,
2798 because that simplifies the test to see
2799 if it is within the needed bounds. */
2800 if (yy > 0)
2801 {
2802 rr = - mpz_cdiv_q_ui (SCM_I_BIG_MPZ (q),
2803 SCM_I_BIG_MPZ (x), yy);
2804 scm_remember_upto_here_1 (x);
2805 if (rr < -yy / 2)
2806 mpz_sub_ui (SCM_I_BIG_MPZ (q),
2807 SCM_I_BIG_MPZ (q), 1);
2808 }
2809 else
2810 {
2811 rr = - mpz_cdiv_q_ui (SCM_I_BIG_MPZ (q),
2812 SCM_I_BIG_MPZ (x), -yy);
2813 scm_remember_upto_here_1 (x);
2814 mpz_neg (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (q));
2815 if (rr < yy / 2)
2816 mpz_add_ui (SCM_I_BIG_MPZ (q),
2817 SCM_I_BIG_MPZ (q), 1);
2818 }
2819 return scm_i_normbig (q);
2820 }
2821 }
2822 else if (SCM_BIGP (y))
2823 return scm_i_bigint_centered_quotient (x, y);
2824 else if (SCM_REALP (y))
2825 return scm_i_inexact_centered_quotient
2826 (scm_i_big2dbl (x), SCM_REAL_VALUE (y));
2827 else if (SCM_FRACTIONP (y))
2828 return scm_i_exact_rational_centered_quotient (x, y);
2829 else
fa075d40
AW
2830 return scm_wta_dispatch_2 (g_scm_centered_quotient, x, y, SCM_ARG2,
2831 s_scm_centered_quotient);
8f9da340
MW
2832 }
2833 else if (SCM_REALP (x))
2834 {
2835 if (SCM_REALP (y) || SCM_I_INUMP (y) ||
2836 SCM_BIGP (y) || SCM_FRACTIONP (y))
2837 return scm_i_inexact_centered_quotient
2838 (SCM_REAL_VALUE (x), scm_to_double (y));
2839 else
fa075d40
AW
2840 return scm_wta_dispatch_2 (g_scm_centered_quotient, x, y, SCM_ARG2,
2841 s_scm_centered_quotient);
8f9da340
MW
2842 }
2843 else if (SCM_FRACTIONP (x))
2844 {
2845 if (SCM_REALP (y))
2846 return scm_i_inexact_centered_quotient
2847 (scm_i_fraction2double (x), SCM_REAL_VALUE (y));
2848 else if (SCM_I_INUMP (y) || SCM_BIGP (y) || SCM_FRACTIONP (y))
2849 return scm_i_exact_rational_centered_quotient (x, y);
2850 else
fa075d40
AW
2851 return scm_wta_dispatch_2 (g_scm_centered_quotient, x, y, SCM_ARG2,
2852 s_scm_centered_quotient);
8f9da340
MW
2853 }
2854 else
fa075d40
AW
2855 return scm_wta_dispatch_2 (g_scm_centered_quotient, x, y, SCM_ARG1,
2856 s_scm_centered_quotient);
8f9da340
MW
2857}
2858#undef FUNC_NAME
2859
2860static SCM
2861scm_i_inexact_centered_quotient (double x, double y)
2862{
2863 if (SCM_LIKELY (y > 0))
00472a22 2864 return scm_i_from_double (floor (x/y + 0.5));
8f9da340 2865 else if (SCM_LIKELY (y < 0))
00472a22 2866 return scm_i_from_double (ceil (x/y - 0.5));
8f9da340
MW
2867 else if (y == 0)
2868 scm_num_overflow (s_scm_centered_quotient); /* or return a NaN? */
2869 else
2870 return scm_nan ();
2871}
2872
2873/* Assumes that both x and y are bigints, though
2874 x might be able to fit into a fixnum. */
2875static SCM
2876scm_i_bigint_centered_quotient (SCM x, SCM y)
2877{
2878 SCM q, r, min_r;
2879
2880 /* Note that x might be small enough to fit into a
2881 fixnum, so we must not let it escape into the wild */
2882 q = scm_i_mkbig ();
2883 r = scm_i_mkbig ();
2884
2885 /* min_r will eventually become -abs(y)/2 */
2886 min_r = scm_i_mkbig ();
2887 mpz_tdiv_q_2exp (SCM_I_BIG_MPZ (min_r),
2888 SCM_I_BIG_MPZ (y), 1);
2889
2890 /* Arrange for rr to initially be non-positive,
2891 because that simplifies the test to see
2892 if it is within the needed bounds. */
2893 if (mpz_sgn (SCM_I_BIG_MPZ (y)) > 0)
2894 {
2895 mpz_cdiv_qr (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (r),
2896 SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
2897 scm_remember_upto_here_2 (x, y);
2898 mpz_neg (SCM_I_BIG_MPZ (min_r), SCM_I_BIG_MPZ (min_r));
2899 if (mpz_cmp (SCM_I_BIG_MPZ (r), SCM_I_BIG_MPZ (min_r)) < 0)
2900 mpz_sub_ui (SCM_I_BIG_MPZ (q),
2901 SCM_I_BIG_MPZ (q), 1);
2902 }
2903 else
2904 {
2905 mpz_fdiv_qr (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (r),
2906 SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
2907 scm_remember_upto_here_2 (x, y);
2908 if (mpz_cmp (SCM_I_BIG_MPZ (r), SCM_I_BIG_MPZ (min_r)) < 0)
2909 mpz_add_ui (SCM_I_BIG_MPZ (q),
2910 SCM_I_BIG_MPZ (q), 1);
2911 }
2912 scm_remember_upto_here_2 (r, min_r);
2913 return scm_i_normbig (q);
2914}
2915
2916static SCM
2917scm_i_exact_rational_centered_quotient (SCM x, SCM y)
2918{
2919 return scm_centered_quotient
2920 (scm_product (scm_numerator (x), scm_denominator (y)),
2921 scm_product (scm_numerator (y), scm_denominator (x)));
2922}
2923
2924static SCM scm_i_inexact_centered_remainder (double x, double y);
2925static SCM scm_i_bigint_centered_remainder (SCM x, SCM y);
2926static SCM scm_i_exact_rational_centered_remainder (SCM x, SCM y);
2927
2928SCM_PRIMITIVE_GENERIC (scm_centered_remainder, "centered-remainder", 2, 0, 0,
2929 (SCM x, SCM y),
2930 "Return the real number @var{r} such that\n"
2931 "@math{-abs(@var{y}/2) <= @var{r} < abs(@var{y}/2)}\n"
2932 "and @math{@var{x} = @var{q}*@var{y} + @var{r}}\n"
2933 "for some integer @var{q}.\n"
2934 "@lisp\n"
2935 "(centered-remainder 123 10) @result{} 3\n"
2936 "(centered-remainder 123 -10) @result{} 3\n"
2937 "(centered-remainder -123 10) @result{} -3\n"
2938 "(centered-remainder -123 -10) @result{} -3\n"
2939 "(centered-remainder -123.2 -63.5) @result{} 3.8\n"
2940 "(centered-remainder 16/3 -10/7) @result{} -8/21\n"
2941 "@end lisp")
2942#define FUNC_NAME s_scm_centered_remainder
2943{
2944 if (SCM_LIKELY (SCM_I_INUMP (x)))
2945 {
2946 scm_t_inum xx = SCM_I_INUM (x);
2947 if (SCM_LIKELY (SCM_I_INUMP (y)))
2948 {
2949 scm_t_inum yy = SCM_I_INUM (y);
2950 if (SCM_UNLIKELY (yy == 0))
2951 scm_num_overflow (s_scm_centered_remainder);
2952 else
2953 {
2954 scm_t_inum rr = xx % yy;
2955 if (SCM_LIKELY (xx > 0))
2956 {
2957 if (SCM_LIKELY (yy > 0))
2958 {
2959 if (rr >= (yy + 1) / 2)
2960 rr -= yy;
2961 }
2962 else
2963 {
2964 if (rr >= (1 - yy) / 2)
2965 rr += yy;
2966 }
2967 }
2968 else
2969 {
2970 if (SCM_LIKELY (yy > 0))
2971 {
2972 if (rr < -yy / 2)
2973 rr += yy;
2974 }
2975 else
2976 {
2977 if (rr < yy / 2)
2978 rr -= yy;
2979 }
2980 }
2981 return SCM_I_MAKINUM (rr);
2982 }
2983 }
2984 else if (SCM_BIGP (y))
2985 {
2986 /* Pass a denormalized bignum version of x (even though it
2987 can fit in a fixnum) to scm_i_bigint_centered_remainder */
2988 return scm_i_bigint_centered_remainder (scm_i_long2big (xx), y);
2989 }
2990 else if (SCM_REALP (y))
2991 return scm_i_inexact_centered_remainder (xx, SCM_REAL_VALUE (y));
2992 else if (SCM_FRACTIONP (y))
2993 return scm_i_exact_rational_centered_remainder (x, y);
2994 else
fa075d40
AW
2995 return scm_wta_dispatch_2 (g_scm_centered_remainder, x, y, SCM_ARG2,
2996 s_scm_centered_remainder);
8f9da340
MW
2997 }
2998 else if (SCM_BIGP (x))
2999 {
3000 if (SCM_LIKELY (SCM_I_INUMP (y)))
3001 {
3002 scm_t_inum yy = SCM_I_INUM (y);
3003 if (SCM_UNLIKELY (yy == 0))
3004 scm_num_overflow (s_scm_centered_remainder);
3005 else
3006 {
3007 scm_t_inum rr;
3008 /* Arrange for rr to initially be non-positive,
3009 because that simplifies the test to see
3010 if it is within the needed bounds. */
3011 if (yy > 0)
3012 {
3013 rr = - mpz_cdiv_ui (SCM_I_BIG_MPZ (x), yy);
3014 scm_remember_upto_here_1 (x);
3015 if (rr < -yy / 2)
3016 rr += yy;
3017 }
3018 else
3019 {
3020 rr = - mpz_cdiv_ui (SCM_I_BIG_MPZ (x), -yy);
3021 scm_remember_upto_here_1 (x);
3022 if (rr < yy / 2)
3023 rr -= yy;
3024 }
3025 return SCM_I_MAKINUM (rr);
3026 }
3027 }
3028 else if (SCM_BIGP (y))
3029 return scm_i_bigint_centered_remainder (x, y);
3030 else if (SCM_REALP (y))
3031 return scm_i_inexact_centered_remainder
3032 (scm_i_big2dbl (x), SCM_REAL_VALUE (y));
3033 else if (SCM_FRACTIONP (y))
3034 return scm_i_exact_rational_centered_remainder (x, y);
3035 else
fa075d40
AW
3036 return scm_wta_dispatch_2 (g_scm_centered_remainder, x, y, SCM_ARG2,
3037 s_scm_centered_remainder);
8f9da340
MW
3038 }
3039 else if (SCM_REALP (x))
3040 {
3041 if (SCM_REALP (y) || SCM_I_INUMP (y) ||
3042 SCM_BIGP (y) || SCM_FRACTIONP (y))
3043 return scm_i_inexact_centered_remainder
3044 (SCM_REAL_VALUE (x), scm_to_double (y));
3045 else
fa075d40
AW
3046 return scm_wta_dispatch_2 (g_scm_centered_remainder, x, y, SCM_ARG2,
3047 s_scm_centered_remainder);
8f9da340
MW
3048 }
3049 else if (SCM_FRACTIONP (x))
3050 {
3051 if (SCM_REALP (y))
3052 return scm_i_inexact_centered_remainder
3053 (scm_i_fraction2double (x), SCM_REAL_VALUE (y));
3054 else if (SCM_I_INUMP (y) || SCM_BIGP (y) || SCM_FRACTIONP (y))
3055 return scm_i_exact_rational_centered_remainder (x, y);
3056 else
fa075d40
AW
3057 return scm_wta_dispatch_2 (g_scm_centered_remainder, x, y, SCM_ARG2,
3058 s_scm_centered_remainder);
8f9da340
MW
3059 }
3060 else
fa075d40
AW
3061 return scm_wta_dispatch_2 (g_scm_centered_remainder, x, y, SCM_ARG1,
3062 s_scm_centered_remainder);
8f9da340
MW
3063}
3064#undef FUNC_NAME
3065
3066static SCM
3067scm_i_inexact_centered_remainder (double x, double y)
3068{
3069 double q;
3070
3071 /* Although it would be more efficient to use fmod here, we can't
3072 because it would in some cases produce results inconsistent with
3073 scm_i_inexact_centered_quotient, such that x != r + q * y (not even
3074 close). In particular, when x-y/2 is very close to a multiple of
3075 y, then r might be either -abs(y/2) or abs(y/2)-epsilon, but those
3076 two cases must correspond to different choices of q. If quotient
3077 chooses one and remainder chooses the other, it would be bad. */
3078 if (SCM_LIKELY (y > 0))
3079 q = floor (x/y + 0.5);
3080 else if (SCM_LIKELY (y < 0))
3081 q = ceil (x/y - 0.5);
3082 else if (y == 0)
3083 scm_num_overflow (s_scm_centered_remainder); /* or return a NaN? */
3084 else
3085 return scm_nan ();
00472a22 3086 return scm_i_from_double (x - q * y);
8f9da340
MW
3087}
3088
3089/* Assumes that both x and y are bigints, though
3090 x might be able to fit into a fixnum. */
3091static SCM
3092scm_i_bigint_centered_remainder (SCM x, SCM y)
3093{
3094 SCM r, min_r;
3095
3096 /* Note that x might be small enough to fit into a
3097 fixnum, so we must not let it escape into the wild */
3098 r = scm_i_mkbig ();
3099
3100 /* min_r will eventually become -abs(y)/2 */
3101 min_r = scm_i_mkbig ();
3102 mpz_tdiv_q_2exp (SCM_I_BIG_MPZ (min_r),
3103 SCM_I_BIG_MPZ (y), 1);
3104
3105 /* Arrange for rr to initially be non-positive,
3106 because that simplifies the test to see
3107 if it is within the needed bounds. */
3108 if (mpz_sgn (SCM_I_BIG_MPZ (y)) > 0)
3109 {
3110 mpz_cdiv_r (SCM_I_BIG_MPZ (r),
3111 SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
3112 mpz_neg (SCM_I_BIG_MPZ (min_r), SCM_I_BIG_MPZ (min_r));
3113 if (mpz_cmp (SCM_I_BIG_MPZ (r), SCM_I_BIG_MPZ (min_r)) < 0)
3114 mpz_add (SCM_I_BIG_MPZ (r),
3115 SCM_I_BIG_MPZ (r),
3116 SCM_I_BIG_MPZ (y));
3117 }
3118 else
3119 {
3120 mpz_fdiv_r (SCM_I_BIG_MPZ (r),
3121 SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
3122 if (mpz_cmp (SCM_I_BIG_MPZ (r), SCM_I_BIG_MPZ (min_r)) < 0)
3123 mpz_sub (SCM_I_BIG_MPZ (r),
3124 SCM_I_BIG_MPZ (r),
3125 SCM_I_BIG_MPZ (y));
3126 }
3127 scm_remember_upto_here_2 (x, y);
3128 return scm_i_normbig (r);
3129}
3130
3131static SCM
3132scm_i_exact_rational_centered_remainder (SCM x, SCM y)
3133{
3134 SCM xd = scm_denominator (x);
3135 SCM yd = scm_denominator (y);
3136 SCM r1 = scm_centered_remainder (scm_product (scm_numerator (x), yd),
3137 scm_product (scm_numerator (y), xd));
3138 return scm_divide (r1, scm_product (xd, yd));
3139}
3140
3141
3142static void scm_i_inexact_centered_divide (double x, double y,
3143 SCM *qp, SCM *rp);
3144static void scm_i_bigint_centered_divide (SCM x, SCM y, SCM *qp, SCM *rp);
3145static void scm_i_exact_rational_centered_divide (SCM x, SCM y,
3146 SCM *qp, SCM *rp);
3147
3148SCM_PRIMITIVE_GENERIC (scm_i_centered_divide, "centered/", 2, 0, 0,
3149 (SCM x, SCM y),
3150 "Return the integer @var{q} and the real number @var{r}\n"
3151 "such that @math{@var{x} = @var{q}*@var{y} + @var{r}}\n"
3152 "and @math{-abs(@var{y}/2) <= @var{r} < abs(@var{y}/2)}.\n"
3153 "@lisp\n"
3154 "(centered/ 123 10) @result{} 12 and 3\n"
3155 "(centered/ 123 -10) @result{} -12 and 3\n"
3156 "(centered/ -123 10) @result{} -12 and -3\n"
3157 "(centered/ -123 -10) @result{} 12 and -3\n"
3158 "(centered/ -123.2 -63.5) @result{} 2.0 and 3.8\n"
3159 "(centered/ 16/3 -10/7) @result{} -4 and -8/21\n"
3160 "@end lisp")
3161#define FUNC_NAME s_scm_i_centered_divide
3162{
3163 SCM q, r;
3164
3165 scm_centered_divide(x, y, &q, &r);
3166 return scm_values (scm_list_2 (q, r));
3167}
3168#undef FUNC_NAME
3169
3170#define s_scm_centered_divide s_scm_i_centered_divide
3171#define g_scm_centered_divide g_scm_i_centered_divide
3172
3173void
3174scm_centered_divide (SCM x, SCM y, SCM *qp, SCM *rp)
3175{
3176 if (SCM_LIKELY (SCM_I_INUMP (x)))
3177 {
3178 scm_t_inum xx = SCM_I_INUM (x);
3179 if (SCM_LIKELY (SCM_I_INUMP (y)))
3180 {
3181 scm_t_inum yy = SCM_I_INUM (y);
3182 if (SCM_UNLIKELY (yy == 0))
3183 scm_num_overflow (s_scm_centered_divide);
3184 else
3185 {
3186 scm_t_inum qq = xx / yy;
3187 scm_t_inum rr = xx % yy;
3188 if (SCM_LIKELY (xx > 0))
3189 {
3190 if (SCM_LIKELY (yy > 0))
3191 {
3192 if (rr >= (yy + 1) / 2)
3193 { qq++; rr -= yy; }
3194 }
3195 else
3196 {
3197 if (rr >= (1 - yy) / 2)
3198 { qq--; rr += yy; }
3199 }
3200 }
3201 else
3202 {
3203 if (SCM_LIKELY (yy > 0))
3204 {
3205 if (rr < -yy / 2)
3206 { qq--; rr += yy; }
3207 }
3208 else
3209 {
3210 if (rr < yy / 2)
3211 { qq++; rr -= yy; }
3212 }
3213 }
3214 if (SCM_LIKELY (SCM_FIXABLE (qq)))
3215 *qp = SCM_I_MAKINUM (qq);
3216 else
3217 *qp = scm_i_inum2big (qq);
3218 *rp = SCM_I_MAKINUM (rr);
3219 }
3220 return;
3221 }
3222 else if (SCM_BIGP (y))
3223 {
3224 /* Pass a denormalized bignum version of x (even though it
3225 can fit in a fixnum) to scm_i_bigint_centered_divide */
3226 return scm_i_bigint_centered_divide (scm_i_long2big (xx), y, qp, rp);
3227 }
3228 else if (SCM_REALP (y))
3229 return scm_i_inexact_centered_divide (xx, SCM_REAL_VALUE (y), qp, rp);
3230 else if (SCM_FRACTIONP (y))
3231 return scm_i_exact_rational_centered_divide (x, y, qp, rp);
3232 else
3233 return two_valued_wta_dispatch_2
3234 (g_scm_centered_divide, x, y, SCM_ARG2,
3235 s_scm_centered_divide, qp, rp);
3236 }
3237 else if (SCM_BIGP (x))
3238 {
3239 if (SCM_LIKELY (SCM_I_INUMP (y)))
3240 {
3241 scm_t_inum yy = SCM_I_INUM (y);
3242 if (SCM_UNLIKELY (yy == 0))
3243 scm_num_overflow (s_scm_centered_divide);
3244 else
3245 {
3246 SCM q = scm_i_mkbig ();
3247 scm_t_inum rr;
3248 /* Arrange for rr to initially be non-positive,
3249 because that simplifies the test to see
3250 if it is within the needed bounds. */
3251 if (yy > 0)
3252 {
3253 rr = - mpz_cdiv_q_ui (SCM_I_BIG_MPZ (q),
3254 SCM_I_BIG_MPZ (x), yy);
3255 scm_remember_upto_here_1 (x);
3256 if (rr < -yy / 2)
3257 {
3258 mpz_sub_ui (SCM_I_BIG_MPZ (q),
3259 SCM_I_BIG_MPZ (q), 1);
3260 rr += yy;
3261 }
3262 }
3263 else
3264 {
3265 rr = - mpz_cdiv_q_ui (SCM_I_BIG_MPZ (q),
3266 SCM_I_BIG_MPZ (x), -yy);
3267 scm_remember_upto_here_1 (x);
3268 mpz_neg (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (q));
3269 if (rr < yy / 2)
3270 {
3271 mpz_add_ui (SCM_I_BIG_MPZ (q),
3272 SCM_I_BIG_MPZ (q), 1);
3273 rr -= yy;
3274 }
3275 }
3276 *qp = scm_i_normbig (q);
3277 *rp = SCM_I_MAKINUM (rr);
3278 }
3279 return;
3280 }
3281 else if (SCM_BIGP (y))
3282 return scm_i_bigint_centered_divide (x, y, qp, rp);
3283 else if (SCM_REALP (y))
3284 return scm_i_inexact_centered_divide
3285 (scm_i_big2dbl (x), SCM_REAL_VALUE (y), qp, rp);
3286 else if (SCM_FRACTIONP (y))
3287 return scm_i_exact_rational_centered_divide (x, y, qp, rp);
3288 else
3289 return two_valued_wta_dispatch_2
3290 (g_scm_centered_divide, x, y, SCM_ARG2,
3291 s_scm_centered_divide, qp, rp);
3292 }
3293 else if (SCM_REALP (x))
3294 {
3295 if (SCM_REALP (y) || SCM_I_INUMP (y) ||
3296 SCM_BIGP (y) || SCM_FRACTIONP (y))
3297 return scm_i_inexact_centered_divide
3298 (SCM_REAL_VALUE (x), scm_to_double (y), qp, rp);
3299 else
3300 return two_valued_wta_dispatch_2
3301 (g_scm_centered_divide, x, y, SCM_ARG2,
3302 s_scm_centered_divide, qp, rp);
3303 }
3304 else if (SCM_FRACTIONP (x))
3305 {
3306 if (SCM_REALP (y))
3307 return scm_i_inexact_centered_divide
3308 (scm_i_fraction2double (x), SCM_REAL_VALUE (y), qp, rp);
3309 else if (SCM_I_INUMP (y) || SCM_BIGP (y) || SCM_FRACTIONP (y))
3310 return scm_i_exact_rational_centered_divide (x, y, qp, rp);
3311 else
3312 return two_valued_wta_dispatch_2
3313 (g_scm_centered_divide, x, y, SCM_ARG2,
3314 s_scm_centered_divide, qp, rp);
3315 }
3316 else
3317 return two_valued_wta_dispatch_2 (g_scm_centered_divide, x, y, SCM_ARG1,
3318 s_scm_centered_divide, qp, rp);
3319}
3320
3321static void
3322scm_i_inexact_centered_divide (double x, double y, SCM *qp, SCM *rp)
3323{
3324 double q, r;
3325
3326 if (SCM_LIKELY (y > 0))
3327 q = floor (x/y + 0.5);
3328 else if (SCM_LIKELY (y < 0))
3329 q = ceil (x/y - 0.5);
3330 else if (y == 0)
3331 scm_num_overflow (s_scm_centered_divide); /* or return a NaN? */
3332 else
3333 q = guile_NaN;
3334 r = x - q * y;
00472a22
MW
3335 *qp = scm_i_from_double (q);
3336 *rp = scm_i_from_double (r);
8f9da340
MW
3337}
3338
3339/* Assumes that both x and y are bigints, though
3340 x might be able to fit into a fixnum. */
3341static void
3342scm_i_bigint_centered_divide (SCM x, SCM y, SCM *qp, SCM *rp)
3343{
3344 SCM q, r, min_r;
3345
3346 /* Note that x might be small enough to fit into a
3347 fixnum, so we must not let it escape into the wild */
3348 q = scm_i_mkbig ();
3349 r = scm_i_mkbig ();
3350
3351 /* min_r will eventually become -abs(y/2) */
3352 min_r = scm_i_mkbig ();
3353 mpz_tdiv_q_2exp (SCM_I_BIG_MPZ (min_r),
3354 SCM_I_BIG_MPZ (y), 1);
3355
3356 /* Arrange for rr to initially be non-positive,
3357 because that simplifies the test to see
3358 if it is within the needed bounds. */
3359 if (mpz_sgn (SCM_I_BIG_MPZ (y)) > 0)
3360 {
3361 mpz_cdiv_qr (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (r),
3362 SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
3363 mpz_neg (SCM_I_BIG_MPZ (min_r), SCM_I_BIG_MPZ (min_r));
3364 if (mpz_cmp (SCM_I_BIG_MPZ (r), SCM_I_BIG_MPZ (min_r)) < 0)
3365 {
3366 mpz_sub_ui (SCM_I_BIG_MPZ (q),
3367 SCM_I_BIG_MPZ (q), 1);
3368 mpz_add (SCM_I_BIG_MPZ (r),
3369 SCM_I_BIG_MPZ (r),
3370 SCM_I_BIG_MPZ (y));
3371 }
3372 }
3373 else
3374 {
3375 mpz_fdiv_qr (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (r),
3376 SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
3377 if (mpz_cmp (SCM_I_BIG_MPZ (r), SCM_I_BIG_MPZ (min_r)) < 0)
3378 {
3379 mpz_add_ui (SCM_I_BIG_MPZ (q),
3380 SCM_I_BIG_MPZ (q), 1);
3381 mpz_sub (SCM_I_BIG_MPZ (r),
3382 SCM_I_BIG_MPZ (r),
3383 SCM_I_BIG_MPZ (y));
3384 }
3385 }
3386 scm_remember_upto_here_2 (x, y);
3387 *qp = scm_i_normbig (q);
3388 *rp = scm_i_normbig (r);
3389}
3390
3391static void
3392scm_i_exact_rational_centered_divide (SCM x, SCM y, SCM *qp, SCM *rp)
3393{
3394 SCM r1;
3395 SCM xd = scm_denominator (x);
3396 SCM yd = scm_denominator (y);
3397
3398 scm_centered_divide (scm_product (scm_numerator (x), yd),
3399 scm_product (scm_numerator (y), xd),
3400 qp, &r1);
3401 *rp = scm_divide (r1, scm_product (xd, yd));
3402}
3403
3404static SCM scm_i_inexact_round_quotient (double x, double y);
3405static SCM scm_i_bigint_round_quotient (SCM x, SCM y);
3406static SCM scm_i_exact_rational_round_quotient (SCM x, SCM y);
3407
3408SCM_PRIMITIVE_GENERIC (scm_round_quotient, "round-quotient", 2, 0, 0,
ff62c168 3409 (SCM x, SCM y),
8f9da340
MW
3410 "Return @math{@var{x} / @var{y}} to the nearest integer,\n"
3411 "with ties going to the nearest even integer.\n"
ff62c168 3412 "@lisp\n"
8f9da340
MW
3413 "(round-quotient 123 10) @result{} 12\n"
3414 "(round-quotient 123 -10) @result{} -12\n"
3415 "(round-quotient -123 10) @result{} -12\n"
3416 "(round-quotient -123 -10) @result{} 12\n"
3417 "(round-quotient 125 10) @result{} 12\n"
3418 "(round-quotient 127 10) @result{} 13\n"
3419 "(round-quotient 135 10) @result{} 14\n"
3420 "(round-quotient -123.2 -63.5) @result{} 2.0\n"
3421 "(round-quotient 16/3 -10/7) @result{} -4\n"
ff62c168 3422 "@end lisp")
8f9da340 3423#define FUNC_NAME s_scm_round_quotient
ff62c168
MW
3424{
3425 if (SCM_LIKELY (SCM_I_INUMP (x)))
3426 {
4a46bc2a 3427 scm_t_inum xx = SCM_I_INUM (x);
ff62c168
MW
3428 if (SCM_LIKELY (SCM_I_INUMP (y)))
3429 {
3430 scm_t_inum yy = SCM_I_INUM (y);
3431 if (SCM_UNLIKELY (yy == 0))
8f9da340 3432 scm_num_overflow (s_scm_round_quotient);
ff62c168
MW
3433 else
3434 {
ff62c168 3435 scm_t_inum qq = xx / yy;
4a46bc2a 3436 scm_t_inum rr = xx % yy;
8f9da340
MW
3437 scm_t_inum ay = yy;
3438 scm_t_inum r2 = 2 * rr;
3439
3440 if (SCM_LIKELY (yy < 0))
ff62c168 3441 {
8f9da340
MW
3442 ay = -ay;
3443 r2 = -r2;
3444 }
3445
3446 if (qq & 1L)
3447 {
3448 if (r2 >= ay)
3449 qq++;
3450 else if (r2 <= -ay)
3451 qq--;
ff62c168
MW
3452 }
3453 else
3454 {
8f9da340
MW
3455 if (r2 > ay)
3456 qq++;
3457 else if (r2 < -ay)
3458 qq--;
ff62c168 3459 }
4a46bc2a
MW
3460 if (SCM_LIKELY (SCM_FIXABLE (qq)))
3461 return SCM_I_MAKINUM (qq);
3462 else
3463 return scm_i_inum2big (qq);
ff62c168
MW
3464 }
3465 }
3466 else if (SCM_BIGP (y))
3467 {
3468 /* Pass a denormalized bignum version of x (even though it
8f9da340
MW
3469 can fit in a fixnum) to scm_i_bigint_round_quotient */
3470 return scm_i_bigint_round_quotient (scm_i_long2big (xx), y);
ff62c168
MW
3471 }
3472 else if (SCM_REALP (y))
8f9da340 3473 return scm_i_inexact_round_quotient (xx, SCM_REAL_VALUE (y));
ff62c168 3474 else if (SCM_FRACTIONP (y))
8f9da340 3475 return scm_i_exact_rational_round_quotient (x, y);
ff62c168 3476 else
fa075d40
AW
3477 return scm_wta_dispatch_2 (g_scm_round_quotient, x, y, SCM_ARG2,
3478 s_scm_round_quotient);
ff62c168
MW
3479 }
3480 else if (SCM_BIGP (x))
3481 {
3482 if (SCM_LIKELY (SCM_I_INUMP (y)))
3483 {
3484 scm_t_inum yy = SCM_I_INUM (y);
3485 if (SCM_UNLIKELY (yy == 0))
8f9da340 3486 scm_num_overflow (s_scm_round_quotient);
4a46bc2a
MW
3487 else if (SCM_UNLIKELY (yy == 1))
3488 return x;
ff62c168
MW
3489 else
3490 {
3491 SCM q = scm_i_mkbig ();
3492 scm_t_inum rr;
8f9da340
MW
3493 int needs_adjustment;
3494
ff62c168
MW
3495 if (yy > 0)
3496 {
8f9da340
MW
3497 rr = mpz_fdiv_q_ui (SCM_I_BIG_MPZ (q),
3498 SCM_I_BIG_MPZ (x), yy);
3499 if (mpz_odd_p (SCM_I_BIG_MPZ (q)))
3500 needs_adjustment = (2*rr >= yy);
3501 else
3502 needs_adjustment = (2*rr > yy);
ff62c168
MW
3503 }
3504 else
3505 {
3506 rr = - mpz_cdiv_q_ui (SCM_I_BIG_MPZ (q),
3507 SCM_I_BIG_MPZ (x), -yy);
ff62c168 3508 mpz_neg (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (q));
8f9da340
MW
3509 if (mpz_odd_p (SCM_I_BIG_MPZ (q)))
3510 needs_adjustment = (2*rr <= yy);
3511 else
3512 needs_adjustment = (2*rr < yy);
ff62c168 3513 }
8f9da340
MW
3514 scm_remember_upto_here_1 (x);
3515 if (needs_adjustment)
3516 mpz_add_ui (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (q), 1);
ff62c168
MW
3517 return scm_i_normbig (q);
3518 }
3519 }
3520 else if (SCM_BIGP (y))
8f9da340 3521 return scm_i_bigint_round_quotient (x, y);
ff62c168 3522 else if (SCM_REALP (y))
8f9da340 3523 return scm_i_inexact_round_quotient
ff62c168
MW
3524 (scm_i_big2dbl (x), SCM_REAL_VALUE (y));
3525 else if (SCM_FRACTIONP (y))
8f9da340 3526 return scm_i_exact_rational_round_quotient (x, y);
ff62c168 3527 else
fa075d40
AW
3528 return scm_wta_dispatch_2 (g_scm_round_quotient, x, y, SCM_ARG2,
3529 s_scm_round_quotient);
ff62c168
MW
3530 }
3531 else if (SCM_REALP (x))
3532 {
3533 if (SCM_REALP (y) || SCM_I_INUMP (y) ||
3534 SCM_BIGP (y) || SCM_FRACTIONP (y))
8f9da340 3535 return scm_i_inexact_round_quotient
ff62c168
MW
3536 (SCM_REAL_VALUE (x), scm_to_double (y));
3537 else
fa075d40
AW
3538 return scm_wta_dispatch_2 (g_scm_round_quotient, x, y, SCM_ARG2,
3539 s_scm_round_quotient);
ff62c168
MW
3540 }
3541 else if (SCM_FRACTIONP (x))
3542 {
3543 if (SCM_REALP (y))
8f9da340 3544 return scm_i_inexact_round_quotient
ff62c168 3545 (scm_i_fraction2double (x), SCM_REAL_VALUE (y));
03ddd15b 3546 else if (SCM_I_INUMP (y) || SCM_BIGP (y) || SCM_FRACTIONP (y))
8f9da340 3547 return scm_i_exact_rational_round_quotient (x, y);
ff62c168 3548 else
fa075d40
AW
3549 return scm_wta_dispatch_2 (g_scm_round_quotient, x, y, SCM_ARG2,
3550 s_scm_round_quotient);
ff62c168
MW
3551 }
3552 else
fa075d40
AW
3553 return scm_wta_dispatch_2 (g_scm_round_quotient, x, y, SCM_ARG1,
3554 s_scm_round_quotient);
ff62c168
MW
3555}
3556#undef FUNC_NAME
3557
3558static SCM
8f9da340 3559scm_i_inexact_round_quotient (double x, double y)
ff62c168 3560{
8f9da340
MW
3561 if (SCM_UNLIKELY (y == 0))
3562 scm_num_overflow (s_scm_round_quotient); /* or return a NaN? */
ff62c168 3563 else
00472a22 3564 return scm_i_from_double (scm_c_round (x / y));
ff62c168
MW
3565}
3566
3567/* Assumes that both x and y are bigints, though
3568 x might be able to fit into a fixnum. */
3569static SCM
8f9da340 3570scm_i_bigint_round_quotient (SCM x, SCM y)
ff62c168 3571{
8f9da340
MW
3572 SCM q, r, r2;
3573 int cmp, needs_adjustment;
ff62c168
MW
3574
3575 /* Note that x might be small enough to fit into a
3576 fixnum, so we must not let it escape into the wild */
3577 q = scm_i_mkbig ();
3578 r = scm_i_mkbig ();
8f9da340 3579 r2 = scm_i_mkbig ();
ff62c168 3580
8f9da340
MW
3581 mpz_fdiv_qr (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (r),
3582 SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
3583 mpz_mul_2exp (SCM_I_BIG_MPZ (r2), SCM_I_BIG_MPZ (r), 1); /* r2 = 2*r */
3584 scm_remember_upto_here_2 (x, r);
ff62c168 3585
8f9da340
MW
3586 cmp = mpz_cmpabs (SCM_I_BIG_MPZ (r2), SCM_I_BIG_MPZ (y));
3587 if (mpz_odd_p (SCM_I_BIG_MPZ (q)))
3588 needs_adjustment = (cmp >= 0);
ff62c168 3589 else
8f9da340
MW
3590 needs_adjustment = (cmp > 0);
3591 scm_remember_upto_here_2 (r2, y);
3592
3593 if (needs_adjustment)
3594 mpz_add_ui (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (q), 1);
3595
ff62c168
MW
3596 return scm_i_normbig (q);
3597}
3598
ff62c168 3599static SCM
8f9da340 3600scm_i_exact_rational_round_quotient (SCM x, SCM y)
ff62c168 3601{
8f9da340 3602 return scm_round_quotient
03ddd15b
MW
3603 (scm_product (scm_numerator (x), scm_denominator (y)),
3604 scm_product (scm_numerator (y), scm_denominator (x)));
ff62c168
MW
3605}
3606
8f9da340
MW
3607static SCM scm_i_inexact_round_remainder (double x, double y);
3608static SCM scm_i_bigint_round_remainder (SCM x, SCM y);
3609static SCM scm_i_exact_rational_round_remainder (SCM x, SCM y);
ff62c168 3610
8f9da340 3611SCM_PRIMITIVE_GENERIC (scm_round_remainder, "round-remainder", 2, 0, 0,
ff62c168
MW
3612 (SCM x, SCM y),
3613 "Return the real number @var{r} such that\n"
8f9da340
MW
3614 "@math{@var{x} = @var{q}*@var{y} + @var{r}}, where\n"
3615 "@var{q} is @math{@var{x} / @var{y}} rounded to the\n"
3616 "nearest integer, with ties going to the nearest\n"
3617 "even integer.\n"
ff62c168 3618 "@lisp\n"
8f9da340
MW
3619 "(round-remainder 123 10) @result{} 3\n"
3620 "(round-remainder 123 -10) @result{} 3\n"
3621 "(round-remainder -123 10) @result{} -3\n"
3622 "(round-remainder -123 -10) @result{} -3\n"
3623 "(round-remainder 125 10) @result{} 5\n"
3624 "(round-remainder 127 10) @result{} -3\n"
3625 "(round-remainder 135 10) @result{} -5\n"
3626 "(round-remainder -123.2 -63.5) @result{} 3.8\n"
3627 "(round-remainder 16/3 -10/7) @result{} -8/21\n"
ff62c168 3628 "@end lisp")
8f9da340 3629#define FUNC_NAME s_scm_round_remainder
ff62c168
MW
3630{
3631 if (SCM_LIKELY (SCM_I_INUMP (x)))
3632 {
4a46bc2a 3633 scm_t_inum xx = SCM_I_INUM (x);
ff62c168
MW
3634 if (SCM_LIKELY (SCM_I_INUMP (y)))
3635 {
3636 scm_t_inum yy = SCM_I_INUM (y);
3637 if (SCM_UNLIKELY (yy == 0))
8f9da340 3638 scm_num_overflow (s_scm_round_remainder);
ff62c168
MW
3639 else
3640 {
8f9da340 3641 scm_t_inum qq = xx / yy;
ff62c168 3642 scm_t_inum rr = xx % yy;
8f9da340
MW
3643 scm_t_inum ay = yy;
3644 scm_t_inum r2 = 2 * rr;
3645
3646 if (SCM_LIKELY (yy < 0))
ff62c168 3647 {
8f9da340
MW
3648 ay = -ay;
3649 r2 = -r2;
3650 }
3651
3652 if (qq & 1L)
3653 {
3654 if (r2 >= ay)
3655 rr -= yy;
3656 else if (r2 <= -ay)
3657 rr += yy;
ff62c168
MW
3658 }
3659 else
3660 {
8f9da340
MW
3661 if (r2 > ay)
3662 rr -= yy;
3663 else if (r2 < -ay)
3664 rr += yy;
ff62c168
MW
3665 }
3666 return SCM_I_MAKINUM (rr);
3667 }
3668 }
3669 else if (SCM_BIGP (y))
3670 {
3671 /* Pass a denormalized bignum version of x (even though it
8f9da340
MW
3672 can fit in a fixnum) to scm_i_bigint_round_remainder */
3673 return scm_i_bigint_round_remainder
3674 (scm_i_long2big (xx), y);
ff62c168
MW
3675 }
3676 else if (SCM_REALP (y))
8f9da340 3677 return scm_i_inexact_round_remainder (xx, SCM_REAL_VALUE (y));
ff62c168 3678 else if (SCM_FRACTIONP (y))
8f9da340 3679 return scm_i_exact_rational_round_remainder (x, y);
ff62c168 3680 else
fa075d40
AW
3681 return scm_wta_dispatch_2 (g_scm_round_remainder, x, y, SCM_ARG2,
3682 s_scm_round_remainder);
ff62c168
MW
3683 }
3684 else if (SCM_BIGP (x))
3685 {
3686 if (SCM_LIKELY (SCM_I_INUMP (y)))
3687 {
3688 scm_t_inum yy = SCM_I_INUM (y);
3689 if (SCM_UNLIKELY (yy == 0))
8f9da340 3690 scm_num_overflow (s_scm_round_remainder);
ff62c168
MW
3691 else
3692 {
8f9da340 3693 SCM q = scm_i_mkbig ();
ff62c168 3694 scm_t_inum rr;
8f9da340
MW
3695 int needs_adjustment;
3696
ff62c168
MW
3697 if (yy > 0)
3698 {
8f9da340
MW
3699 rr = mpz_fdiv_q_ui (SCM_I_BIG_MPZ (q),
3700 SCM_I_BIG_MPZ (x), yy);
3701 if (mpz_odd_p (SCM_I_BIG_MPZ (q)))
3702 needs_adjustment = (2*rr >= yy);
3703 else
3704 needs_adjustment = (2*rr > yy);
ff62c168
MW
3705 }
3706 else
3707 {
8f9da340
MW
3708 rr = - mpz_cdiv_q_ui (SCM_I_BIG_MPZ (q),
3709 SCM_I_BIG_MPZ (x), -yy);
3710 if (mpz_odd_p (SCM_I_BIG_MPZ (q)))
3711 needs_adjustment = (2*rr <= yy);
3712 else
3713 needs_adjustment = (2*rr < yy);
ff62c168 3714 }
8f9da340
MW
3715 scm_remember_upto_here_2 (x, q);
3716 if (needs_adjustment)
3717 rr -= yy;
ff62c168
MW
3718 return SCM_I_MAKINUM (rr);
3719 }
3720 }
3721 else if (SCM_BIGP (y))
8f9da340 3722 return scm_i_bigint_round_remainder (x, y);
ff62c168 3723 else if (SCM_REALP (y))
8f9da340 3724 return scm_i_inexact_round_remainder
ff62c168
MW
3725 (scm_i_big2dbl (x), SCM_REAL_VALUE (y));
3726 else if (SCM_FRACTIONP (y))
8f9da340 3727 return scm_i_exact_rational_round_remainder (x, y);
ff62c168 3728 else
fa075d40
AW
3729 return scm_wta_dispatch_2 (g_scm_round_remainder, x, y, SCM_ARG2,
3730 s_scm_round_remainder);
ff62c168
MW
3731 }
3732 else if (SCM_REALP (x))
3733 {
3734 if (SCM_REALP (y) || SCM_I_INUMP (y) ||
3735 SCM_BIGP (y) || SCM_FRACTIONP (y))
8f9da340 3736 return scm_i_inexact_round_remainder
ff62c168
MW
3737 (SCM_REAL_VALUE (x), scm_to_double (y));
3738 else
fa075d40
AW
3739 return scm_wta_dispatch_2 (g_scm_round_remainder, x, y, SCM_ARG2,
3740 s_scm_round_remainder);
ff62c168
MW
3741 }
3742 else if (SCM_FRACTIONP (x))
3743 {
3744 if (SCM_REALP (y))
8f9da340 3745 return scm_i_inexact_round_remainder
ff62c168 3746 (scm_i_fraction2double (x), SCM_REAL_VALUE (y));
03ddd15b 3747 else if (SCM_I_INUMP (y) || SCM_BIGP (y) || SCM_FRACTIONP (y))
8f9da340 3748 return scm_i_exact_rational_round_remainder (x, y);
ff62c168 3749 else
fa075d40
AW
3750 return scm_wta_dispatch_2 (g_scm_round_remainder, x, y, SCM_ARG2,
3751 s_scm_round_remainder);
ff62c168
MW
3752 }
3753 else
fa075d40
AW
3754 return scm_wta_dispatch_2 (g_scm_round_remainder, x, y, SCM_ARG1,
3755 s_scm_round_remainder);
ff62c168
MW
3756}
3757#undef FUNC_NAME
3758
3759static SCM
8f9da340 3760scm_i_inexact_round_remainder (double x, double y)
ff62c168 3761{
ff62c168
MW
3762 /* Although it would be more efficient to use fmod here, we can't
3763 because it would in some cases produce results inconsistent with
8f9da340 3764 scm_i_inexact_round_quotient, such that x != r + q * y (not even
ff62c168 3765 close). In particular, when x-y/2 is very close to a multiple of
8f9da340
MW
3766 y, then r might be either -abs(y/2) or abs(y/2), but those two
3767 cases must correspond to different choices of q. If quotient
ff62c168 3768 chooses one and remainder chooses the other, it would be bad. */
8f9da340
MW
3769
3770 if (SCM_UNLIKELY (y == 0))
3771 scm_num_overflow (s_scm_round_remainder); /* or return a NaN? */
ff62c168 3772 else
8f9da340
MW
3773 {
3774 double q = scm_c_round (x / y);
00472a22 3775 return scm_i_from_double (x - q * y);
8f9da340 3776 }
ff62c168
MW
3777}
3778
3779/* Assumes that both x and y are bigints, though
3780 x might be able to fit into a fixnum. */
3781static SCM
8f9da340 3782scm_i_bigint_round_remainder (SCM x, SCM y)
ff62c168 3783{
8f9da340
MW
3784 SCM q, r, r2;
3785 int cmp, needs_adjustment;
ff62c168
MW
3786
3787 /* Note that x might be small enough to fit into a
3788 fixnum, so we must not let it escape into the wild */
8f9da340 3789 q = scm_i_mkbig ();
ff62c168 3790 r = scm_i_mkbig ();
8f9da340 3791 r2 = scm_i_mkbig ();
ff62c168 3792
8f9da340
MW
3793 mpz_fdiv_qr (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (r),
3794 SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
3795 scm_remember_upto_here_1 (x);
3796 mpz_mul_2exp (SCM_I_BIG_MPZ (r2), SCM_I_BIG_MPZ (r), 1); /* r2 = 2*r */
ff62c168 3797
8f9da340
MW
3798 cmp = mpz_cmpabs (SCM_I_BIG_MPZ (r2), SCM_I_BIG_MPZ (y));
3799 if (mpz_odd_p (SCM_I_BIG_MPZ (q)))
3800 needs_adjustment = (cmp >= 0);
ff62c168 3801 else
8f9da340
MW
3802 needs_adjustment = (cmp > 0);
3803 scm_remember_upto_here_2 (q, r2);
3804
3805 if (needs_adjustment)
3806 mpz_sub (SCM_I_BIG_MPZ (r), SCM_I_BIG_MPZ (r), SCM_I_BIG_MPZ (y));
3807
3808 scm_remember_upto_here_1 (y);
ff62c168
MW
3809 return scm_i_normbig (r);
3810}
3811
ff62c168 3812static SCM
8f9da340 3813scm_i_exact_rational_round_remainder (SCM x, SCM y)
ff62c168 3814{
03ddd15b
MW
3815 SCM xd = scm_denominator (x);
3816 SCM yd = scm_denominator (y);
8f9da340
MW
3817 SCM r1 = scm_round_remainder (scm_product (scm_numerator (x), yd),
3818 scm_product (scm_numerator (y), xd));
03ddd15b 3819 return scm_divide (r1, scm_product (xd, yd));
ff62c168
MW
3820}
3821
3822
8f9da340
MW
3823static void scm_i_inexact_round_divide (double x, double y, SCM *qp, SCM *rp);
3824static void scm_i_bigint_round_divide (SCM x, SCM y, SCM *qp, SCM *rp);
3825static void scm_i_exact_rational_round_divide (SCM x, SCM y, SCM *qp, SCM *rp);
ff62c168 3826
8f9da340 3827SCM_PRIMITIVE_GENERIC (scm_i_round_divide, "round/", 2, 0, 0,
ff62c168
MW
3828 (SCM x, SCM y),
3829 "Return the integer @var{q} and the real number @var{r}\n"
3830 "such that @math{@var{x} = @var{q}*@var{y} + @var{r}}\n"
8f9da340
MW
3831 "and @var{q} is @math{@var{x} / @var{y}} rounded to the\n"
3832 "nearest integer, with ties going to the nearest even integer.\n"
ff62c168 3833 "@lisp\n"
8f9da340
MW
3834 "(round/ 123 10) @result{} 12 and 3\n"
3835 "(round/ 123 -10) @result{} -12 and 3\n"
3836 "(round/ -123 10) @result{} -12 and -3\n"
3837 "(round/ -123 -10) @result{} 12 and -3\n"
3838 "(round/ 125 10) @result{} 12 and 5\n"
3839 "(round/ 127 10) @result{} 13 and -3\n"
3840 "(round/ 135 10) @result{} 14 and -5\n"
3841 "(round/ -123.2 -63.5) @result{} 2.0 and 3.8\n"
3842 "(round/ 16/3 -10/7) @result{} -4 and -8/21\n"
ff62c168 3843 "@end lisp")
8f9da340 3844#define FUNC_NAME s_scm_i_round_divide
5fbf680b
MW
3845{
3846 SCM q, r;
3847
8f9da340 3848 scm_round_divide(x, y, &q, &r);
5fbf680b
MW
3849 return scm_values (scm_list_2 (q, r));
3850}
3851#undef FUNC_NAME
3852
8f9da340
MW
3853#define s_scm_round_divide s_scm_i_round_divide
3854#define g_scm_round_divide g_scm_i_round_divide
5fbf680b
MW
3855
3856void
8f9da340 3857scm_round_divide (SCM x, SCM y, SCM *qp, SCM *rp)
ff62c168
MW
3858{
3859 if (SCM_LIKELY (SCM_I_INUMP (x)))
3860 {
4a46bc2a 3861 scm_t_inum xx = SCM_I_INUM (x);
ff62c168
MW
3862 if (SCM_LIKELY (SCM_I_INUMP (y)))
3863 {
3864 scm_t_inum yy = SCM_I_INUM (y);
3865 if (SCM_UNLIKELY (yy == 0))
8f9da340 3866 scm_num_overflow (s_scm_round_divide);
ff62c168
MW
3867 else
3868 {
ff62c168 3869 scm_t_inum qq = xx / yy;
4a46bc2a 3870 scm_t_inum rr = xx % yy;
8f9da340
MW
3871 scm_t_inum ay = yy;
3872 scm_t_inum r2 = 2 * rr;
3873
3874 if (SCM_LIKELY (yy < 0))
ff62c168 3875 {
8f9da340
MW
3876 ay = -ay;
3877 r2 = -r2;
3878 }
3879
3880 if (qq & 1L)
3881 {
3882 if (r2 >= ay)
3883 { qq++; rr -= yy; }
3884 else if (r2 <= -ay)
3885 { qq--; rr += yy; }
ff62c168
MW
3886 }
3887 else
3888 {
8f9da340
MW
3889 if (r2 > ay)
3890 { qq++; rr -= yy; }
3891 else if (r2 < -ay)
3892 { qq--; rr += yy; }
ff62c168 3893 }
4a46bc2a 3894 if (SCM_LIKELY (SCM_FIXABLE (qq)))
5fbf680b 3895 *qp = SCM_I_MAKINUM (qq);
4a46bc2a 3896 else
5fbf680b
MW
3897 *qp = scm_i_inum2big (qq);
3898 *rp = SCM_I_MAKINUM (rr);
ff62c168 3899 }
5fbf680b 3900 return;
ff62c168
MW
3901 }
3902 else if (SCM_BIGP (y))
3903 {
3904 /* Pass a denormalized bignum version of x (even though it
8f9da340
MW
3905 can fit in a fixnum) to scm_i_bigint_round_divide */
3906 return scm_i_bigint_round_divide
3907 (scm_i_long2big (SCM_I_INUM (x)), y, qp, rp);
ff62c168
MW
3908 }
3909 else if (SCM_REALP (y))
8f9da340 3910 return scm_i_inexact_round_divide (xx, SCM_REAL_VALUE (y), qp, rp);
ff62c168 3911 else if (SCM_FRACTIONP (y))
8f9da340 3912 return scm_i_exact_rational_round_divide (x, y, qp, rp);
ff62c168 3913 else
8f9da340
MW
3914 return two_valued_wta_dispatch_2 (g_scm_round_divide, x, y, SCM_ARG2,
3915 s_scm_round_divide, qp, rp);
ff62c168
MW
3916 }
3917 else if (SCM_BIGP (x))
3918 {
3919 if (SCM_LIKELY (SCM_I_INUMP (y)))
3920 {
3921 scm_t_inum yy = SCM_I_INUM (y);
3922 if (SCM_UNLIKELY (yy == 0))
8f9da340 3923 scm_num_overflow (s_scm_round_divide);
ff62c168
MW
3924 else
3925 {
3926 SCM q = scm_i_mkbig ();
3927 scm_t_inum rr;
8f9da340
MW
3928 int needs_adjustment;
3929
ff62c168
MW
3930 if (yy > 0)
3931 {
8f9da340
MW
3932 rr = mpz_fdiv_q_ui (SCM_I_BIG_MPZ (q),
3933 SCM_I_BIG_MPZ (x), yy);
3934 if (mpz_odd_p (SCM_I_BIG_MPZ (q)))
3935 needs_adjustment = (2*rr >= yy);
3936 else
3937 needs_adjustment = (2*rr > yy);
ff62c168
MW
3938 }
3939 else
3940 {
3941 rr = - mpz_cdiv_q_ui (SCM_I_BIG_MPZ (q),
3942 SCM_I_BIG_MPZ (x), -yy);
ff62c168 3943 mpz_neg (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (q));
8f9da340
MW
3944 if (mpz_odd_p (SCM_I_BIG_MPZ (q)))
3945 needs_adjustment = (2*rr <= yy);
3946 else
3947 needs_adjustment = (2*rr < yy);
3948 }
3949 scm_remember_upto_here_1 (x);
3950 if (needs_adjustment)
3951 {
3952 mpz_add_ui (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (q), 1);
3953 rr -= yy;
ff62c168 3954 }
5fbf680b
MW
3955 *qp = scm_i_normbig (q);
3956 *rp = SCM_I_MAKINUM (rr);
ff62c168 3957 }
5fbf680b 3958 return;
ff62c168
MW
3959 }
3960 else if (SCM_BIGP (y))
8f9da340 3961 return scm_i_bigint_round_divide (x, y, qp, rp);
ff62c168 3962 else if (SCM_REALP (y))
8f9da340 3963 return scm_i_inexact_round_divide
5fbf680b 3964 (scm_i_big2dbl (x), SCM_REAL_VALUE (y), qp, rp);
ff62c168 3965 else if (SCM_FRACTIONP (y))
8f9da340 3966 return scm_i_exact_rational_round_divide (x, y, qp, rp);
ff62c168 3967 else
8f9da340
MW
3968 return two_valued_wta_dispatch_2 (g_scm_round_divide, x, y, SCM_ARG2,
3969 s_scm_round_divide, qp, rp);
ff62c168
MW
3970 }
3971 else if (SCM_REALP (x))
3972 {
3973 if (SCM_REALP (y) || SCM_I_INUMP (y) ||
3974 SCM_BIGP (y) || SCM_FRACTIONP (y))
8f9da340 3975 return scm_i_inexact_round_divide
5fbf680b 3976 (SCM_REAL_VALUE (x), scm_to_double (y), qp, rp);
03ddd15b 3977 else
8f9da340
MW
3978 return two_valued_wta_dispatch_2 (g_scm_round_divide, x, y, SCM_ARG2,
3979 s_scm_round_divide, qp, rp);
ff62c168
MW
3980 }
3981 else if (SCM_FRACTIONP (x))
3982 {
3983 if (SCM_REALP (y))
8f9da340 3984 return scm_i_inexact_round_divide
5fbf680b 3985 (scm_i_fraction2double (x), SCM_REAL_VALUE (y), qp, rp);
03ddd15b 3986 else if (SCM_I_INUMP (y) || SCM_BIGP (y) || SCM_FRACTIONP (y))
8f9da340 3987 return scm_i_exact_rational_round_divide (x, y, qp, rp);
ff62c168 3988 else
8f9da340
MW
3989 return two_valued_wta_dispatch_2 (g_scm_round_divide, x, y, SCM_ARG2,
3990 s_scm_round_divide, qp, rp);
ff62c168
MW
3991 }
3992 else
8f9da340
MW
3993 return two_valued_wta_dispatch_2 (g_scm_round_divide, x, y, SCM_ARG1,
3994 s_scm_round_divide, qp, rp);
ff62c168 3995}
ff62c168 3996
5fbf680b 3997static void
8f9da340 3998scm_i_inexact_round_divide (double x, double y, SCM *qp, SCM *rp)
ff62c168 3999{
8f9da340
MW
4000 if (SCM_UNLIKELY (y == 0))
4001 scm_num_overflow (s_scm_round_divide); /* or return a NaN? */
ff62c168 4002 else
8f9da340
MW
4003 {
4004 double q = scm_c_round (x / y);
4005 double r = x - q * y;
00472a22
MW
4006 *qp = scm_i_from_double (q);
4007 *rp = scm_i_from_double (r);
8f9da340 4008 }
ff62c168
MW
4009}
4010
4011/* Assumes that both x and y are bigints, though
4012 x might be able to fit into a fixnum. */
5fbf680b 4013static void
8f9da340 4014scm_i_bigint_round_divide (SCM x, SCM y, SCM *qp, SCM *rp)
ff62c168 4015{
8f9da340
MW
4016 SCM q, r, r2;
4017 int cmp, needs_adjustment;
ff62c168
MW
4018
4019 /* Note that x might be small enough to fit into a
4020 fixnum, so we must not let it escape into the wild */
4021 q = scm_i_mkbig ();
4022 r = scm_i_mkbig ();
8f9da340 4023 r2 = scm_i_mkbig ();
ff62c168 4024
8f9da340
MW
4025 mpz_fdiv_qr (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (r),
4026 SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
4027 scm_remember_upto_here_1 (x);
4028 mpz_mul_2exp (SCM_I_BIG_MPZ (r2), SCM_I_BIG_MPZ (r), 1); /* r2 = 2*r */
ff62c168 4029
8f9da340
MW
4030 cmp = mpz_cmpabs (SCM_I_BIG_MPZ (r2), SCM_I_BIG_MPZ (y));
4031 if (mpz_odd_p (SCM_I_BIG_MPZ (q)))
4032 needs_adjustment = (cmp >= 0);
ff62c168 4033 else
8f9da340
MW
4034 needs_adjustment = (cmp > 0);
4035
4036 if (needs_adjustment)
ff62c168 4037 {
8f9da340
MW
4038 mpz_add_ui (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (q), 1);
4039 mpz_sub (SCM_I_BIG_MPZ (r), SCM_I_BIG_MPZ (r), SCM_I_BIG_MPZ (y));
ff62c168 4040 }
8f9da340
MW
4041
4042 scm_remember_upto_here_2 (r2, y);
5fbf680b
MW
4043 *qp = scm_i_normbig (q);
4044 *rp = scm_i_normbig (r);
ff62c168
MW
4045}
4046
5fbf680b 4047static void
8f9da340 4048scm_i_exact_rational_round_divide (SCM x, SCM y, SCM *qp, SCM *rp)
ff62c168 4049{
03ddd15b
MW
4050 SCM r1;
4051 SCM xd = scm_denominator (x);
4052 SCM yd = scm_denominator (y);
4053
8f9da340
MW
4054 scm_round_divide (scm_product (scm_numerator (x), yd),
4055 scm_product (scm_numerator (y), xd),
4056 qp, &r1);
03ddd15b 4057 *rp = scm_divide (r1, scm_product (xd, yd));
ff62c168
MW
4058}
4059
4060
78d3deb1
AW
4061SCM_PRIMITIVE_GENERIC (scm_i_gcd, "gcd", 0, 2, 1,
4062 (SCM x, SCM y, SCM rest),
4063 "Return the greatest common divisor of all parameter values.\n"
4064 "If called without arguments, 0 is returned.")
4065#define FUNC_NAME s_scm_i_gcd
4066{
4067 while (!scm_is_null (rest))
4068 { x = scm_gcd (x, y);
4069 y = scm_car (rest);
4070 rest = scm_cdr (rest);
4071 }
4072 return scm_gcd (x, y);
4073}
4074#undef FUNC_NAME
4075
4076#define s_gcd s_scm_i_gcd
4077#define g_gcd g_scm_i_gcd
4078
0f2d19dd 4079SCM
6e8d25a6 4080scm_gcd (SCM x, SCM y)
0f2d19dd 4081{
a2dead1b 4082 if (SCM_UNLIKELY (SCM_UNBNDP (y)))
1dd79792 4083 return SCM_UNBNDP (x) ? SCM_INUM0 : scm_abs (x);
ca46fb90 4084
a2dead1b 4085 if (SCM_LIKELY (SCM_I_INUMP (x)))
ca46fb90 4086 {
a2dead1b 4087 if (SCM_LIKELY (SCM_I_INUMP (y)))
ca46fb90 4088 {
e25f3727
AW
4089 scm_t_inum xx = SCM_I_INUM (x);
4090 scm_t_inum yy = SCM_I_INUM (y);
4091 scm_t_inum u = xx < 0 ? -xx : xx;
4092 scm_t_inum v = yy < 0 ? -yy : yy;
4093 scm_t_inum result;
a2dead1b 4094 if (SCM_UNLIKELY (xx == 0))
0aacf84e 4095 result = v;
a2dead1b 4096 else if (SCM_UNLIKELY (yy == 0))
0aacf84e
MD
4097 result = u;
4098 else
4099 {
a2dead1b 4100 int k = 0;
0aacf84e 4101 /* Determine a common factor 2^k */
a2dead1b 4102 while (((u | v) & 1) == 0)
0aacf84e 4103 {
a2dead1b 4104 k++;
0aacf84e
MD
4105 u >>= 1;
4106 v >>= 1;
4107 }
4108 /* Now, any factor 2^n can be eliminated */
a2dead1b
MW
4109 if ((u & 1) == 0)
4110 while ((u & 1) == 0)
4111 u >>= 1;
0aacf84e 4112 else
a2dead1b
MW
4113 while ((v & 1) == 0)
4114 v >>= 1;
4115 /* Both u and v are now odd. Subtract the smaller one
4116 from the larger one to produce an even number, remove
4117 more factors of two, and repeat. */
4118 while (u != v)
0aacf84e 4119 {
a2dead1b
MW
4120 if (u > v)
4121 {
4122 u -= v;
4123 while ((u & 1) == 0)
4124 u >>= 1;
4125 }
4126 else
4127 {
4128 v -= u;
4129 while ((v & 1) == 0)
4130 v >>= 1;
4131 }
0aacf84e 4132 }
a2dead1b 4133 result = u << k;
0aacf84e
MD
4134 }
4135 return (SCM_POSFIXABLE (result)
d956fa6f 4136 ? SCM_I_MAKINUM (result)
e25f3727 4137 : scm_i_inum2big (result));
ca46fb90
RB
4138 }
4139 else if (SCM_BIGP (y))
4140 {
0bff4dce
KR
4141 SCM_SWAP (x, y);
4142 goto big_inum;
ca46fb90 4143 }
3bbca1f7
MW
4144 else if (SCM_REALP (y) && scm_is_integer (y))
4145 goto handle_inexacts;
ca46fb90 4146 else
fa075d40 4147 return scm_wta_dispatch_2 (g_gcd, x, y, SCM_ARG2, s_gcd);
f872b822 4148 }
ca46fb90
RB
4149 else if (SCM_BIGP (x))
4150 {
e11e83f3 4151 if (SCM_I_INUMP (y))
ca46fb90 4152 {
e25f3727
AW
4153 scm_t_bits result;
4154 scm_t_inum yy;
0bff4dce 4155 big_inum:
e11e83f3 4156 yy = SCM_I_INUM (y);
8c5b0afc
KR
4157 if (yy == 0)
4158 return scm_abs (x);
0aacf84e
MD
4159 if (yy < 0)
4160 yy = -yy;
ca46fb90
RB
4161 result = mpz_gcd_ui (NULL, SCM_I_BIG_MPZ (x), yy);
4162 scm_remember_upto_here_1 (x);
0aacf84e 4163 return (SCM_POSFIXABLE (result)
d956fa6f 4164 ? SCM_I_MAKINUM (result)
e25f3727 4165 : scm_from_unsigned_integer (result));
ca46fb90
RB
4166 }
4167 else if (SCM_BIGP (y))
4168 {
4169 SCM result = scm_i_mkbig ();
0aacf84e
MD
4170 mpz_gcd (SCM_I_BIG_MPZ (result),
4171 SCM_I_BIG_MPZ (x),
4172 SCM_I_BIG_MPZ (y));
4173 scm_remember_upto_here_2 (x, y);
ca46fb90
RB
4174 return scm_i_normbig (result);
4175 }
3bbca1f7
MW
4176 else if (SCM_REALP (y) && scm_is_integer (y))
4177 goto handle_inexacts;
4178 else
056e3470 4179 return scm_wta_dispatch_2 (g_gcd, x, y, SCM_ARG2, s_gcd);
3bbca1f7
MW
4180 }
4181 else if (SCM_REALP (x) && scm_is_integer (x))
4182 {
4183 if (SCM_I_INUMP (y) || SCM_BIGP (y)
4184 || (SCM_REALP (y) && scm_is_integer (y)))
4185 {
4186 handle_inexacts:
4187 return scm_exact_to_inexact (scm_gcd (scm_inexact_to_exact (x),
4188 scm_inexact_to_exact (y)));
4189 }
ca46fb90 4190 else
fa075d40 4191 return scm_wta_dispatch_2 (g_gcd, x, y, SCM_ARG2, s_gcd);
09fb7599 4192 }
ca46fb90 4193 else
fa075d40 4194 return scm_wta_dispatch_2 (g_gcd, x, y, SCM_ARG1, s_gcd);
0f2d19dd
JB
4195}
4196
78d3deb1
AW
4197SCM_PRIMITIVE_GENERIC (scm_i_lcm, "lcm", 0, 2, 1,
4198 (SCM x, SCM y, SCM rest),
4199 "Return the least common multiple of the arguments.\n"
4200 "If called without arguments, 1 is returned.")
4201#define FUNC_NAME s_scm_i_lcm
4202{
4203 while (!scm_is_null (rest))
4204 { x = scm_lcm (x, y);
4205 y = scm_car (rest);
4206 rest = scm_cdr (rest);
4207 }
4208 return scm_lcm (x, y);
4209}
4210#undef FUNC_NAME
4211
4212#define s_lcm s_scm_i_lcm
4213#define g_lcm g_scm_i_lcm
4214
0f2d19dd 4215SCM
6e8d25a6 4216scm_lcm (SCM n1, SCM n2)
0f2d19dd 4217{
3bbca1f7
MW
4218 if (SCM_UNLIKELY (SCM_UNBNDP (n2)))
4219 return SCM_UNBNDP (n1) ? SCM_INUM1 : scm_abs (n1);
09fb7599 4220
3bbca1f7 4221 if (SCM_LIKELY (SCM_I_INUMP (n1)))
ca46fb90 4222 {
3bbca1f7 4223 if (SCM_LIKELY (SCM_I_INUMP (n2)))
ca46fb90
RB
4224 {
4225 SCM d = scm_gcd (n1, n2);
bc36d050 4226 if (scm_is_eq (d, SCM_INUM0))
ca46fb90
RB
4227 return d;
4228 else
4229 return scm_abs (scm_product (n1, scm_quotient (n2, d)));
4230 }
3bbca1f7 4231 else if (SCM_LIKELY (SCM_BIGP (n2)))
ca46fb90
RB
4232 {
4233 /* inum n1, big n2 */
4234 inumbig:
4235 {
4236 SCM result = scm_i_mkbig ();
e25f3727 4237 scm_t_inum nn1 = SCM_I_INUM (n1);
ca46fb90
RB
4238 if (nn1 == 0) return SCM_INUM0;
4239 if (nn1 < 0) nn1 = - nn1;
4240 mpz_lcm_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (n2), nn1);
4241 scm_remember_upto_here_1 (n2);
4242 return result;
4243 }
4244 }
3bbca1f7
MW
4245 else if (SCM_REALP (n2) && scm_is_integer (n2))
4246 goto handle_inexacts;
4247 else
902a4e77 4248 return scm_wta_dispatch_2 (g_lcm, n1, n2, SCM_ARG2, s_lcm);
ca46fb90 4249 }
3bbca1f7 4250 else if (SCM_LIKELY (SCM_BIGP (n1)))
ca46fb90
RB
4251 {
4252 /* big n1 */
e11e83f3 4253 if (SCM_I_INUMP (n2))
ca46fb90
RB
4254 {
4255 SCM_SWAP (n1, n2);
4256 goto inumbig;
4257 }
3bbca1f7 4258 else if (SCM_LIKELY (SCM_BIGP (n2)))
ca46fb90
RB
4259 {
4260 SCM result = scm_i_mkbig ();
4261 mpz_lcm(SCM_I_BIG_MPZ (result),
4262 SCM_I_BIG_MPZ (n1),
4263 SCM_I_BIG_MPZ (n2));
4264 scm_remember_upto_here_2(n1, n2);
4265 /* shouldn't need to normalize b/c lcm of 2 bigs should be big */
4266 return result;
4267 }
3bbca1f7
MW
4268 else if (SCM_REALP (n2) && scm_is_integer (n2))
4269 goto handle_inexacts;
4270 else
902a4e77 4271 return scm_wta_dispatch_2 (g_lcm, n1, n2, SCM_ARG2, s_lcm);
f872b822 4272 }
3bbca1f7
MW
4273 else if (SCM_REALP (n1) && scm_is_integer (n1))
4274 {
4275 if (SCM_I_INUMP (n2) || SCM_BIGP (n2)
4276 || (SCM_REALP (n2) && scm_is_integer (n2)))
4277 {
4278 handle_inexacts:
4279 return scm_exact_to_inexact (scm_lcm (scm_inexact_to_exact (n1),
4280 scm_inexact_to_exact (n2)));
4281 }
4282 else
902a4e77 4283 return scm_wta_dispatch_2 (g_lcm, n1, n2, SCM_ARG2, s_lcm);
f872b822 4284 }
3bbca1f7 4285 else
902a4e77 4286 return scm_wta_dispatch_2 (g_lcm, n1, n2, SCM_ARG1, s_lcm);
0f2d19dd
JB
4287}
4288
8a525303
GB
4289/* Emulating 2's complement bignums with sign magnitude arithmetic:
4290
4291 Logand:
4292 X Y Result Method:
4293 (len)
4294 + + + x (map digit:logand X Y)
4295 + - + x (map digit:logand X (lognot (+ -1 Y)))
4296 - + + y (map digit:logand (lognot (+ -1 X)) Y)
4297 - - - (+ 1 (map digit:logior (+ -1 X) (+ -1 Y)))
4298
4299 Logior:
4300 X Y Result Method:
4301
4302 + + + (map digit:logior X Y)
4303 + - - y (+ 1 (map digit:logand (lognot X) (+ -1 Y)))
4304 - + - x (+ 1 (map digit:logand (+ -1 X) (lognot Y)))
4305 - - - x (+ 1 (map digit:logand (+ -1 X) (+ -1 Y)))
4306
4307 Logxor:
4308 X Y Result Method:
4309
4310 + + + (map digit:logxor X Y)
4311 + - - (+ 1 (map digit:logxor X (+ -1 Y)))
4312 - + - (+ 1 (map digit:logxor (+ -1 X) Y))
4313 - - + (map digit:logxor (+ -1 X) (+ -1 Y))
4314
4315 Logtest:
4316 X Y Result
4317
4318 + + (any digit:logand X Y)
4319 + - (any digit:logand X (lognot (+ -1 Y)))
4320 - + (any digit:logand (lognot (+ -1 X)) Y)
4321 - - #t
4322
4323*/
4324
78d3deb1
AW
4325SCM_DEFINE (scm_i_logand, "logand", 0, 2, 1,
4326 (SCM x, SCM y, SCM rest),
4327 "Return the bitwise AND of the integer arguments.\n\n"
4328 "@lisp\n"
4329 "(logand) @result{} -1\n"
4330 "(logand 7) @result{} 7\n"
4331 "(logand #b111 #b011 #b001) @result{} 1\n"
4332 "@end lisp")
4333#define FUNC_NAME s_scm_i_logand
4334{
4335 while (!scm_is_null (rest))
4336 { x = scm_logand (x, y);
4337 y = scm_car (rest);
4338 rest = scm_cdr (rest);
4339 }
4340 return scm_logand (x, y);
4341}
4342#undef FUNC_NAME
4343
4344#define s_scm_logand s_scm_i_logand
4345
4346SCM scm_logand (SCM n1, SCM n2)
1bbd0b84 4347#define FUNC_NAME s_scm_logand
0f2d19dd 4348{
e25f3727 4349 scm_t_inum nn1;
9a00c9fc 4350
0aacf84e
MD
4351 if (SCM_UNBNDP (n2))
4352 {
4353 if (SCM_UNBNDP (n1))
d956fa6f 4354 return SCM_I_MAKINUM (-1);
0aacf84e
MD
4355 else if (!SCM_NUMBERP (n1))
4356 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
4357 else if (SCM_NUMBERP (n1))
4358 return n1;
4359 else
4360 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
d28da049 4361 }
09fb7599 4362
e11e83f3 4363 if (SCM_I_INUMP (n1))
0aacf84e 4364 {
e11e83f3
MV
4365 nn1 = SCM_I_INUM (n1);
4366 if (SCM_I_INUMP (n2))
0aacf84e 4367 {
e25f3727 4368 scm_t_inum nn2 = SCM_I_INUM (n2);
d956fa6f 4369 return SCM_I_MAKINUM (nn1 & nn2);
0aacf84e
MD
4370 }
4371 else if SCM_BIGP (n2)
4372 {
4373 intbig:
2e16a342 4374 if (nn1 == 0)
0aacf84e
MD
4375 return SCM_INUM0;
4376 {
4377 SCM result_z = scm_i_mkbig ();
4378 mpz_t nn1_z;
4379 mpz_init_set_si (nn1_z, nn1);
4380 mpz_and (SCM_I_BIG_MPZ (result_z), nn1_z, SCM_I_BIG_MPZ (n2));
4381 scm_remember_upto_here_1 (n2);
4382 mpz_clear (nn1_z);
4383 return scm_i_normbig (result_z);
4384 }
4385 }
4386 else
4387 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
4388 }
4389 else if (SCM_BIGP (n1))
4390 {
e11e83f3 4391 if (SCM_I_INUMP (n2))
0aacf84e
MD
4392 {
4393 SCM_SWAP (n1, n2);
e11e83f3 4394 nn1 = SCM_I_INUM (n1);
0aacf84e
MD
4395 goto intbig;
4396 }
4397 else if (SCM_BIGP (n2))
4398 {
4399 SCM result_z = scm_i_mkbig ();
4400 mpz_and (SCM_I_BIG_MPZ (result_z),
4401 SCM_I_BIG_MPZ (n1),
4402 SCM_I_BIG_MPZ (n2));
4403 scm_remember_upto_here_2 (n1, n2);
4404 return scm_i_normbig (result_z);
4405 }
4406 else
4407 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
09fb7599 4408 }
0aacf84e 4409 else
09fb7599 4410 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
0f2d19dd 4411}
1bbd0b84 4412#undef FUNC_NAME
0f2d19dd 4413
09fb7599 4414
78d3deb1
AW
4415SCM_DEFINE (scm_i_logior, "logior", 0, 2, 1,
4416 (SCM x, SCM y, SCM rest),
4417 "Return the bitwise OR of the integer arguments.\n\n"
4418 "@lisp\n"
4419 "(logior) @result{} 0\n"
4420 "(logior 7) @result{} 7\n"
4421 "(logior #b000 #b001 #b011) @result{} 3\n"
4422 "@end lisp")
4423#define FUNC_NAME s_scm_i_logior
4424{
4425 while (!scm_is_null (rest))
4426 { x = scm_logior (x, y);
4427 y = scm_car (rest);
4428 rest = scm_cdr (rest);
4429 }
4430 return scm_logior (x, y);
4431}
4432#undef FUNC_NAME
4433
4434#define s_scm_logior s_scm_i_logior
4435
4436SCM scm_logior (SCM n1, SCM n2)
1bbd0b84 4437#define FUNC_NAME s_scm_logior
0f2d19dd 4438{
e25f3727 4439 scm_t_inum nn1;
9a00c9fc 4440
0aacf84e
MD
4441 if (SCM_UNBNDP (n2))
4442 {
4443 if (SCM_UNBNDP (n1))
4444 return SCM_INUM0;
4445 else if (SCM_NUMBERP (n1))
4446 return n1;
4447 else
4448 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
d28da049 4449 }
09fb7599 4450
e11e83f3 4451 if (SCM_I_INUMP (n1))
0aacf84e 4452 {
e11e83f3
MV
4453 nn1 = SCM_I_INUM (n1);
4454 if (SCM_I_INUMP (n2))
0aacf84e 4455 {
e11e83f3 4456 long nn2 = SCM_I_INUM (n2);
d956fa6f 4457 return SCM_I_MAKINUM (nn1 | nn2);
0aacf84e
MD
4458 }
4459 else if (SCM_BIGP (n2))
4460 {
4461 intbig:
4462 if (nn1 == 0)
4463 return n2;
4464 {
4465 SCM result_z = scm_i_mkbig ();
4466 mpz_t nn1_z;
4467 mpz_init_set_si (nn1_z, nn1);
4468 mpz_ior (SCM_I_BIG_MPZ (result_z), nn1_z, SCM_I_BIG_MPZ (n2));
4469 scm_remember_upto_here_1 (n2);
4470 mpz_clear (nn1_z);
9806de0d 4471 return scm_i_normbig (result_z);
0aacf84e
MD
4472 }
4473 }
4474 else
4475 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
4476 }
4477 else if (SCM_BIGP (n1))
4478 {
e11e83f3 4479 if (SCM_I_INUMP (n2))
0aacf84e
MD
4480 {
4481 SCM_SWAP (n1, n2);
e11e83f3 4482 nn1 = SCM_I_INUM (n1);
0aacf84e
MD
4483 goto intbig;
4484 }
4485 else if (SCM_BIGP (n2))
4486 {
4487 SCM result_z = scm_i_mkbig ();
4488 mpz_ior (SCM_I_BIG_MPZ (result_z),
4489 SCM_I_BIG_MPZ (n1),
4490 SCM_I_BIG_MPZ (n2));
4491 scm_remember_upto_here_2 (n1, n2);
9806de0d 4492 return scm_i_normbig (result_z);
0aacf84e
MD
4493 }
4494 else
4495 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
09fb7599 4496 }
0aacf84e 4497 else
09fb7599 4498 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
0f2d19dd 4499}
1bbd0b84 4500#undef FUNC_NAME
0f2d19dd 4501
09fb7599 4502
78d3deb1
AW
4503SCM_DEFINE (scm_i_logxor, "logxor", 0, 2, 1,
4504 (SCM x, SCM y, SCM rest),
3c3db128
GH
4505 "Return the bitwise XOR of the integer arguments. A bit is\n"
4506 "set in the result if it is set in an odd number of arguments.\n"
4507 "@lisp\n"
4508 "(logxor) @result{} 0\n"
4509 "(logxor 7) @result{} 7\n"
4510 "(logxor #b000 #b001 #b011) @result{} 2\n"
4511 "(logxor #b000 #b001 #b011 #b011) @result{} 1\n"
1e6808ea 4512 "@end lisp")
78d3deb1
AW
4513#define FUNC_NAME s_scm_i_logxor
4514{
4515 while (!scm_is_null (rest))
4516 { x = scm_logxor (x, y);
4517 y = scm_car (rest);
4518 rest = scm_cdr (rest);
4519 }
4520 return scm_logxor (x, y);
4521}
4522#undef FUNC_NAME
4523
4524#define s_scm_logxor s_scm_i_logxor
4525
4526SCM scm_logxor (SCM n1, SCM n2)
1bbd0b84 4527#define FUNC_NAME s_scm_logxor
0f2d19dd 4528{
e25f3727 4529 scm_t_inum nn1;
9a00c9fc 4530
0aacf84e
MD
4531 if (SCM_UNBNDP (n2))
4532 {
4533 if (SCM_UNBNDP (n1))
4534 return SCM_INUM0;
4535 else if (SCM_NUMBERP (n1))
4536 return n1;
4537 else
4538 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
d28da049 4539 }
09fb7599 4540
e11e83f3 4541 if (SCM_I_INUMP (n1))
0aacf84e 4542 {
e11e83f3
MV
4543 nn1 = SCM_I_INUM (n1);
4544 if (SCM_I_INUMP (n2))
0aacf84e 4545 {
e25f3727 4546 scm_t_inum nn2 = SCM_I_INUM (n2);
d956fa6f 4547 return SCM_I_MAKINUM (nn1 ^ nn2);
0aacf84e
MD
4548 }
4549 else if (SCM_BIGP (n2))
4550 {
4551 intbig:
4552 {
4553 SCM result_z = scm_i_mkbig ();
4554 mpz_t nn1_z;
4555 mpz_init_set_si (nn1_z, nn1);
4556 mpz_xor (SCM_I_BIG_MPZ (result_z), nn1_z, SCM_I_BIG_MPZ (n2));
4557 scm_remember_upto_here_1 (n2);
4558 mpz_clear (nn1_z);
4559 return scm_i_normbig (result_z);
4560 }
4561 }
4562 else
4563 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
4564 }
4565 else if (SCM_BIGP (n1))
4566 {
e11e83f3 4567 if (SCM_I_INUMP (n2))
0aacf84e
MD
4568 {
4569 SCM_SWAP (n1, n2);
e11e83f3 4570 nn1 = SCM_I_INUM (n1);
0aacf84e
MD
4571 goto intbig;
4572 }
4573 else if (SCM_BIGP (n2))
4574 {
4575 SCM result_z = scm_i_mkbig ();
4576 mpz_xor (SCM_I_BIG_MPZ (result_z),
4577 SCM_I_BIG_MPZ (n1),
4578 SCM_I_BIG_MPZ (n2));
4579 scm_remember_upto_here_2 (n1, n2);
4580 return scm_i_normbig (result_z);
4581 }
4582 else
4583 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
09fb7599 4584 }
0aacf84e 4585 else
09fb7599 4586 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
0f2d19dd 4587}
1bbd0b84 4588#undef FUNC_NAME
0f2d19dd 4589
09fb7599 4590
a1ec6916 4591SCM_DEFINE (scm_logtest, "logtest", 2, 0, 0,
1e6808ea 4592 (SCM j, SCM k),
ba6e7231
KR
4593 "Test whether @var{j} and @var{k} have any 1 bits in common.\n"
4594 "This is equivalent to @code{(not (zero? (logand j k)))}, but\n"
4595 "without actually calculating the @code{logand}, just testing\n"
4596 "for non-zero.\n"
4597 "\n"
1e6808ea 4598 "@lisp\n"
b380b885
MD
4599 "(logtest #b0100 #b1011) @result{} #f\n"
4600 "(logtest #b0100 #b0111) @result{} #t\n"
1e6808ea 4601 "@end lisp")
1bbd0b84 4602#define FUNC_NAME s_scm_logtest
0f2d19dd 4603{
e25f3727 4604 scm_t_inum nj;
9a00c9fc 4605
e11e83f3 4606 if (SCM_I_INUMP (j))
0aacf84e 4607 {
e11e83f3
MV
4608 nj = SCM_I_INUM (j);
4609 if (SCM_I_INUMP (k))
0aacf84e 4610 {
e25f3727 4611 scm_t_inum nk = SCM_I_INUM (k);
73e4de09 4612 return scm_from_bool (nj & nk);
0aacf84e
MD
4613 }
4614 else if (SCM_BIGP (k))
4615 {
4616 intbig:
4617 if (nj == 0)
4618 return SCM_BOOL_F;
4619 {
4620 SCM result;
4621 mpz_t nj_z;
4622 mpz_init_set_si (nj_z, nj);
4623 mpz_and (nj_z, nj_z, SCM_I_BIG_MPZ (k));
4624 scm_remember_upto_here_1 (k);
73e4de09 4625 result = scm_from_bool (mpz_sgn (nj_z) != 0);
0aacf84e
MD
4626 mpz_clear (nj_z);
4627 return result;
4628 }
4629 }
4630 else
4631 SCM_WRONG_TYPE_ARG (SCM_ARG2, k);
4632 }
4633 else if (SCM_BIGP (j))
4634 {
e11e83f3 4635 if (SCM_I_INUMP (k))
0aacf84e
MD
4636 {
4637 SCM_SWAP (j, k);
e11e83f3 4638 nj = SCM_I_INUM (j);
0aacf84e
MD
4639 goto intbig;
4640 }
4641 else if (SCM_BIGP (k))
4642 {
4643 SCM result;
4644 mpz_t result_z;
4645 mpz_init (result_z);
4646 mpz_and (result_z,
4647 SCM_I_BIG_MPZ (j),
4648 SCM_I_BIG_MPZ (k));
4649 scm_remember_upto_here_2 (j, k);
73e4de09 4650 result = scm_from_bool (mpz_sgn (result_z) != 0);
0aacf84e
MD
4651 mpz_clear (result_z);
4652 return result;
4653 }
4654 else
4655 SCM_WRONG_TYPE_ARG (SCM_ARG2, k);
4656 }
4657 else
4658 SCM_WRONG_TYPE_ARG (SCM_ARG1, j);
0f2d19dd 4659}
1bbd0b84 4660#undef FUNC_NAME
0f2d19dd 4661
c1bfcf60 4662
a1ec6916 4663SCM_DEFINE (scm_logbit_p, "logbit?", 2, 0, 0,
2cd04b42 4664 (SCM index, SCM j),
ba6e7231
KR
4665 "Test whether bit number @var{index} in @var{j} is set.\n"
4666 "@var{index} starts from 0 for the least significant bit.\n"
4667 "\n"
1e6808ea 4668 "@lisp\n"
b380b885
MD
4669 "(logbit? 0 #b1101) @result{} #t\n"
4670 "(logbit? 1 #b1101) @result{} #f\n"
4671 "(logbit? 2 #b1101) @result{} #t\n"
4672 "(logbit? 3 #b1101) @result{} #t\n"
4673 "(logbit? 4 #b1101) @result{} #f\n"
1e6808ea 4674 "@end lisp")
1bbd0b84 4675#define FUNC_NAME s_scm_logbit_p
0f2d19dd 4676{
78166ad5 4677 unsigned long int iindex;
5efd3c7d 4678 iindex = scm_to_ulong (index);
78166ad5 4679
e11e83f3 4680 if (SCM_I_INUMP (j))
0d75f6d8
KR
4681 {
4682 /* bits above what's in an inum follow the sign bit */
20fcc8ed 4683 iindex = min (iindex, SCM_LONG_BIT - 1);
e11e83f3 4684 return scm_from_bool ((1L << iindex) & SCM_I_INUM (j));
0d75f6d8 4685 }
0aacf84e
MD
4686 else if (SCM_BIGP (j))
4687 {
4688 int val = mpz_tstbit (SCM_I_BIG_MPZ (j), iindex);
4689 scm_remember_upto_here_1 (j);
73e4de09 4690 return scm_from_bool (val);
0aacf84e
MD
4691 }
4692 else
78166ad5 4693 SCM_WRONG_TYPE_ARG (SCM_ARG2, j);
0f2d19dd 4694}
1bbd0b84 4695#undef FUNC_NAME
0f2d19dd 4696
78166ad5 4697
a1ec6916 4698SCM_DEFINE (scm_lognot, "lognot", 1, 0, 0,
1bbd0b84 4699 (SCM n),
4d814788 4700 "Return the integer which is the ones-complement of the integer\n"
1e6808ea
MG
4701 "argument.\n"
4702 "\n"
b380b885
MD
4703 "@lisp\n"
4704 "(number->string (lognot #b10000000) 2)\n"
4705 " @result{} \"-10000001\"\n"
4706 "(number->string (lognot #b0) 2)\n"
4707 " @result{} \"-1\"\n"
1e6808ea 4708 "@end lisp")
1bbd0b84 4709#define FUNC_NAME s_scm_lognot
0f2d19dd 4710{
e11e83f3 4711 if (SCM_I_INUMP (n)) {
f9811f9f
KR
4712 /* No overflow here, just need to toggle all the bits making up the inum.
4713 Enhancement: No need to strip the tag and add it back, could just xor
4714 a block of 1 bits, if that worked with the various debug versions of
4715 the SCM typedef. */
e11e83f3 4716 return SCM_I_MAKINUM (~ SCM_I_INUM (n));
f9811f9f
KR
4717
4718 } else if (SCM_BIGP (n)) {
4719 SCM result = scm_i_mkbig ();
4720 mpz_com (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (n));
4721 scm_remember_upto_here_1 (n);
4722 return result;
4723
4724 } else {
4725 SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
4726 }
0f2d19dd 4727}
1bbd0b84 4728#undef FUNC_NAME
0f2d19dd 4729
518b7508
KR
4730/* returns 0 if IN is not an integer. OUT must already be
4731 initialized. */
4732static int
4733coerce_to_big (SCM in, mpz_t out)
4734{
4735 if (SCM_BIGP (in))
4736 mpz_set (out, SCM_I_BIG_MPZ (in));
e11e83f3
MV
4737 else if (SCM_I_INUMP (in))
4738 mpz_set_si (out, SCM_I_INUM (in));
518b7508
KR
4739 else
4740 return 0;
4741
4742 return 1;
4743}
4744
d885e204 4745SCM_DEFINE (scm_modulo_expt, "modulo-expt", 3, 0, 0,
518b7508
KR
4746 (SCM n, SCM k, SCM m),
4747 "Return @var{n} raised to the integer exponent\n"
4748 "@var{k}, modulo @var{m}.\n"
4749 "\n"
4750 "@lisp\n"
4751 "(modulo-expt 2 3 5)\n"
4752 " @result{} 3\n"
4753 "@end lisp")
d885e204 4754#define FUNC_NAME s_scm_modulo_expt
518b7508
KR
4755{
4756 mpz_t n_tmp;
4757 mpz_t k_tmp;
4758 mpz_t m_tmp;
4759
4760 /* There are two classes of error we might encounter --
4761 1) Math errors, which we'll report by calling scm_num_overflow,
4762 and
4763 2) wrong-type errors, which of course we'll report by calling
4764 SCM_WRONG_TYPE_ARG.
4765 We don't report those errors immediately, however; instead we do
4766 some cleanup first. These variables tell us which error (if
4767 any) we should report after cleaning up.
4768 */
4769 int report_overflow = 0;
4770
4771 int position_of_wrong_type = 0;
4772 SCM value_of_wrong_type = SCM_INUM0;
4773
4774 SCM result = SCM_UNDEFINED;
4775
4776 mpz_init (n_tmp);
4777 mpz_init (k_tmp);
4778 mpz_init (m_tmp);
4779
bc36d050 4780 if (scm_is_eq (m, SCM_INUM0))
518b7508
KR
4781 {
4782 report_overflow = 1;
4783 goto cleanup;
4784 }
4785
4786 if (!coerce_to_big (n, n_tmp))
4787 {
4788 value_of_wrong_type = n;
4789 position_of_wrong_type = 1;
4790 goto cleanup;
4791 }
4792
4793 if (!coerce_to_big (k, k_tmp))
4794 {
4795 value_of_wrong_type = k;
4796 position_of_wrong_type = 2;
4797 goto cleanup;
4798 }
4799
4800 if (!coerce_to_big (m, m_tmp))
4801 {
4802 value_of_wrong_type = m;
4803 position_of_wrong_type = 3;
4804 goto cleanup;
4805 }
4806
4807 /* if the exponent K is negative, and we simply call mpz_powm, we
4808 will get a divide-by-zero exception when an inverse 1/n mod m
4809 doesn't exist (or is not unique). Since exceptions are hard to
4810 handle, we'll attempt the inversion "by hand" -- that way, we get
4811 a simple failure code, which is easy to handle. */
4812
4813 if (-1 == mpz_sgn (k_tmp))
4814 {
4815 if (!mpz_invert (n_tmp, n_tmp, m_tmp))
4816 {
4817 report_overflow = 1;
4818 goto cleanup;
4819 }
4820 mpz_neg (k_tmp, k_tmp);
4821 }
4822
4823 result = scm_i_mkbig ();
4824 mpz_powm (SCM_I_BIG_MPZ (result),
4825 n_tmp,
4826 k_tmp,
4827 m_tmp);
b7b8c575
KR
4828
4829 if (mpz_sgn (m_tmp) < 0 && mpz_sgn (SCM_I_BIG_MPZ (result)) != 0)
4830 mpz_add (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result), m_tmp);
4831
518b7508
KR
4832 cleanup:
4833 mpz_clear (m_tmp);
4834 mpz_clear (k_tmp);
4835 mpz_clear (n_tmp);
4836
4837 if (report_overflow)
4838 scm_num_overflow (FUNC_NAME);
4839
4840 if (position_of_wrong_type)
4841 SCM_WRONG_TYPE_ARG (position_of_wrong_type,
4842 value_of_wrong_type);
4843
4844 return scm_i_normbig (result);
4845}
4846#undef FUNC_NAME
4847
a1ec6916 4848SCM_DEFINE (scm_integer_expt, "integer-expt", 2, 0, 0,
2cd04b42 4849 (SCM n, SCM k),
ba6e7231
KR
4850 "Return @var{n} raised to the power @var{k}. @var{k} must be an\n"
4851 "exact integer, @var{n} can be any number.\n"
4852 "\n"
2519490c
MW
4853 "Negative @var{k} is supported, and results in\n"
4854 "@math{1/@var{n}^abs(@var{k})} in the usual way.\n"
4855 "@math{@var{n}^0} is 1, as usual, and that\n"
ba6e7231 4856 "includes @math{0^0} is 1.\n"
1e6808ea 4857 "\n"
b380b885 4858 "@lisp\n"
ba6e7231
KR
4859 "(integer-expt 2 5) @result{} 32\n"
4860 "(integer-expt -3 3) @result{} -27\n"
4861 "(integer-expt 5 -3) @result{} 1/125\n"
4862 "(integer-expt 0 0) @result{} 1\n"
b380b885 4863 "@end lisp")
1bbd0b84 4864#define FUNC_NAME s_scm_integer_expt
0f2d19dd 4865{
e25f3727 4866 scm_t_inum i2 = 0;
1c35cb19
RB
4867 SCM z_i2 = SCM_BOOL_F;
4868 int i2_is_big = 0;
d956fa6f 4869 SCM acc = SCM_I_MAKINUM (1L);
ca46fb90 4870
bfe1f03a
MW
4871 /* Specifically refrain from checking the type of the first argument.
4872 This allows us to exponentiate any object that can be multiplied.
4873 If we must raise to a negative power, we must also be able to
4874 take its reciprocal. */
4875 if (!SCM_LIKELY (SCM_I_INUMP (k)) && !SCM_LIKELY (SCM_BIGP (k)))
01c7284a 4876 SCM_WRONG_TYPE_ARG (2, k);
5a8fc758 4877
bfe1f03a
MW
4878 if (SCM_UNLIKELY (scm_is_eq (k, SCM_INUM0)))
4879 return SCM_INUM1; /* n^(exact0) is exact 1, regardless of n */
4880 else if (SCM_UNLIKELY (scm_is_eq (n, SCM_I_MAKINUM (-1L))))
4881 return scm_is_false (scm_even_p (k)) ? n : SCM_INUM1;
4882 /* The next check is necessary only because R6RS specifies different
4883 behavior for 0^(-k) than for (/ 0). If n is not a scheme number,
4884 we simply skip this case and move on. */
4885 else if (SCM_NUMBERP (n) && scm_is_true (scm_zero_p (n)))
4886 {
4887 /* k cannot be 0 at this point, because we
4888 have already checked for that case above */
4889 if (scm_is_true (scm_positive_p (k)))
01c7284a
MW
4890 return n;
4891 else /* return NaN for (0 ^ k) for negative k per R6RS */
4892 return scm_nan ();
4893 }
a285b18c
MW
4894 else if (SCM_FRACTIONP (n))
4895 {
4896 /* Optimize the fraction case by (a/b)^k ==> (a^k)/(b^k), to avoid
4897 needless reduction of intermediate products to lowest terms.
4898 If a and b have no common factors, then a^k and b^k have no
4899 common factors. Use 'scm_i_make_ratio_already_reduced' to
4900 construct the final result, so that no gcd computations are
4901 needed to exponentiate a fraction. */
4902 if (scm_is_true (scm_positive_p (k)))
4903 return scm_i_make_ratio_already_reduced
4904 (scm_integer_expt (SCM_FRACTION_NUMERATOR (n), k),
4905 scm_integer_expt (SCM_FRACTION_DENOMINATOR (n), k));
4906 else
4907 {
4908 k = scm_difference (k, SCM_UNDEFINED);
4909 return scm_i_make_ratio_already_reduced
4910 (scm_integer_expt (SCM_FRACTION_DENOMINATOR (n), k),
4911 scm_integer_expt (SCM_FRACTION_NUMERATOR (n), k));
4912 }
4913 }
ca46fb90 4914
e11e83f3
MV
4915 if (SCM_I_INUMP (k))
4916 i2 = SCM_I_INUM (k);
ca46fb90
RB
4917 else if (SCM_BIGP (k))
4918 {
4919 z_i2 = scm_i_clonebig (k, 1);
ca46fb90
RB
4920 scm_remember_upto_here_1 (k);
4921 i2_is_big = 1;
4922 }
2830fd91 4923 else
ca46fb90
RB
4924 SCM_WRONG_TYPE_ARG (2, k);
4925
4926 if (i2_is_big)
f872b822 4927 {
ca46fb90
RB
4928 if (mpz_sgn(SCM_I_BIG_MPZ (z_i2)) == -1)
4929 {
4930 mpz_neg (SCM_I_BIG_MPZ (z_i2), SCM_I_BIG_MPZ (z_i2));
4931 n = scm_divide (n, SCM_UNDEFINED);
4932 }
4933 while (1)
4934 {
4935 if (mpz_sgn(SCM_I_BIG_MPZ (z_i2)) == 0)
4936 {
ca46fb90
RB
4937 return acc;
4938 }
4939 if (mpz_cmp_ui(SCM_I_BIG_MPZ (z_i2), 1) == 0)
4940 {
ca46fb90
RB
4941 return scm_product (acc, n);
4942 }
4943 if (mpz_tstbit(SCM_I_BIG_MPZ (z_i2), 0))
4944 acc = scm_product (acc, n);
4945 n = scm_product (n, n);
4946 mpz_fdiv_q_2exp (SCM_I_BIG_MPZ (z_i2), SCM_I_BIG_MPZ (z_i2), 1);
4947 }
f872b822 4948 }
ca46fb90 4949 else
f872b822 4950 {
ca46fb90
RB
4951 if (i2 < 0)
4952 {
4953 i2 = -i2;
4954 n = scm_divide (n, SCM_UNDEFINED);
4955 }
4956 while (1)
4957 {
4958 if (0 == i2)
4959 return acc;
4960 if (1 == i2)
4961 return scm_product (acc, n);
4962 if (i2 & 1)
4963 acc = scm_product (acc, n);
4964 n = scm_product (n, n);
4965 i2 >>= 1;
4966 }
f872b822 4967 }
0f2d19dd 4968}
1bbd0b84 4969#undef FUNC_NAME
0f2d19dd 4970
e08a12b5
MW
4971/* Efficiently compute (N * 2^COUNT),
4972 where N is an exact integer, and COUNT > 0. */
4973static SCM
4974left_shift_exact_integer (SCM n, long count)
4975{
4976 if (SCM_I_INUMP (n))
4977 {
4978 scm_t_inum nn = SCM_I_INUM (n);
4979
4980 /* Left shift of count >= SCM_I_FIXNUM_BIT-1 will always
4981 overflow a non-zero fixnum. For smaller shifts we check the
4982 bits going into positions above SCM_I_FIXNUM_BIT-1. If they're
4983 all 0s for nn>=0, or all 1s for nn<0 then there's no overflow.
4984 Those bits are "nn >> (SCM_I_FIXNUM_BIT-1 - count)". */
4985
4986 if (nn == 0)
4987 return n;
4988 else if (count < SCM_I_FIXNUM_BIT-1 &&
4989 ((scm_t_bits) (SCM_SRS (nn, (SCM_I_FIXNUM_BIT-1 - count)) + 1)
4990 <= 1))
4991 return SCM_I_MAKINUM (nn << count);
4992 else
4993 {
4994 SCM result = scm_i_inum2big (nn);
4995 mpz_mul_2exp (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result),
4996 count);
4997 return result;
4998 }
4999 }
5000 else if (SCM_BIGP (n))
5001 {
5002 SCM result = scm_i_mkbig ();
5003 mpz_mul_2exp (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (n), count);
5004 scm_remember_upto_here_1 (n);
5005 return result;
5006 }
5007 else
6f82b8f6 5008 assert (0);
e08a12b5
MW
5009}
5010
5011/* Efficiently compute floor (N / 2^COUNT),
5012 where N is an exact integer and COUNT > 0. */
5013static SCM
5014floor_right_shift_exact_integer (SCM n, long count)
5015{
5016 if (SCM_I_INUMP (n))
5017 {
5018 scm_t_inum nn = SCM_I_INUM (n);
5019
5020 if (count >= SCM_I_FIXNUM_BIT)
5021 return (nn >= 0 ? SCM_INUM0 : SCM_I_MAKINUM (-1));
5022 else
5023 return SCM_I_MAKINUM (SCM_SRS (nn, count));
5024 }
5025 else if (SCM_BIGP (n))
5026 {
5027 SCM result = scm_i_mkbig ();
5028 mpz_fdiv_q_2exp (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (n),
5029 count);
5030 scm_remember_upto_here_1 (n);
5031 return scm_i_normbig (result);
5032 }
5033 else
6f82b8f6 5034 assert (0);
e08a12b5
MW
5035}
5036
5037/* Efficiently compute round (N / 2^COUNT),
5038 where N is an exact integer and COUNT > 0. */
5039static SCM
5040round_right_shift_exact_integer (SCM n, long count)
5041{
5042 if (SCM_I_INUMP (n))
5043 {
5044 if (count >= SCM_I_FIXNUM_BIT)
5045 return SCM_INUM0;
5046 else
5047 {
5048 scm_t_inum nn = SCM_I_INUM (n);
5049 scm_t_inum qq = SCM_SRS (nn, count);
5050
5051 if (0 == (nn & (1L << (count-1))))
5052 return SCM_I_MAKINUM (qq); /* round down */
5053 else if (nn & ((1L << (count-1)) - 1))
5054 return SCM_I_MAKINUM (qq + 1); /* round up */
5055 else
5056 return SCM_I_MAKINUM ((~1L) & (qq + 1)); /* round to even */
5057 }
5058 }
5059 else if (SCM_BIGP (n))
5060 {
5061 SCM q = scm_i_mkbig ();
5062
5063 mpz_fdiv_q_2exp (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (n), count);
5064 if (mpz_tstbit (SCM_I_BIG_MPZ (n), count-1)
5065 && (mpz_odd_p (SCM_I_BIG_MPZ (q))
5066 || (mpz_scan1 (SCM_I_BIG_MPZ (n), 0) < count-1)))
5067 mpz_add_ui (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (q), 1);
5068 scm_remember_upto_here_1 (n);
5069 return scm_i_normbig (q);
5070 }
5071 else
6f82b8f6 5072 assert (0);
e08a12b5
MW
5073}
5074
a1ec6916 5075SCM_DEFINE (scm_ash, "ash", 2, 0, 0,
e08a12b5
MW
5076 (SCM n, SCM count),
5077 "Return @math{floor(@var{n} * 2^@var{count})}.\n"
5078 "@var{n} and @var{count} must be exact integers.\n"
1e6808ea 5079 "\n"
e08a12b5
MW
5080 "With @var{n} viewed as an infinite-precision twos-complement\n"
5081 "integer, @code{ash} means a left shift introducing zero bits\n"
5082 "when @var{count} is positive, or a right shift dropping bits\n"
5083 "when @var{count} is negative. This is an ``arithmetic'' shift.\n"
1e6808ea 5084 "\n"
b380b885 5085 "@lisp\n"
1e6808ea
MG
5086 "(number->string (ash #b1 3) 2) @result{} \"1000\"\n"
5087 "(number->string (ash #b1010 -1) 2) @result{} \"101\"\n"
32f19569
KR
5088 "\n"
5089 ";; -23 is bits ...11101001, -6 is bits ...111010\n"
5090 "(ash -23 -2) @result{} -6\n"
a3c8b9fc 5091 "@end lisp")
1bbd0b84 5092#define FUNC_NAME s_scm_ash
0f2d19dd 5093{
e08a12b5 5094 if (SCM_I_INUMP (n) || SCM_BIGP (n))
788aca27 5095 {
e08a12b5 5096 long bits_to_shift = scm_to_long (count);
788aca27
KR
5097
5098 if (bits_to_shift > 0)
e08a12b5
MW
5099 return left_shift_exact_integer (n, bits_to_shift);
5100 else if (SCM_LIKELY (bits_to_shift < 0))
5101 return floor_right_shift_exact_integer (n, -bits_to_shift);
788aca27 5102 else
e08a12b5 5103 return n;
788aca27 5104 }
e08a12b5
MW
5105 else
5106 SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
5107}
5108#undef FUNC_NAME
788aca27 5109
e08a12b5
MW
5110SCM_DEFINE (scm_round_ash, "round-ash", 2, 0, 0,
5111 (SCM n, SCM count),
5112 "Return @math{round(@var{n} * 2^@var{count})}.\n"
5113 "@var{n} and @var{count} must be exact integers.\n"
5114 "\n"
5115 "With @var{n} viewed as an infinite-precision twos-complement\n"
5116 "integer, @code{round-ash} means a left shift introducing zero\n"
5117 "bits when @var{count} is positive, or a right shift rounding\n"
5118 "to the nearest integer (with ties going to the nearest even\n"
5119 "integer) when @var{count} is negative. This is a rounded\n"
5120 "``arithmetic'' shift.\n"
5121 "\n"
5122 "@lisp\n"
5123 "(number->string (round-ash #b1 3) 2) @result{} \"1000\"\n"
5124 "(number->string (round-ash #b1010 -1) 2) @result{} \"101\"\n"
5125 "(number->string (round-ash #b1010 -2) 2) @result{} \"10\"\n"
5126 "(number->string (round-ash #b1011 -2) 2) @result{} \"11\"\n"
5127 "(number->string (round-ash #b1101 -2) 2) @result{} \"11\"\n"
5128 "(number->string (round-ash #b1110 -2) 2) @result{} \"100\"\n"
5129 "@end lisp")
5130#define FUNC_NAME s_scm_round_ash
5131{
5132 if (SCM_I_INUMP (n) || SCM_BIGP (n))
5133 {
5134 long bits_to_shift = scm_to_long (count);
788aca27 5135
e08a12b5
MW
5136 if (bits_to_shift > 0)
5137 return left_shift_exact_integer (n, bits_to_shift);
5138 else if (SCM_LIKELY (bits_to_shift < 0))
5139 return round_right_shift_exact_integer (n, -bits_to_shift);
ca46fb90 5140 else
e08a12b5 5141 return n;
ca46fb90
RB
5142 }
5143 else
e08a12b5 5144 SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
0f2d19dd 5145}
1bbd0b84 5146#undef FUNC_NAME
0f2d19dd 5147
3c9f20f8 5148
a1ec6916 5149SCM_DEFINE (scm_bit_extract, "bit-extract", 3, 0, 0,
1bbd0b84 5150 (SCM n, SCM start, SCM end),
1e6808ea
MG
5151 "Return the integer composed of the @var{start} (inclusive)\n"
5152 "through @var{end} (exclusive) bits of @var{n}. The\n"
5153 "@var{start}th bit becomes the 0-th bit in the result.\n"
5154 "\n"
b380b885
MD
5155 "@lisp\n"
5156 "(number->string (bit-extract #b1101101010 0 4) 2)\n"
5157 " @result{} \"1010\"\n"
5158 "(number->string (bit-extract #b1101101010 4 9) 2)\n"
5159 " @result{} \"10110\"\n"
5160 "@end lisp")
1bbd0b84 5161#define FUNC_NAME s_scm_bit_extract
0f2d19dd 5162{
7f848242 5163 unsigned long int istart, iend, bits;
5efd3c7d
MV
5164 istart = scm_to_ulong (start);
5165 iend = scm_to_ulong (end);
c1bfcf60 5166 SCM_ASSERT_RANGE (3, end, (iend >= istart));
78166ad5 5167
7f848242
KR
5168 /* how many bits to keep */
5169 bits = iend - istart;
5170
e11e83f3 5171 if (SCM_I_INUMP (n))
0aacf84e 5172 {
e25f3727 5173 scm_t_inum in = SCM_I_INUM (n);
7f848242
KR
5174
5175 /* When istart>=SCM_I_FIXNUM_BIT we can just limit the shift to
d77ad560 5176 SCM_I_FIXNUM_BIT-1 to get either 0 or -1 per the sign of "in". */
857ae6af 5177 in = SCM_SRS (in, min (istart, SCM_I_FIXNUM_BIT-1));
ac0c002c 5178
0aacf84e
MD
5179 if (in < 0 && bits >= SCM_I_FIXNUM_BIT)
5180 {
5181 /* Since we emulate two's complement encoded numbers, this
5182 * special case requires us to produce a result that has
7f848242 5183 * more bits than can be stored in a fixnum.
0aacf84e 5184 */
e25f3727 5185 SCM result = scm_i_inum2big (in);
7f848242
KR
5186 mpz_fdiv_r_2exp (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result),
5187 bits);
5188 return result;
0aacf84e 5189 }
ac0c002c 5190
7f848242 5191 /* mask down to requisite bits */
857ae6af 5192 bits = min (bits, SCM_I_FIXNUM_BIT);
d956fa6f 5193 return SCM_I_MAKINUM (in & ((1L << bits) - 1));
0aacf84e
MD
5194 }
5195 else if (SCM_BIGP (n))
ac0c002c 5196 {
7f848242
KR
5197 SCM result;
5198 if (bits == 1)
5199 {
d956fa6f 5200 result = SCM_I_MAKINUM (mpz_tstbit (SCM_I_BIG_MPZ (n), istart));
7f848242
KR
5201 }
5202 else
5203 {
5204 /* ENHANCE-ME: It'd be nice not to allocate a new bignum when
5205 bits<SCM_I_FIXNUM_BIT. Would want some help from GMP to get
5206 such bits into a ulong. */
5207 result = scm_i_mkbig ();
5208 mpz_fdiv_q_2exp (SCM_I_BIG_MPZ(result), SCM_I_BIG_MPZ(n), istart);
5209 mpz_fdiv_r_2exp (SCM_I_BIG_MPZ(result), SCM_I_BIG_MPZ(result), bits);
5210 result = scm_i_normbig (result);
5211 }
5212 scm_remember_upto_here_1 (n);
5213 return result;
ac0c002c 5214 }
0aacf84e 5215 else
78166ad5 5216 SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
0f2d19dd 5217}
1bbd0b84 5218#undef FUNC_NAME
0f2d19dd 5219
7f848242 5220
e4755e5c
JB
5221static const char scm_logtab[] = {
5222 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4
5223};
1cc91f1b 5224
a1ec6916 5225SCM_DEFINE (scm_logcount, "logcount", 1, 0, 0,
1bbd0b84 5226 (SCM n),
1e6808ea
MG
5227 "Return the number of bits in integer @var{n}. If integer is\n"
5228 "positive, the 1-bits in its binary representation are counted.\n"
5229 "If negative, the 0-bits in its two's-complement binary\n"
5230 "representation are counted. If 0, 0 is returned.\n"
5231 "\n"
b380b885
MD
5232 "@lisp\n"
5233 "(logcount #b10101010)\n"
ca46fb90
RB
5234 " @result{} 4\n"
5235 "(logcount 0)\n"
5236 " @result{} 0\n"
5237 "(logcount -2)\n"
5238 " @result{} 1\n"
5239 "@end lisp")
5240#define FUNC_NAME s_scm_logcount
5241{
e11e83f3 5242 if (SCM_I_INUMP (n))
f872b822 5243 {
e25f3727
AW
5244 unsigned long c = 0;
5245 scm_t_inum nn = SCM_I_INUM (n);
ca46fb90
RB
5246 if (nn < 0)
5247 nn = -1 - nn;
5248 while (nn)
5249 {
5250 c += scm_logtab[15 & nn];
5251 nn >>= 4;
5252 }
d956fa6f 5253 return SCM_I_MAKINUM (c);
f872b822 5254 }
ca46fb90 5255 else if (SCM_BIGP (n))
f872b822 5256 {
ca46fb90 5257 unsigned long count;
713a4259
KR
5258 if (mpz_sgn (SCM_I_BIG_MPZ (n)) >= 0)
5259 count = mpz_popcount (SCM_I_BIG_MPZ (n));
ca46fb90 5260 else
713a4259
KR
5261 count = mpz_hamdist (SCM_I_BIG_MPZ (n), z_negative_one);
5262 scm_remember_upto_here_1 (n);
d956fa6f 5263 return SCM_I_MAKINUM (count);
f872b822 5264 }
ca46fb90
RB
5265 else
5266 SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
0f2d19dd 5267}
ca46fb90 5268#undef FUNC_NAME
0f2d19dd
JB
5269
5270
ca46fb90
RB
5271static const char scm_ilentab[] = {
5272 0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4
5273};
5274
0f2d19dd 5275
ca46fb90
RB
5276SCM_DEFINE (scm_integer_length, "integer-length", 1, 0, 0,
5277 (SCM n),
5278 "Return the number of bits necessary to represent @var{n}.\n"
5279 "\n"
5280 "@lisp\n"
5281 "(integer-length #b10101010)\n"
5282 " @result{} 8\n"
5283 "(integer-length 0)\n"
5284 " @result{} 0\n"
5285 "(integer-length #b1111)\n"
5286 " @result{} 4\n"
5287 "@end lisp")
5288#define FUNC_NAME s_scm_integer_length
5289{
e11e83f3 5290 if (SCM_I_INUMP (n))
0aacf84e 5291 {
e25f3727 5292 unsigned long c = 0;
0aacf84e 5293 unsigned int l = 4;
e25f3727 5294 scm_t_inum nn = SCM_I_INUM (n);
0aacf84e
MD
5295 if (nn < 0)
5296 nn = -1 - nn;
5297 while (nn)
5298 {
5299 c += 4;
5300 l = scm_ilentab [15 & nn];
5301 nn >>= 4;
5302 }
d956fa6f 5303 return SCM_I_MAKINUM (c - 4 + l);
0aacf84e
MD
5304 }
5305 else if (SCM_BIGP (n))
5306 {
5307 /* mpz_sizeinbase looks at the absolute value of negatives, whereas we
5308 want a ones-complement. If n is ...111100..00 then mpz_sizeinbase is
5309 1 too big, so check for that and adjust. */
5310 size_t size = mpz_sizeinbase (SCM_I_BIG_MPZ (n), 2);
5311 if (mpz_sgn (SCM_I_BIG_MPZ (n)) < 0
5312 && mpz_scan0 (SCM_I_BIG_MPZ (n), /* no 0 bits above the lowest 1 */
5313 mpz_scan1 (SCM_I_BIG_MPZ (n), 0)) == ULONG_MAX)
5314 size--;
5315 scm_remember_upto_here_1 (n);
d956fa6f 5316 return SCM_I_MAKINUM (size);
0aacf84e
MD
5317 }
5318 else
ca46fb90 5319 SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
ca46fb90
RB
5320}
5321#undef FUNC_NAME
0f2d19dd
JB
5322
5323/*** NUMBERS -> STRINGS ***/
0b799eea
MV
5324#define SCM_MAX_DBL_RADIX 36
5325
0b799eea 5326/* use this array as a way to generate a single digit */
9b5fcde6 5327static const char number_chars[] = "0123456789abcdefghijklmnopqrstuvwxyz";
0f2d19dd 5328
1ea37620
MW
5329static mpz_t dbl_minimum_normal_mantissa;
5330
1be6b49c 5331static size_t
1ea37620 5332idbl2str (double dbl, char *a, int radix)
0f2d19dd 5333{
1ea37620 5334 int ch = 0;
0b799eea 5335
1ea37620
MW
5336 if (radix < 2 || radix > SCM_MAX_DBL_RADIX)
5337 /* revert to existing behavior */
5338 radix = 10;
0f2d19dd 5339
1ea37620 5340 if (isinf (dbl))
abb7e44d 5341 {
1ea37620
MW
5342 strcpy (a, (dbl > 0.0) ? "+inf.0" : "-inf.0");
5343 return 6;
abb7e44d 5344 }
1ea37620
MW
5345 else if (dbl > 0.0)
5346 ;
5347 else if (dbl < 0.0)
7351e207 5348 {
1ea37620
MW
5349 dbl = -dbl;
5350 a[ch++] = '-';
7351e207 5351 }
1ea37620 5352 else if (dbl == 0.0)
7351e207 5353 {
e1592f8a 5354 if (copysign (1.0, dbl) < 0.0)
1ea37620
MW
5355 a[ch++] = '-';
5356 strcpy (a + ch, "0.0");
5357 return ch + 3;
7351e207 5358 }
1ea37620 5359 else if (isnan (dbl))
f872b822 5360 {
1ea37620
MW
5361 strcpy (a, "+nan.0");
5362 return 6;
f872b822 5363 }
7351e207 5364
1ea37620
MW
5365 /* Algorithm taken from "Printing Floating-Point Numbers Quickly and
5366 Accurately" by Robert G. Burger and R. Kent Dybvig */
5367 {
5368 int e, k;
5369 mpz_t f, r, s, mplus, mminus, hi, digit;
5370 int f_is_even, f_is_odd;
8150dfa1 5371 int expon;
1ea37620
MW
5372 int show_exp = 0;
5373
5374 mpz_inits (f, r, s, mplus, mminus, hi, digit, NULL);
5375 mpz_set_d (f, ldexp (frexp (dbl, &e), DBL_MANT_DIG));
5376 if (e < DBL_MIN_EXP)
5377 {
5378 mpz_tdiv_q_2exp (f, f, DBL_MIN_EXP - e);
5379 e = DBL_MIN_EXP;
5380 }
5381 e -= DBL_MANT_DIG;
0b799eea 5382
1ea37620
MW
5383 f_is_even = !mpz_odd_p (f);
5384 f_is_odd = !f_is_even;
0b799eea 5385
1ea37620
MW
5386 /* Initialize r, s, mplus, and mminus according
5387 to Table 1 from the paper. */
5388 if (e < 0)
5389 {
5390 mpz_set_ui (mminus, 1);
5391 if (mpz_cmp (f, dbl_minimum_normal_mantissa) != 0
5392 || e == DBL_MIN_EXP - DBL_MANT_DIG)
5393 {
5394 mpz_set_ui (mplus, 1);
5395 mpz_mul_2exp (r, f, 1);
5396 mpz_mul_2exp (s, mminus, 1 - e);
5397 }
5398 else
5399 {
5400 mpz_set_ui (mplus, 2);
5401 mpz_mul_2exp (r, f, 2);
5402 mpz_mul_2exp (s, mminus, 2 - e);
5403 }
5404 }
5405 else
5406 {
5407 mpz_set_ui (mminus, 1);
5408 mpz_mul_2exp (mminus, mminus, e);
5409 if (mpz_cmp (f, dbl_minimum_normal_mantissa) != 0)
5410 {
5411 mpz_set (mplus, mminus);
5412 mpz_mul_2exp (r, f, 1 + e);
5413 mpz_set_ui (s, 2);
5414 }
5415 else
5416 {
5417 mpz_mul_2exp (mplus, mminus, 1);
5418 mpz_mul_2exp (r, f, 2 + e);
5419 mpz_set_ui (s, 4);
5420 }
5421 }
0b799eea 5422
1ea37620
MW
5423 /* Find the smallest k such that:
5424 (r + mplus) / s < radix^k (if f is even)
5425 (r + mplus) / s <= radix^k (if f is odd) */
f872b822 5426 {
1ea37620
MW
5427 /* IMPROVE-ME: Make an initial guess to speed this up */
5428 mpz_add (hi, r, mplus);
5429 k = 0;
5430 while (mpz_cmp (hi, s) >= f_is_odd)
5431 {
5432 mpz_mul_ui (s, s, radix);
5433 k++;
5434 }
5435 if (k == 0)
5436 {
5437 mpz_mul_ui (hi, hi, radix);
5438 while (mpz_cmp (hi, s) < f_is_odd)
5439 {
5440 mpz_mul_ui (r, r, radix);
5441 mpz_mul_ui (mplus, mplus, radix);
5442 mpz_mul_ui (mminus, mminus, radix);
5443 mpz_mul_ui (hi, hi, radix);
5444 k--;
5445 }
5446 }
cda139a7 5447 }
f872b822 5448
8150dfa1
MW
5449 expon = k - 1;
5450 if (k <= 0)
1ea37620 5451 {
8150dfa1
MW
5452 if (k <= -3)
5453 {
5454 /* Use scientific notation */
5455 show_exp = 1;
5456 k = 1;
5457 }
5458 else
5459 {
5460 int i;
0f2d19dd 5461
8150dfa1
MW
5462 /* Print leading zeroes */
5463 a[ch++] = '0';
5464 a[ch++] = '.';
5465 for (i = 0; i > k; i--)
5466 a[ch++] = '0';
5467 }
1ea37620
MW
5468 }
5469
5470 for (;;)
5471 {
5472 int end_1_p, end_2_p;
5473 int d;
5474
5475 mpz_mul_ui (mplus, mplus, radix);
5476 mpz_mul_ui (mminus, mminus, radix);
5477 mpz_mul_ui (r, r, radix);
5478 mpz_fdiv_qr (digit, r, r, s);
5479 d = mpz_get_ui (digit);
5480
5481 mpz_add (hi, r, mplus);
5482 end_1_p = (mpz_cmp (r, mminus) < f_is_even);
5483 end_2_p = (mpz_cmp (s, hi) < f_is_even);
5484 if (end_1_p || end_2_p)
5485 {
5486 mpz_mul_2exp (r, r, 1);
5487 if (!end_2_p)
5488 ;
5489 else if (!end_1_p)
5490 d++;
5491 else if (mpz_cmp (r, s) >= !(d & 1))
5492 d++;
5493 a[ch++] = number_chars[d];
5494 if (--k == 0)
5495 a[ch++] = '.';
5496 break;
5497 }
5498 else
5499 {
5500 a[ch++] = number_chars[d];
5501 if (--k == 0)
5502 a[ch++] = '.';
5503 }
5504 }
5505
5506 if (k > 0)
5507 {
8150dfa1
MW
5508 if (expon >= 7 && k >= 4 && expon >= k)
5509 {
5510 /* Here we would have to print more than three zeroes
5511 followed by a decimal point and another zero. It
5512 makes more sense to use scientific notation. */
5513
5514 /* Adjust k to what it would have been if we had chosen
5515 scientific notation from the beginning. */
5516 k -= expon;
5517
5518 /* k will now be <= 0, with magnitude equal to the number of
5519 digits that we printed which should now be put after the
5520 decimal point. */
5521
5522 /* Insert a decimal point */
5523 memmove (a + ch + k + 1, a + ch + k, -k);
5524 a[ch + k] = '.';
5525 ch++;
5526
5527 show_exp = 1;
5528 }
5529 else
5530 {
5531 for (; k > 0; k--)
5532 a[ch++] = '0';
5533 a[ch++] = '.';
5534 }
1ea37620
MW
5535 }
5536
5537 if (k == 0)
5538 a[ch++] = '0';
5539
5540 if (show_exp)
5541 {
5542 a[ch++] = 'e';
8150dfa1 5543 ch += scm_iint2str (expon, radix, a + ch);
1ea37620
MW
5544 }
5545
5546 mpz_clears (f, r, s, mplus, mminus, hi, digit, NULL);
5547 }
0f2d19dd
JB
5548 return ch;
5549}
5550
7a1aba42
MV
5551
5552static size_t
5553icmplx2str (double real, double imag, char *str, int radix)
5554{
5555 size_t i;
c7218482 5556 double sgn;
7a1aba42
MV
5557
5558 i = idbl2str (real, str, radix);
c7218482
MW
5559#ifdef HAVE_COPYSIGN
5560 sgn = copysign (1.0, imag);
5561#else
5562 sgn = imag;
5563#endif
5564 /* Don't output a '+' for negative numbers or for Inf and
5565 NaN. They will provide their own sign. */
19374ad2 5566 if (sgn >= 0 && isfinite (imag))
c7218482
MW
5567 str[i++] = '+';
5568 i += idbl2str (imag, &str[i], radix);
5569 str[i++] = 'i';
7a1aba42
MV
5570 return i;
5571}
5572
1be6b49c 5573static size_t
0b799eea 5574iflo2str (SCM flt, char *str, int radix)
0f2d19dd 5575{
1be6b49c 5576 size_t i;
3c9a524f 5577 if (SCM_REALP (flt))
0b799eea 5578 i = idbl2str (SCM_REAL_VALUE (flt), str, radix);
0f2d19dd 5579 else
7a1aba42
MV
5580 i = icmplx2str (SCM_COMPLEX_REAL (flt), SCM_COMPLEX_IMAG (flt),
5581 str, radix);
0f2d19dd
JB
5582 return i;
5583}
0f2d19dd 5584
2881e77b 5585/* convert a scm_t_intmax to a string (unterminated). returns the number of
1bbd0b84
GB
5586 characters in the result.
5587 rad is output base
5588 p is destination: worst case (base 2) is SCM_INTBUFLEN */
1be6b49c 5589size_t
2881e77b
MV
5590scm_iint2str (scm_t_intmax num, int rad, char *p)
5591{
5592 if (num < 0)
5593 {
5594 *p++ = '-';
5595 return scm_iuint2str (-num, rad, p) + 1;
5596 }
5597 else
5598 return scm_iuint2str (num, rad, p);
5599}
5600
5601/* convert a scm_t_intmax to a string (unterminated). returns the number of
5602 characters in the result.
5603 rad is output base
5604 p is destination: worst case (base 2) is SCM_INTBUFLEN */
5605size_t
5606scm_iuint2str (scm_t_uintmax num, int rad, char *p)
0f2d19dd 5607{
1be6b49c
ML
5608 size_t j = 1;
5609 size_t i;
2881e77b 5610 scm_t_uintmax n = num;
5c11cc9d 5611
a6f3af16
AW
5612 if (rad < 2 || rad > 36)
5613 scm_out_of_range ("scm_iuint2str", scm_from_int (rad));
5614
f872b822 5615 for (n /= rad; n > 0; n /= rad)
5c11cc9d
GH
5616 j++;
5617
5618 i = j;
2881e77b 5619 n = num;
f872b822
MD
5620 while (i--)
5621 {
5c11cc9d
GH
5622 int d = n % rad;
5623
f872b822 5624 n /= rad;
a6f3af16 5625 p[i] = number_chars[d];
f872b822 5626 }
0f2d19dd
JB
5627 return j;
5628}
5629
a1ec6916 5630SCM_DEFINE (scm_number_to_string, "number->string", 1, 1, 0,
bb628794
DH
5631 (SCM n, SCM radix),
5632 "Return a string holding the external representation of the\n"
942e5b91
MG
5633 "number @var{n} in the given @var{radix}. If @var{n} is\n"
5634 "inexact, a radix of 10 will be used.")
1bbd0b84 5635#define FUNC_NAME s_scm_number_to_string
0f2d19dd 5636{
1bbd0b84 5637 int base;
98cb6e75 5638
0aacf84e 5639 if (SCM_UNBNDP (radix))
98cb6e75 5640 base = 10;
0aacf84e 5641 else
5efd3c7d 5642 base = scm_to_signed_integer (radix, 2, 36);
98cb6e75 5643
e11e83f3 5644 if (SCM_I_INUMP (n))
0aacf84e
MD
5645 {
5646 char num_buf [SCM_INTBUFLEN];
e11e83f3 5647 size_t length = scm_iint2str (SCM_I_INUM (n), base, num_buf);
cc95e00a 5648 return scm_from_locale_stringn (num_buf, length);
0aacf84e
MD
5649 }
5650 else if (SCM_BIGP (n))
5651 {
5652 char *str = mpz_get_str (NULL, base, SCM_I_BIG_MPZ (n));
d88f5323
AW
5653 size_t len = strlen (str);
5654 void (*freefunc) (void *, size_t);
5655 SCM ret;
5656 mp_get_memory_functions (NULL, NULL, &freefunc);
0aacf84e 5657 scm_remember_upto_here_1 (n);
d88f5323
AW
5658 ret = scm_from_latin1_stringn (str, len);
5659 freefunc (str, len + 1);
5660 return ret;
0aacf84e 5661 }
f92e85f7
MV
5662 else if (SCM_FRACTIONP (n))
5663 {
f92e85f7 5664 return scm_string_append (scm_list_3 (scm_number_to_string (SCM_FRACTION_NUMERATOR (n), radix),
cc95e00a 5665 scm_from_locale_string ("/"),
f92e85f7
MV
5666 scm_number_to_string (SCM_FRACTION_DENOMINATOR (n), radix)));
5667 }
0aacf84e
MD
5668 else if (SCM_INEXACTP (n))
5669 {
5670 char num_buf [FLOBUFLEN];
cc95e00a 5671 return scm_from_locale_stringn (num_buf, iflo2str (n, num_buf, base));
0aacf84e
MD
5672 }
5673 else
bb628794 5674 SCM_WRONG_TYPE_ARG (1, n);
0f2d19dd 5675}
1bbd0b84 5676#undef FUNC_NAME
0f2d19dd
JB
5677
5678
ca46fb90
RB
5679/* These print routines used to be stubbed here so that scm_repl.c
5680 wouldn't need SCM_BIGDIG conditionals (pre GMP) */
1cc91f1b 5681
0f2d19dd 5682int
e81d98ec 5683scm_print_real (SCM sexp, SCM port, scm_print_state *pstate SCM_UNUSED)
0f2d19dd 5684{
56e55ac7 5685 char num_buf[FLOBUFLEN];
f209aeee 5686 scm_lfwrite_unlocked (num_buf, iflo2str (sexp, num_buf, 10), port);
0f2d19dd
JB
5687 return !0;
5688}
5689
b479fe9a
MV
5690void
5691scm_i_print_double (double val, SCM port)
5692{
5693 char num_buf[FLOBUFLEN];
f209aeee 5694 scm_lfwrite_unlocked (num_buf, idbl2str (val, num_buf, 10), port);
b479fe9a
MV
5695}
5696
f3ae5d60 5697int
e81d98ec 5698scm_print_complex (SCM sexp, SCM port, scm_print_state *pstate SCM_UNUSED)
f92e85f7 5699
f3ae5d60 5700{
56e55ac7 5701 char num_buf[FLOBUFLEN];
f209aeee 5702 scm_lfwrite_unlocked (num_buf, iflo2str (sexp, num_buf, 10), port);
f3ae5d60
MD
5703 return !0;
5704}
1cc91f1b 5705
7a1aba42
MV
5706void
5707scm_i_print_complex (double real, double imag, SCM port)
5708{
5709 char num_buf[FLOBUFLEN];
f209aeee 5710 scm_lfwrite_unlocked (num_buf, icmplx2str (real, imag, num_buf, 10), port);
7a1aba42
MV
5711}
5712
f92e85f7
MV
5713int
5714scm_i_print_fraction (SCM sexp, SCM port, scm_print_state *pstate SCM_UNUSED)
5715{
5716 SCM str;
f92e85f7 5717 str = scm_number_to_string (sexp, SCM_UNDEFINED);
a9178715 5718 scm_display (str, port);
f92e85f7
MV
5719 scm_remember_upto_here_1 (str);
5720 return !0;
5721}
5722
0f2d19dd 5723int
e81d98ec 5724scm_bigprint (SCM exp, SCM port, scm_print_state *pstate SCM_UNUSED)
0f2d19dd 5725{
ca46fb90 5726 char *str = mpz_get_str (NULL, 10, SCM_I_BIG_MPZ (exp));
b57bf272
AW
5727 size_t len = strlen (str);
5728 void (*freefunc) (void *, size_t);
5729 mp_get_memory_functions (NULL, NULL, &freefunc);
ca46fb90 5730 scm_remember_upto_here_1 (exp);
ea0582c2 5731 scm_lfwrite_unlocked (str, len, port);
b57bf272 5732 freefunc (str, len + 1);
0f2d19dd
JB
5733 return !0;
5734}
5735/*** END nums->strs ***/
5736
3c9a524f 5737
0f2d19dd 5738/*** STRINGS -> NUMBERS ***/
2a8fecee 5739
3c9a524f
DH
5740/* The following functions implement the conversion from strings to numbers.
5741 * The implementation somehow follows the grammar for numbers as it is given
5742 * in R5RS. Thus, the functions resemble syntactic units (<ureal R>,
5743 * <uinteger R>, ...) that are used to build up numbers in the grammar. Some
5744 * points should be noted about the implementation:
bc3d34f5 5745 *
3c9a524f
DH
5746 * * Each function keeps a local index variable 'idx' that points at the
5747 * current position within the parsed string. The global index is only
5748 * updated if the function could parse the corresponding syntactic unit
5749 * successfully.
bc3d34f5 5750 *
3c9a524f 5751 * * Similarly, the functions keep track of indicators of inexactness ('#',
bc3d34f5
MW
5752 * '.' or exponents) using local variables ('hash_seen', 'x').
5753 *
3c9a524f
DH
5754 * * Sequences of digits are parsed into temporary variables holding fixnums.
5755 * Only if these fixnums would overflow, the result variables are updated
5756 * using the standard functions scm_add, scm_product, scm_divide etc. Then,
5757 * the temporary variables holding the fixnums are cleared, and the process
5758 * starts over again. If for example fixnums were able to store five decimal
5759 * digits, a number 1234567890 would be parsed in two parts 12345 and 67890,
5760 * and the result was computed as 12345 * 100000 + 67890. In other words,
5761 * only every five digits two bignum operations were performed.
bc3d34f5
MW
5762 *
5763 * Notes on the handling of exactness specifiers:
5764 *
5765 * When parsing non-real complex numbers, we apply exactness specifiers on
5766 * per-component basis, as is done in PLT Scheme. For complex numbers
5767 * written in rectangular form, exactness specifiers are applied to the
5768 * real and imaginary parts before calling scm_make_rectangular. For
5769 * complex numbers written in polar form, exactness specifiers are applied
5770 * to the magnitude and angle before calling scm_make_polar.
5771 *
5772 * There are two kinds of exactness specifiers: forced and implicit. A
5773 * forced exactness specifier is a "#e" or "#i" prefix at the beginning of
5774 * the entire number, and applies to both components of a complex number.
5775 * "#e" causes each component to be made exact, and "#i" causes each
5776 * component to be made inexact. If no forced exactness specifier is
5777 * present, then the exactness of each component is determined
5778 * independently by the presence or absence of a decimal point or hash mark
5779 * within that component. If a decimal point or hash mark is present, the
5780 * component is made inexact, otherwise it is made exact.
5781 *
5782 * After the exactness specifiers have been applied to each component, they
5783 * are passed to either scm_make_rectangular or scm_make_polar to produce
5784 * the final result. Note that this will result in a real number if the
5785 * imaginary part, magnitude, or angle is an exact 0.
5786 *
5787 * For example, (string->number "#i5.0+0i") does the equivalent of:
5788 *
5789 * (make-rectangular (exact->inexact 5) (exact->inexact 0))
3c9a524f
DH
5790 */
5791
5792enum t_exactness {NO_EXACTNESS, INEXACT, EXACT};
5793
5794/* R5RS, section 7.1.1, lexical structure of numbers: <uinteger R>. */
5795
a6f3af16
AW
5796/* Caller is responsible for checking that the return value is in range
5797 for the given radix, which should be <= 36. */
5798static unsigned int
5799char_decimal_value (scm_t_uint32 c)
5800{
5801 /* uc_decimal_value returns -1 on error. When cast to an unsigned int,
5802 that's certainly above any valid decimal, so we take advantage of
5803 that to elide some tests. */
5804 unsigned int d = (unsigned int) uc_decimal_value (c);
5805
5806 /* If that failed, try extended hexadecimals, then. Only accept ascii
5807 hexadecimals. */
5808 if (d >= 10U)
5809 {
5810 c = uc_tolower (c);
5811 if (c >= (scm_t_uint32) 'a')
5812 d = c - (scm_t_uint32)'a' + 10U;
5813 }
5814 return d;
5815}
3c9a524f 5816
91db4a37
LC
5817/* Parse the substring of MEM starting at *P_IDX for an unsigned integer
5818 in base RADIX. Upon success, return the unsigned integer and update
5819 *P_IDX and *P_EXACTNESS accordingly. Return #f on failure. */
2a8fecee 5820static SCM
3f47e526 5821mem2uinteger (SCM mem, unsigned int *p_idx,
3c9a524f 5822 unsigned int radix, enum t_exactness *p_exactness)
2a8fecee 5823{
3c9a524f
DH
5824 unsigned int idx = *p_idx;
5825 unsigned int hash_seen = 0;
5826 scm_t_bits shift = 1;
5827 scm_t_bits add = 0;
5828 unsigned int digit_value;
5829 SCM result;
5830 char c;
3f47e526 5831 size_t len = scm_i_string_length (mem);
3c9a524f
DH
5832
5833 if (idx == len)
5834 return SCM_BOOL_F;
2a8fecee 5835
3f47e526 5836 c = scm_i_string_ref (mem, idx);
a6f3af16 5837 digit_value = char_decimal_value (c);
3c9a524f
DH
5838 if (digit_value >= radix)
5839 return SCM_BOOL_F;
5840
5841 idx++;
d956fa6f 5842 result = SCM_I_MAKINUM (digit_value);
3c9a524f 5843 while (idx != len)
f872b822 5844 {
3f47e526 5845 scm_t_wchar c = scm_i_string_ref (mem, idx);
a6f3af16 5846 if (c == '#')
3c9a524f
DH
5847 {
5848 hash_seen = 1;
5849 digit_value = 0;
5850 }
a6f3af16
AW
5851 else if (hash_seen)
5852 break;
3c9a524f 5853 else
a6f3af16
AW
5854 {
5855 digit_value = char_decimal_value (c);
5856 /* This check catches non-decimals in addition to out-of-range
5857 decimals. */
5858 if (digit_value >= radix)
5859 break;
5860 }
3c9a524f
DH
5861
5862 idx++;
5863 if (SCM_MOST_POSITIVE_FIXNUM / radix < shift)
5864 {
d956fa6f 5865 result = scm_product (result, SCM_I_MAKINUM (shift));
3c9a524f 5866 if (add > 0)
d956fa6f 5867 result = scm_sum (result, SCM_I_MAKINUM (add));
3c9a524f
DH
5868
5869 shift = radix;
5870 add = digit_value;
5871 }
5872 else
5873 {
5874 shift = shift * radix;
5875 add = add * radix + digit_value;
5876 }
5877 };
5878
5879 if (shift > 1)
d956fa6f 5880 result = scm_product (result, SCM_I_MAKINUM (shift));
3c9a524f 5881 if (add > 0)
d956fa6f 5882 result = scm_sum (result, SCM_I_MAKINUM (add));
3c9a524f
DH
5883
5884 *p_idx = idx;
5885 if (hash_seen)
5886 *p_exactness = INEXACT;
5887
5888 return result;
2a8fecee
JB
5889}
5890
5891
3c9a524f
DH
5892/* R5RS, section 7.1.1, lexical structure of numbers: <decimal 10>. Only
5893 * covers the parts of the rules that start at a potential point. The value
5894 * of the digits up to the point have been parsed by the caller and are given
79d34f68
DH
5895 * in variable result. The content of *p_exactness indicates, whether a hash
5896 * has already been seen in the digits before the point.
3c9a524f 5897 */
1cc91f1b 5898
3f47e526 5899#define DIGIT2UINT(d) (uc_numeric_value(d).numerator)
3c9a524f
DH
5900
5901static SCM
3f47e526 5902mem2decimal_from_point (SCM result, SCM mem,
3c9a524f 5903 unsigned int *p_idx, enum t_exactness *p_exactness)
0f2d19dd 5904{
3c9a524f
DH
5905 unsigned int idx = *p_idx;
5906 enum t_exactness x = *p_exactness;
3f47e526 5907 size_t len = scm_i_string_length (mem);
3c9a524f
DH
5908
5909 if (idx == len)
79d34f68 5910 return result;
3c9a524f 5911
3f47e526 5912 if (scm_i_string_ref (mem, idx) == '.')
3c9a524f
DH
5913 {
5914 scm_t_bits shift = 1;
5915 scm_t_bits add = 0;
5916 unsigned int digit_value;
cff5fa33 5917 SCM big_shift = SCM_INUM1;
3c9a524f
DH
5918
5919 idx++;
5920 while (idx != len)
5921 {
3f47e526
MG
5922 scm_t_wchar c = scm_i_string_ref (mem, idx);
5923 if (uc_is_property_decimal_digit ((scm_t_uint32) c))
3c9a524f
DH
5924 {
5925 if (x == INEXACT)
5926 return SCM_BOOL_F;
5927 else
5928 digit_value = DIGIT2UINT (c);
5929 }
5930 else if (c == '#')
5931 {
5932 x = INEXACT;
5933 digit_value = 0;
5934 }
5935 else
5936 break;
5937
5938 idx++;
5939 if (SCM_MOST_POSITIVE_FIXNUM / 10 < shift)
5940 {
d956fa6f
MV
5941 big_shift = scm_product (big_shift, SCM_I_MAKINUM (shift));
5942 result = scm_product (result, SCM_I_MAKINUM (shift));
3c9a524f 5943 if (add > 0)
d956fa6f 5944 result = scm_sum (result, SCM_I_MAKINUM (add));
3c9a524f
DH
5945
5946 shift = 10;
5947 add = digit_value;
5948 }
5949 else
5950 {
5951 shift = shift * 10;
5952 add = add * 10 + digit_value;
5953 }
5954 };
5955
5956 if (add > 0)
5957 {
d956fa6f
MV
5958 big_shift = scm_product (big_shift, SCM_I_MAKINUM (shift));
5959 result = scm_product (result, SCM_I_MAKINUM (shift));
5960 result = scm_sum (result, SCM_I_MAKINUM (add));
3c9a524f
DH
5961 }
5962
d8592269 5963 result = scm_divide (result, big_shift);
79d34f68 5964
3c9a524f
DH
5965 /* We've seen a decimal point, thus the value is implicitly inexact. */
5966 x = INEXACT;
f872b822 5967 }
3c9a524f 5968
3c9a524f 5969 if (idx != len)
f872b822 5970 {
3c9a524f
DH
5971 int sign = 1;
5972 unsigned int start;
3f47e526 5973 scm_t_wchar c;
3c9a524f
DH
5974 int exponent;
5975 SCM e;
5976
5977 /* R5RS, section 7.1.1, lexical structure of numbers: <suffix> */
5978
3f47e526 5979 switch (scm_i_string_ref (mem, idx))
f872b822 5980 {
3c9a524f
DH
5981 case 'd': case 'D':
5982 case 'e': case 'E':
5983 case 'f': case 'F':
5984 case 'l': case 'L':
5985 case 's': case 'S':
5986 idx++;
ee0ddd21
AW
5987 if (idx == len)
5988 return SCM_BOOL_F;
5989
3c9a524f 5990 start = idx;
3f47e526 5991 c = scm_i_string_ref (mem, idx);
3c9a524f
DH
5992 if (c == '-')
5993 {
5994 idx++;
ee0ddd21
AW
5995 if (idx == len)
5996 return SCM_BOOL_F;
5997
3c9a524f 5998 sign = -1;
3f47e526 5999 c = scm_i_string_ref (mem, idx);
3c9a524f
DH
6000 }
6001 else if (c == '+')
6002 {
6003 idx++;
ee0ddd21
AW
6004 if (idx == len)
6005 return SCM_BOOL_F;
6006
3c9a524f 6007 sign = 1;
3f47e526 6008 c = scm_i_string_ref (mem, idx);
3c9a524f
DH
6009 }
6010 else
6011 sign = 1;
6012
3f47e526 6013 if (!uc_is_property_decimal_digit ((scm_t_uint32) c))
3c9a524f
DH
6014 return SCM_BOOL_F;
6015
6016 idx++;
6017 exponent = DIGIT2UINT (c);
6018 while (idx != len)
f872b822 6019 {
3f47e526
MG
6020 scm_t_wchar c = scm_i_string_ref (mem, idx);
6021 if (uc_is_property_decimal_digit ((scm_t_uint32) c))
3c9a524f
DH
6022 {
6023 idx++;
6024 if (exponent <= SCM_MAXEXP)
6025 exponent = exponent * 10 + DIGIT2UINT (c);
6026 }
6027 else
6028 break;
f872b822 6029 }
3c9a524f 6030
1ea37620 6031 if (exponent > ((sign == 1) ? SCM_MAXEXP : SCM_MAXEXP + DBL_DIG + 1))
f872b822 6032 {
3c9a524f 6033 size_t exp_len = idx - start;
3f47e526 6034 SCM exp_string = scm_i_substring_copy (mem, start, start + exp_len);
3c9a524f
DH
6035 SCM exp_num = scm_string_to_number (exp_string, SCM_UNDEFINED);
6036 scm_out_of_range ("string->number", exp_num);
f872b822 6037 }
3c9a524f 6038
d956fa6f 6039 e = scm_integer_expt (SCM_I_MAKINUM (10), SCM_I_MAKINUM (exponent));
3c9a524f
DH
6040 if (sign == 1)
6041 result = scm_product (result, e);
6042 else
6ebecdeb 6043 result = scm_divide (result, e);
3c9a524f
DH
6044
6045 /* We've seen an exponent, thus the value is implicitly inexact. */
6046 x = INEXACT;
6047
f872b822 6048 break;
3c9a524f 6049
f872b822 6050 default:
3c9a524f 6051 break;
f872b822 6052 }
0f2d19dd 6053 }
3c9a524f
DH
6054
6055 *p_idx = idx;
6056 if (x == INEXACT)
6057 *p_exactness = x;
6058
6059 return result;
0f2d19dd 6060}
0f2d19dd 6061
3c9a524f
DH
6062
6063/* R5RS, section 7.1.1, lexical structure of numbers: <ureal R> */
6064
6065static SCM
3f47e526 6066mem2ureal (SCM mem, unsigned int *p_idx,
929d11b2
MW
6067 unsigned int radix, enum t_exactness forced_x,
6068 int allow_inf_or_nan)
0f2d19dd 6069{
3c9a524f 6070 unsigned int idx = *p_idx;
164d2481 6071 SCM result;
3f47e526 6072 size_t len = scm_i_string_length (mem);
3c9a524f 6073
40f89215
NJ
6074 /* Start off believing that the number will be exact. This changes
6075 to INEXACT if we see a decimal point or a hash. */
9d427b2c 6076 enum t_exactness implicit_x = EXACT;
40f89215 6077
3c9a524f
DH
6078 if (idx == len)
6079 return SCM_BOOL_F;
6080
929d11b2
MW
6081 if (allow_inf_or_nan && forced_x != EXACT && idx+5 <= len)
6082 switch (scm_i_string_ref (mem, idx))
6083 {
6084 case 'i': case 'I':
6085 switch (scm_i_string_ref (mem, idx + 1))
6086 {
6087 case 'n': case 'N':
6088 switch (scm_i_string_ref (mem, idx + 2))
6089 {
6090 case 'f': case 'F':
6091 if (scm_i_string_ref (mem, idx + 3) == '.'
6092 && scm_i_string_ref (mem, idx + 4) == '0')
6093 {
6094 *p_idx = idx+5;
6095 return scm_inf ();
6096 }
6097 }
6098 }
6099 case 'n': case 'N':
6100 switch (scm_i_string_ref (mem, idx + 1))
6101 {
6102 case 'a': case 'A':
6103 switch (scm_i_string_ref (mem, idx + 2))
6104 {
6105 case 'n': case 'N':
6106 if (scm_i_string_ref (mem, idx + 3) == '.')
6107 {
6108 /* Cobble up the fractional part. We might want to
6109 set the NaN's mantissa from it. */
6110 idx += 4;
6111 if (!scm_is_eq (mem2uinteger (mem, &idx, 10, &implicit_x),
6112 SCM_INUM0))
6113 {
5f237d6e 6114#if SCM_ENABLE_DEPRECATED == 1
929d11b2
MW
6115 scm_c_issue_deprecation_warning
6116 ("Non-zero suffixes to `+nan.' are deprecated. Use `+nan.0'.");
5f237d6e 6117#else
929d11b2 6118 return SCM_BOOL_F;
5f237d6e 6119#endif
929d11b2 6120 }
5f237d6e 6121
929d11b2
MW
6122 *p_idx = idx;
6123 return scm_nan ();
6124 }
6125 }
6126 }
6127 }
7351e207 6128
3f47e526 6129 if (scm_i_string_ref (mem, idx) == '.')
3c9a524f
DH
6130 {
6131 if (radix != 10)
6132 return SCM_BOOL_F;
6133 else if (idx + 1 == len)
6134 return SCM_BOOL_F;
3f47e526 6135 else if (!uc_is_property_decimal_digit ((scm_t_uint32) scm_i_string_ref (mem, idx+1)))
3c9a524f
DH
6136 return SCM_BOOL_F;
6137 else
cff5fa33 6138 result = mem2decimal_from_point (SCM_INUM0, mem,
9d427b2c 6139 p_idx, &implicit_x);
f872b822 6140 }
3c9a524f
DH
6141 else
6142 {
3c9a524f 6143 SCM uinteger;
3c9a524f 6144
9d427b2c 6145 uinteger = mem2uinteger (mem, &idx, radix, &implicit_x);
73e4de09 6146 if (scm_is_false (uinteger))
3c9a524f
DH
6147 return SCM_BOOL_F;
6148
6149 if (idx == len)
6150 result = uinteger;
3f47e526 6151 else if (scm_i_string_ref (mem, idx) == '/')
f872b822 6152 {
3c9a524f
DH
6153 SCM divisor;
6154
6155 idx++;
ee0ddd21
AW
6156 if (idx == len)
6157 return SCM_BOOL_F;
3c9a524f 6158
9d427b2c 6159 divisor = mem2uinteger (mem, &idx, radix, &implicit_x);
929d11b2 6160 if (scm_is_false (divisor) || scm_is_eq (divisor, SCM_INUM0))
3c9a524f
DH
6161 return SCM_BOOL_F;
6162
f92e85f7 6163 /* both are int/big here, I assume */
cba42c93 6164 result = scm_i_make_ratio (uinteger, divisor);
f872b822 6165 }
3c9a524f
DH
6166 else if (radix == 10)
6167 {
9d427b2c 6168 result = mem2decimal_from_point (uinteger, mem, &idx, &implicit_x);
73e4de09 6169 if (scm_is_false (result))
3c9a524f
DH
6170 return SCM_BOOL_F;
6171 }
6172 else
6173 result = uinteger;
6174
6175 *p_idx = idx;
f872b822 6176 }
164d2481 6177
9d427b2c
MW
6178 switch (forced_x)
6179 {
6180 case EXACT:
6181 if (SCM_INEXACTP (result))
6182 return scm_inexact_to_exact (result);
6183 else
6184 return result;
6185 case INEXACT:
6186 if (SCM_INEXACTP (result))
6187 return result;
6188 else
6189 return scm_exact_to_inexact (result);
6190 case NO_EXACTNESS:
6191 if (implicit_x == INEXACT)
6192 {
6193 if (SCM_INEXACTP (result))
6194 return result;
6195 else
6196 return scm_exact_to_inexact (result);
6197 }
6198 else
6199 return result;
6200 }
164d2481 6201
9d427b2c 6202 /* We should never get here */
6f82b8f6 6203 assert (0);
3c9a524f 6204}
0f2d19dd 6205
0f2d19dd 6206
3c9a524f 6207/* R5RS, section 7.1.1, lexical structure of numbers: <complex R> */
0f2d19dd 6208
3c9a524f 6209static SCM
3f47e526 6210mem2complex (SCM mem, unsigned int idx,
9d427b2c 6211 unsigned int radix, enum t_exactness forced_x)
3c9a524f 6212{
3f47e526 6213 scm_t_wchar c;
3c9a524f
DH
6214 int sign = 0;
6215 SCM ureal;
3f47e526 6216 size_t len = scm_i_string_length (mem);
3c9a524f
DH
6217
6218 if (idx == len)
6219 return SCM_BOOL_F;
6220
3f47e526 6221 c = scm_i_string_ref (mem, idx);
3c9a524f
DH
6222 if (c == '+')
6223 {
6224 idx++;
6225 sign = 1;
6226 }
6227 else if (c == '-')
6228 {
6229 idx++;
6230 sign = -1;
0f2d19dd 6231 }
0f2d19dd 6232
3c9a524f
DH
6233 if (idx == len)
6234 return SCM_BOOL_F;
6235
929d11b2 6236 ureal = mem2ureal (mem, &idx, radix, forced_x, sign != 0);
73e4de09 6237 if (scm_is_false (ureal))
f872b822 6238 {
3c9a524f
DH
6239 /* input must be either +i or -i */
6240
6241 if (sign == 0)
6242 return SCM_BOOL_F;
6243
3f47e526
MG
6244 if (scm_i_string_ref (mem, idx) == 'i'
6245 || scm_i_string_ref (mem, idx) == 'I')
f872b822 6246 {
3c9a524f
DH
6247 idx++;
6248 if (idx != len)
6249 return SCM_BOOL_F;
6250
cff5fa33 6251 return scm_make_rectangular (SCM_INUM0, SCM_I_MAKINUM (sign));
f872b822 6252 }
3c9a524f
DH
6253 else
6254 return SCM_BOOL_F;
0f2d19dd 6255 }
3c9a524f
DH
6256 else
6257 {
73e4de09 6258 if (sign == -1 && scm_is_false (scm_nan_p (ureal)))
3c9a524f 6259 ureal = scm_difference (ureal, SCM_UNDEFINED);
f872b822 6260
3c9a524f
DH
6261 if (idx == len)
6262 return ureal;
6263
3f47e526 6264 c = scm_i_string_ref (mem, idx);
3c9a524f 6265 switch (c)
f872b822 6266 {
3c9a524f
DH
6267 case 'i': case 'I':
6268 /* either +<ureal>i or -<ureal>i */
6269
6270 idx++;
6271 if (sign == 0)
6272 return SCM_BOOL_F;
6273 if (idx != len)
6274 return SCM_BOOL_F;
cff5fa33 6275 return scm_make_rectangular (SCM_INUM0, ureal);
3c9a524f
DH
6276
6277 case '@':
6278 /* polar input: <real>@<real>. */
6279
6280 idx++;
6281 if (idx == len)
6282 return SCM_BOOL_F;
6283 else
f872b822 6284 {
3c9a524f
DH
6285 int sign;
6286 SCM angle;
6287 SCM result;
6288
3f47e526 6289 c = scm_i_string_ref (mem, idx);
3c9a524f
DH
6290 if (c == '+')
6291 {
6292 idx++;
ee0ddd21
AW
6293 if (idx == len)
6294 return SCM_BOOL_F;
3c9a524f
DH
6295 sign = 1;
6296 }
6297 else if (c == '-')
6298 {
6299 idx++;
ee0ddd21
AW
6300 if (idx == len)
6301 return SCM_BOOL_F;
3c9a524f
DH
6302 sign = -1;
6303 }
6304 else
929d11b2 6305 sign = 0;
3c9a524f 6306
929d11b2 6307 angle = mem2ureal (mem, &idx, radix, forced_x, sign != 0);
73e4de09 6308 if (scm_is_false (angle))
3c9a524f
DH
6309 return SCM_BOOL_F;
6310 if (idx != len)
6311 return SCM_BOOL_F;
6312
73e4de09 6313 if (sign == -1 && scm_is_false (scm_nan_p (ureal)))
3c9a524f
DH
6314 angle = scm_difference (angle, SCM_UNDEFINED);
6315
6316 result = scm_make_polar (ureal, angle);
6317 return result;
f872b822 6318 }
3c9a524f
DH
6319 case '+':
6320 case '-':
6321 /* expecting input matching <real>[+-]<ureal>?i */
0f2d19dd 6322
3c9a524f
DH
6323 idx++;
6324 if (idx == len)
6325 return SCM_BOOL_F;
6326 else
6327 {
6328 int sign = (c == '+') ? 1 : -1;
929d11b2 6329 SCM imag = mem2ureal (mem, &idx, radix, forced_x, sign != 0);
0f2d19dd 6330
73e4de09 6331 if (scm_is_false (imag))
d956fa6f 6332 imag = SCM_I_MAKINUM (sign);
23295dc3 6333 else if (sign == -1 && scm_is_false (scm_nan_p (imag)))
1fe5e088 6334 imag = scm_difference (imag, SCM_UNDEFINED);
0f2d19dd 6335
3c9a524f
DH
6336 if (idx == len)
6337 return SCM_BOOL_F;
3f47e526
MG
6338 if (scm_i_string_ref (mem, idx) != 'i'
6339 && scm_i_string_ref (mem, idx) != 'I')
3c9a524f 6340 return SCM_BOOL_F;
0f2d19dd 6341
3c9a524f
DH
6342 idx++;
6343 if (idx != len)
6344 return SCM_BOOL_F;
0f2d19dd 6345
1fe5e088 6346 return scm_make_rectangular (ureal, imag);
3c9a524f
DH
6347 }
6348 default:
6349 return SCM_BOOL_F;
6350 }
6351 }
0f2d19dd 6352}
0f2d19dd
JB
6353
6354
3c9a524f
DH
6355/* R5RS, section 7.1.1, lexical structure of numbers: <number> */
6356
6357enum t_radix {NO_RADIX=0, DUAL=2, OCT=8, DEC=10, HEX=16};
1cc91f1b 6358
0f2d19dd 6359SCM
3f47e526 6360scm_i_string_to_number (SCM mem, unsigned int default_radix)
0f2d19dd 6361{
3c9a524f
DH
6362 unsigned int idx = 0;
6363 unsigned int radix = NO_RADIX;
6364 enum t_exactness forced_x = NO_EXACTNESS;
3f47e526 6365 size_t len = scm_i_string_length (mem);
3c9a524f
DH
6366
6367 /* R5RS, section 7.1.1, lexical structure of numbers: <prefix R> */
3f47e526 6368 while (idx + 2 < len && scm_i_string_ref (mem, idx) == '#')
3c9a524f 6369 {
3f47e526 6370 switch (scm_i_string_ref (mem, idx + 1))
3c9a524f
DH
6371 {
6372 case 'b': case 'B':
6373 if (radix != NO_RADIX)
6374 return SCM_BOOL_F;
6375 radix = DUAL;
6376 break;
6377 case 'd': case 'D':
6378 if (radix != NO_RADIX)
6379 return SCM_BOOL_F;
6380 radix = DEC;
6381 break;
6382 case 'i': case 'I':
6383 if (forced_x != NO_EXACTNESS)
6384 return SCM_BOOL_F;
6385 forced_x = INEXACT;
6386 break;
6387 case 'e': case 'E':
6388 if (forced_x != NO_EXACTNESS)
6389 return SCM_BOOL_F;
6390 forced_x = EXACT;
6391 break;
6392 case 'o': case 'O':
6393 if (radix != NO_RADIX)
6394 return SCM_BOOL_F;
6395 radix = OCT;
6396 break;
6397 case 'x': case 'X':
6398 if (radix != NO_RADIX)
6399 return SCM_BOOL_F;
6400 radix = HEX;
6401 break;
6402 default:
f872b822 6403 return SCM_BOOL_F;
3c9a524f
DH
6404 }
6405 idx += 2;
6406 }
6407
6408 /* R5RS, section 7.1.1, lexical structure of numbers: <complex R> */
6409 if (radix == NO_RADIX)
9d427b2c 6410 radix = default_radix;
f872b822 6411
9d427b2c 6412 return mem2complex (mem, idx, radix, forced_x);
0f2d19dd
JB
6413}
6414
3f47e526
MG
6415SCM
6416scm_c_locale_stringn_to_number (const char* mem, size_t len,
6417 unsigned int default_radix)
6418{
6419 SCM str = scm_from_locale_stringn (mem, len);
6420
6421 return scm_i_string_to_number (str, default_radix);
6422}
6423
0f2d19dd 6424
a1ec6916 6425SCM_DEFINE (scm_string_to_number, "string->number", 1, 1, 0,
bb628794 6426 (SCM string, SCM radix),
1e6808ea 6427 "Return a number of the maximally precise representation\n"
942e5b91 6428 "expressed by the given @var{string}. @var{radix} must be an\n"
5352393c
MG
6429 "exact integer, either 2, 8, 10, or 16. If supplied, @var{radix}\n"
6430 "is a default radix that may be overridden by an explicit radix\n"
6431 "prefix in @var{string} (e.g. \"#o177\"). If @var{radix} is not\n"
6432 "supplied, then the default radix is 10. If string is not a\n"
6433 "syntactically valid notation for a number, then\n"
6434 "@code{string->number} returns @code{#f}.")
1bbd0b84 6435#define FUNC_NAME s_scm_string_to_number
0f2d19dd
JB
6436{
6437 SCM answer;
5efd3c7d 6438 unsigned int base;
a6d9e5ab 6439 SCM_VALIDATE_STRING (1, string);
5efd3c7d
MV
6440
6441 if (SCM_UNBNDP (radix))
6442 base = 10;
6443 else
6444 base = scm_to_unsigned_integer (radix, 2, INT_MAX);
6445
3f47e526 6446 answer = scm_i_string_to_number (string, base);
8824ac88
MV
6447 scm_remember_upto_here_1 (string);
6448 return answer;
0f2d19dd 6449}
1bbd0b84 6450#undef FUNC_NAME
3c9a524f
DH
6451
6452
0f2d19dd
JB
6453/*** END strs->nums ***/
6454
5986c47d 6455
8507ec80
MV
6456SCM_DEFINE (scm_number_p, "number?", 1, 0, 0,
6457 (SCM x),
6458 "Return @code{#t} if @var{x} is a number, @code{#f}\n"
6459 "otherwise.")
6460#define FUNC_NAME s_scm_number_p
6461{
6462 return scm_from_bool (SCM_NUMBERP (x));
6463}
6464#undef FUNC_NAME
6465
6466SCM_DEFINE (scm_complex_p, "complex?", 1, 0, 0,
1bbd0b84 6467 (SCM x),
942e5b91 6468 "Return @code{#t} if @var{x} is a complex number, @code{#f}\n"
bb2c02f2 6469 "otherwise. Note that the sets of real, rational and integer\n"
942e5b91
MG
6470 "values form subsets of the set of complex numbers, i. e. the\n"
6471 "predicate will also be fulfilled if @var{x} is a real,\n"
6472 "rational or integer number.")
8507ec80 6473#define FUNC_NAME s_scm_complex_p
0f2d19dd 6474{
8507ec80
MV
6475 /* all numbers are complex. */
6476 return scm_number_p (x);
0f2d19dd 6477}
1bbd0b84 6478#undef FUNC_NAME
0f2d19dd 6479
f92e85f7
MV
6480SCM_DEFINE (scm_real_p, "real?", 1, 0, 0,
6481 (SCM x),
6482 "Return @code{#t} if @var{x} is a real number, @code{#f}\n"
6483 "otherwise. Note that the set of integer values forms a subset of\n"
6484 "the set of real numbers, i. e. the predicate will also be\n"
6485 "fulfilled if @var{x} is an integer number.")
6486#define FUNC_NAME s_scm_real_p
6487{
c960e556
MW
6488 return scm_from_bool
6489 (SCM_I_INUMP (x) || SCM_REALP (x) || SCM_BIGP (x) || SCM_FRACTIONP (x));
f92e85f7
MV
6490}
6491#undef FUNC_NAME
6492
6493SCM_DEFINE (scm_rational_p, "rational?", 1, 0, 0,
1bbd0b84 6494 (SCM x),
942e5b91 6495 "Return @code{#t} if @var{x} is a rational number, @code{#f}\n"
bb2c02f2 6496 "otherwise. Note that the set of integer values forms a subset of\n"
942e5b91 6497 "the set of rational numbers, i. e. the predicate will also be\n"
f92e85f7
MV
6498 "fulfilled if @var{x} is an integer number.")
6499#define FUNC_NAME s_scm_rational_p
0f2d19dd 6500{
c960e556 6501 if (SCM_I_INUMP (x) || SCM_BIGP (x) || SCM_FRACTIONP (x))
f92e85f7
MV
6502 return SCM_BOOL_T;
6503 else if (SCM_REALP (x))
c960e556
MW
6504 /* due to their limited precision, finite floating point numbers are
6505 rational as well. (finite means neither infinity nor a NaN) */
19374ad2 6506 return scm_from_bool (isfinite (SCM_REAL_VALUE (x)));
0aacf84e 6507 else
bb628794 6508 return SCM_BOOL_F;
0f2d19dd 6509}
1bbd0b84 6510#undef FUNC_NAME
0f2d19dd 6511
a1ec6916 6512SCM_DEFINE (scm_integer_p, "integer?", 1, 0, 0,
1bbd0b84 6513 (SCM x),
942e5b91
MG
6514 "Return @code{#t} if @var{x} is an integer number, @code{#f}\n"
6515 "else.")
1bbd0b84 6516#define FUNC_NAME s_scm_integer_p
0f2d19dd 6517{
c960e556 6518 if (SCM_I_INUMP (x) || SCM_BIGP (x))
f872b822 6519 return SCM_BOOL_T;
c960e556
MW
6520 else if (SCM_REALP (x))
6521 {
6522 double val = SCM_REAL_VALUE (x);
6523 return scm_from_bool (!isinf (val) && (val == floor (val)));
6524 }
6525 else
8e43ed5d 6526 return SCM_BOOL_F;
0f2d19dd 6527}
1bbd0b84 6528#undef FUNC_NAME
0f2d19dd
JB
6529
6530
8a1f4f98
AW
6531SCM scm_i_num_eq_p (SCM, SCM, SCM);
6532SCM_PRIMITIVE_GENERIC (scm_i_num_eq_p, "=", 0, 2, 1,
6533 (SCM x, SCM y, SCM rest),
6534 "Return @code{#t} if all parameters are numerically equal.")
6535#define FUNC_NAME s_scm_i_num_eq_p
6536{
6537 if (SCM_UNBNDP (x) || SCM_UNBNDP (y))
6538 return SCM_BOOL_T;
6539 while (!scm_is_null (rest))
6540 {
6541 if (scm_is_false (scm_num_eq_p (x, y)))
6542 return SCM_BOOL_F;
6543 x = y;
6544 y = scm_car (rest);
6545 rest = scm_cdr (rest);
6546 }
6547 return scm_num_eq_p (x, y);
6548}
6549#undef FUNC_NAME
0f2d19dd 6550SCM
6e8d25a6 6551scm_num_eq_p (SCM x, SCM y)
0f2d19dd 6552{
d8b95e27 6553 again:
e11e83f3 6554 if (SCM_I_INUMP (x))
0aacf84e 6555 {
e25f3727 6556 scm_t_signed_bits xx = SCM_I_INUM (x);
e11e83f3 6557 if (SCM_I_INUMP (y))
0aacf84e 6558 {
e25f3727 6559 scm_t_signed_bits yy = SCM_I_INUM (y);
73e4de09 6560 return scm_from_bool (xx == yy);
0aacf84e
MD
6561 }
6562 else if (SCM_BIGP (y))
6563 return SCM_BOOL_F;
6564 else if (SCM_REALP (y))
e8c5b1f2
KR
6565 {
6566 /* On a 32-bit system an inum fits a double, we can cast the inum
6567 to a double and compare.
6568
6569 But on a 64-bit system an inum is bigger than a double and
01329288
MW
6570 casting it to a double (call that dxx) will round.
6571 Although dxx will not in general be equal to xx, dxx will
6572 always be an integer and within a factor of 2 of xx, so if
6573 dxx==yy, we know that yy is an integer and fits in
6574 scm_t_signed_bits. So we cast yy to scm_t_signed_bits and
e8c5b1f2
KR
6575 compare with plain xx.
6576
6577 An alternative (for any size system actually) would be to check
6578 yy is an integer (with floor) and is in range of an inum
6579 (compare against appropriate powers of 2) then test
e25f3727
AW
6580 xx==(scm_t_signed_bits)yy. It's just a matter of which
6581 casts/comparisons might be fastest or easiest for the cpu. */
e8c5b1f2
KR
6582
6583 double yy = SCM_REAL_VALUE (y);
3a1b45fd
MV
6584 return scm_from_bool ((double) xx == yy
6585 && (DBL_MANT_DIG >= SCM_I_FIXNUM_BIT-1
e25f3727 6586 || xx == (scm_t_signed_bits) yy));
e8c5b1f2 6587 }
0aacf84e 6588 else if (SCM_COMPLEXP (y))
01329288
MW
6589 {
6590 /* see comments with inum/real above */
6591 double ry = SCM_COMPLEX_REAL (y);
6592 return scm_from_bool ((double) xx == ry
6593 && 0.0 == SCM_COMPLEX_IMAG (y)
6594 && (DBL_MANT_DIG >= SCM_I_FIXNUM_BIT-1
6595 || xx == (scm_t_signed_bits) ry));
6596 }
f92e85f7
MV
6597 else if (SCM_FRACTIONP (y))
6598 return SCM_BOOL_F;
0aacf84e 6599 else
fa075d40
AW
6600 return scm_wta_dispatch_2 (g_scm_i_num_eq_p, x, y, SCM_ARGn,
6601 s_scm_i_num_eq_p);
f872b822 6602 }
0aacf84e
MD
6603 else if (SCM_BIGP (x))
6604 {
e11e83f3 6605 if (SCM_I_INUMP (y))
0aacf84e
MD
6606 return SCM_BOOL_F;
6607 else if (SCM_BIGP (y))
6608 {
6609 int cmp = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
6610 scm_remember_upto_here_2 (x, y);
73e4de09 6611 return scm_from_bool (0 == cmp);
0aacf84e
MD
6612 }
6613 else if (SCM_REALP (y))
6614 {
6615 int cmp;
2e65b52f 6616 if (isnan (SCM_REAL_VALUE (y)))
0aacf84e
MD
6617 return SCM_BOOL_F;
6618 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (x), SCM_REAL_VALUE (y));
6619 scm_remember_upto_here_1 (x);
73e4de09 6620 return scm_from_bool (0 == cmp);
0aacf84e
MD
6621 }
6622 else if (SCM_COMPLEXP (y))
6623 {
6624 int cmp;
6625 if (0.0 != SCM_COMPLEX_IMAG (y))
6626 return SCM_BOOL_F;
2e65b52f 6627 if (isnan (SCM_COMPLEX_REAL (y)))
0aacf84e
MD
6628 return SCM_BOOL_F;
6629 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (x), SCM_COMPLEX_REAL (y));
6630 scm_remember_upto_here_1 (x);
73e4de09 6631 return scm_from_bool (0 == cmp);
0aacf84e 6632 }
f92e85f7
MV
6633 else if (SCM_FRACTIONP (y))
6634 return SCM_BOOL_F;
0aacf84e 6635 else
fa075d40
AW
6636 return scm_wta_dispatch_2 (g_scm_i_num_eq_p, x, y, SCM_ARGn,
6637 s_scm_i_num_eq_p);
f4c627b3 6638 }
0aacf84e
MD
6639 else if (SCM_REALP (x))
6640 {
e8c5b1f2 6641 double xx = SCM_REAL_VALUE (x);
e11e83f3 6642 if (SCM_I_INUMP (y))
e8c5b1f2
KR
6643 {
6644 /* see comments with inum/real above */
e25f3727 6645 scm_t_signed_bits yy = SCM_I_INUM (y);
3a1b45fd
MV
6646 return scm_from_bool (xx == (double) yy
6647 && (DBL_MANT_DIG >= SCM_I_FIXNUM_BIT-1
e25f3727 6648 || (scm_t_signed_bits) xx == yy));
e8c5b1f2 6649 }
0aacf84e
MD
6650 else if (SCM_BIGP (y))
6651 {
6652 int cmp;
01329288 6653 if (isnan (xx))
0aacf84e 6654 return SCM_BOOL_F;
01329288 6655 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (y), xx);
0aacf84e 6656 scm_remember_upto_here_1 (y);
73e4de09 6657 return scm_from_bool (0 == cmp);
0aacf84e
MD
6658 }
6659 else if (SCM_REALP (y))
01329288 6660 return scm_from_bool (xx == SCM_REAL_VALUE (y));
0aacf84e 6661 else if (SCM_COMPLEXP (y))
01329288
MW
6662 return scm_from_bool ((xx == SCM_COMPLEX_REAL (y))
6663 && (0.0 == SCM_COMPLEX_IMAG (y)));
f92e85f7 6664 else if (SCM_FRACTIONP (y))
d8b95e27 6665 {
01329288 6666 if (isnan (xx) || isinf (xx))
d8b95e27 6667 return SCM_BOOL_F;
d8b95e27
KR
6668 x = scm_inexact_to_exact (x); /* with x as frac or int */
6669 goto again;
6670 }
0aacf84e 6671 else
fa075d40
AW
6672 return scm_wta_dispatch_2 (g_scm_i_num_eq_p, x, y, SCM_ARGn,
6673 s_scm_i_num_eq_p);
f872b822 6674 }
0aacf84e
MD
6675 else if (SCM_COMPLEXP (x))
6676 {
e11e83f3 6677 if (SCM_I_INUMP (y))
01329288
MW
6678 {
6679 /* see comments with inum/real above */
6680 double rx = SCM_COMPLEX_REAL (x);
6681 scm_t_signed_bits yy = SCM_I_INUM (y);
6682 return scm_from_bool (rx == (double) yy
6683 && 0.0 == SCM_COMPLEX_IMAG (x)
6684 && (DBL_MANT_DIG >= SCM_I_FIXNUM_BIT-1
6685 || (scm_t_signed_bits) rx == yy));
6686 }
0aacf84e
MD
6687 else if (SCM_BIGP (y))
6688 {
6689 int cmp;
6690 if (0.0 != SCM_COMPLEX_IMAG (x))
6691 return SCM_BOOL_F;
2e65b52f 6692 if (isnan (SCM_COMPLEX_REAL (x)))
0aacf84e
MD
6693 return SCM_BOOL_F;
6694 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (y), SCM_COMPLEX_REAL (x));
6695 scm_remember_upto_here_1 (y);
73e4de09 6696 return scm_from_bool (0 == cmp);
0aacf84e
MD
6697 }
6698 else if (SCM_REALP (y))
73e4de09 6699 return scm_from_bool ((SCM_COMPLEX_REAL (x) == SCM_REAL_VALUE (y))
01329288 6700 && (SCM_COMPLEX_IMAG (x) == 0.0));
0aacf84e 6701 else if (SCM_COMPLEXP (y))
73e4de09 6702 return scm_from_bool ((SCM_COMPLEX_REAL (x) == SCM_COMPLEX_REAL (y))
01329288 6703 && (SCM_COMPLEX_IMAG (x) == SCM_COMPLEX_IMAG (y)));
f92e85f7 6704 else if (SCM_FRACTIONP (y))
d8b95e27
KR
6705 {
6706 double xx;
6707 if (SCM_COMPLEX_IMAG (x) != 0.0)
6708 return SCM_BOOL_F;
6709 xx = SCM_COMPLEX_REAL (x);
01329288 6710 if (isnan (xx) || isinf (xx))
d8b95e27 6711 return SCM_BOOL_F;
d8b95e27
KR
6712 x = scm_inexact_to_exact (x); /* with x as frac or int */
6713 goto again;
6714 }
f92e85f7 6715 else
fa075d40
AW
6716 return scm_wta_dispatch_2 (g_scm_i_num_eq_p, x, y, SCM_ARGn,
6717 s_scm_i_num_eq_p);
f92e85f7
MV
6718 }
6719 else if (SCM_FRACTIONP (x))
6720 {
e11e83f3 6721 if (SCM_I_INUMP (y))
f92e85f7
MV
6722 return SCM_BOOL_F;
6723 else if (SCM_BIGP (y))
6724 return SCM_BOOL_F;
6725 else if (SCM_REALP (y))
d8b95e27
KR
6726 {
6727 double yy = SCM_REAL_VALUE (y);
01329288 6728 if (isnan (yy) || isinf (yy))
d8b95e27 6729 return SCM_BOOL_F;
d8b95e27
KR
6730 y = scm_inexact_to_exact (y); /* with y as frac or int */
6731 goto again;
6732 }
f92e85f7 6733 else if (SCM_COMPLEXP (y))
d8b95e27
KR
6734 {
6735 double yy;
6736 if (SCM_COMPLEX_IMAG (y) != 0.0)
6737 return SCM_BOOL_F;
6738 yy = SCM_COMPLEX_REAL (y);
01329288 6739 if (isnan (yy) || isinf(yy))
d8b95e27 6740 return SCM_BOOL_F;
d8b95e27
KR
6741 y = scm_inexact_to_exact (y); /* with y as frac or int */
6742 goto again;
6743 }
f92e85f7
MV
6744 else if (SCM_FRACTIONP (y))
6745 return scm_i_fraction_equalp (x, y);
0aacf84e 6746 else
fa075d40
AW
6747 return scm_wta_dispatch_2 (g_scm_i_num_eq_p, x, y, SCM_ARGn,
6748 s_scm_i_num_eq_p);
f4c627b3 6749 }
0aacf84e 6750 else
fa075d40
AW
6751 return scm_wta_dispatch_2 (g_scm_i_num_eq_p, x, y, SCM_ARG1,
6752 s_scm_i_num_eq_p);
0f2d19dd
JB
6753}
6754
6755
a5f0b599
KR
6756/* OPTIMIZE-ME: For int/frac and frac/frac compares, the multiplications
6757 done are good for inums, but for bignums an answer can almost always be
6758 had by just examining a few high bits of the operands, as done by GMP in
6759 mpq_cmp. flonum/frac compares likewise, but with the slight complication
6760 of the float exponent to take into account. */
6761
8c93b597 6762SCM_INTERNAL SCM scm_i_num_less_p (SCM, SCM, SCM);
8a1f4f98
AW
6763SCM_PRIMITIVE_GENERIC (scm_i_num_less_p, "<", 0, 2, 1,
6764 (SCM x, SCM y, SCM rest),
6765 "Return @code{#t} if the list of parameters is monotonically\n"
6766 "increasing.")
6767#define FUNC_NAME s_scm_i_num_less_p
6768{
6769 if (SCM_UNBNDP (x) || SCM_UNBNDP (y))
6770 return SCM_BOOL_T;
6771 while (!scm_is_null (rest))
6772 {
6773 if (scm_is_false (scm_less_p (x, y)))
6774 return SCM_BOOL_F;
6775 x = y;
6776 y = scm_car (rest);
6777 rest = scm_cdr (rest);
6778 }
6779 return scm_less_p (x, y);
6780}
6781#undef FUNC_NAME
0f2d19dd 6782SCM
6e8d25a6 6783scm_less_p (SCM x, SCM y)
0f2d19dd 6784{
a5f0b599 6785 again:
e11e83f3 6786 if (SCM_I_INUMP (x))
0aacf84e 6787 {
e25f3727 6788 scm_t_inum xx = SCM_I_INUM (x);
e11e83f3 6789 if (SCM_I_INUMP (y))
0aacf84e 6790 {
e25f3727 6791 scm_t_inum yy = SCM_I_INUM (y);
73e4de09 6792 return scm_from_bool (xx < yy);
0aacf84e
MD
6793 }
6794 else if (SCM_BIGP (y))
6795 {
6796 int sgn = mpz_sgn (SCM_I_BIG_MPZ (y));
6797 scm_remember_upto_here_1 (y);
73e4de09 6798 return scm_from_bool (sgn > 0);
0aacf84e
MD
6799 }
6800 else if (SCM_REALP (y))
95ed2217
MW
6801 {
6802 /* We can safely take the ceiling of y without changing the
6803 result of x<y, given that x is an integer. */
6804 double yy = ceil (SCM_REAL_VALUE (y));
6805
6806 /* In the following comparisons, it's important that the right
6807 hand side always be a power of 2, so that it can be
6808 losslessly converted to a double even on 64-bit
6809 machines. */
6810 if (yy >= (double) (SCM_MOST_POSITIVE_FIXNUM+1))
6811 return SCM_BOOL_T;
6812 else if (!(yy > (double) SCM_MOST_NEGATIVE_FIXNUM))
6813 /* The condition above is carefully written to include the
6814 case where yy==NaN. */
6815 return SCM_BOOL_F;
6816 else
6817 /* yy is a finite integer that fits in an inum. */
6818 return scm_from_bool (xx < (scm_t_inum) yy);
6819 }
f92e85f7 6820 else if (SCM_FRACTIONP (y))
a5f0b599
KR
6821 {
6822 /* "x < a/b" becomes "x*b < a" */
6823 int_frac:
6824 x = scm_product (x, SCM_FRACTION_DENOMINATOR (y));
6825 y = SCM_FRACTION_NUMERATOR (y);
6826 goto again;
6827 }
0aacf84e 6828 else
fa075d40
AW
6829 return scm_wta_dispatch_2 (g_scm_i_num_less_p, x, y, SCM_ARGn,
6830 s_scm_i_num_less_p);
f872b822 6831 }
0aacf84e
MD
6832 else if (SCM_BIGP (x))
6833 {
e11e83f3 6834 if (SCM_I_INUMP (y))
0aacf84e
MD
6835 {
6836 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
6837 scm_remember_upto_here_1 (x);
73e4de09 6838 return scm_from_bool (sgn < 0);
0aacf84e
MD
6839 }
6840 else if (SCM_BIGP (y))
6841 {
6842 int cmp = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
6843 scm_remember_upto_here_2 (x, y);
73e4de09 6844 return scm_from_bool (cmp < 0);
0aacf84e
MD
6845 }
6846 else if (SCM_REALP (y))
6847 {
6848 int cmp;
2e65b52f 6849 if (isnan (SCM_REAL_VALUE (y)))
0aacf84e
MD
6850 return SCM_BOOL_F;
6851 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (x), SCM_REAL_VALUE (y));
6852 scm_remember_upto_here_1 (x);
73e4de09 6853 return scm_from_bool (cmp < 0);
0aacf84e 6854 }
f92e85f7 6855 else if (SCM_FRACTIONP (y))
a5f0b599 6856 goto int_frac;
0aacf84e 6857 else
fa075d40
AW
6858 return scm_wta_dispatch_2 (g_scm_i_num_less_p, x, y, SCM_ARGn,
6859 s_scm_i_num_less_p);
f4c627b3 6860 }
0aacf84e
MD
6861 else if (SCM_REALP (x))
6862 {
e11e83f3 6863 if (SCM_I_INUMP (y))
95ed2217
MW
6864 {
6865 /* We can safely take the floor of x without changing the
6866 result of x<y, given that y is an integer. */
6867 double xx = floor (SCM_REAL_VALUE (x));
6868
6869 /* In the following comparisons, it's important that the right
6870 hand side always be a power of 2, so that it can be
6871 losslessly converted to a double even on 64-bit
6872 machines. */
6873 if (xx < (double) SCM_MOST_NEGATIVE_FIXNUM)
6874 return SCM_BOOL_T;
6875 else if (!(xx < (double) (SCM_MOST_POSITIVE_FIXNUM+1)))
6876 /* The condition above is carefully written to include the
6877 case where xx==NaN. */
6878 return SCM_BOOL_F;
6879 else
6880 /* xx is a finite integer that fits in an inum. */
6881 return scm_from_bool ((scm_t_inum) xx < SCM_I_INUM (y));
6882 }
0aacf84e
MD
6883 else if (SCM_BIGP (y))
6884 {
6885 int cmp;
2e65b52f 6886 if (isnan (SCM_REAL_VALUE (x)))
0aacf84e
MD
6887 return SCM_BOOL_F;
6888 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (y), SCM_REAL_VALUE (x));
6889 scm_remember_upto_here_1 (y);
73e4de09 6890 return scm_from_bool (cmp > 0);
0aacf84e
MD
6891 }
6892 else if (SCM_REALP (y))
73e4de09 6893 return scm_from_bool (SCM_REAL_VALUE (x) < SCM_REAL_VALUE (y));
f92e85f7 6894 else if (SCM_FRACTIONP (y))
a5f0b599
KR
6895 {
6896 double xx = SCM_REAL_VALUE (x);
2e65b52f 6897 if (isnan (xx))
a5f0b599 6898 return SCM_BOOL_F;
2e65b52f 6899 if (isinf (xx))
73e4de09 6900 return scm_from_bool (xx < 0.0);
a5f0b599
KR
6901 x = scm_inexact_to_exact (x); /* with x as frac or int */
6902 goto again;
6903 }
f92e85f7 6904 else
fa075d40
AW
6905 return scm_wta_dispatch_2 (g_scm_i_num_less_p, x, y, SCM_ARGn,
6906 s_scm_i_num_less_p);
f92e85f7
MV
6907 }
6908 else if (SCM_FRACTIONP (x))
6909 {
e11e83f3 6910 if (SCM_I_INUMP (y) || SCM_BIGP (y))
a5f0b599
KR
6911 {
6912 /* "a/b < y" becomes "a < y*b" */
6913 y = scm_product (y, SCM_FRACTION_DENOMINATOR (x));
6914 x = SCM_FRACTION_NUMERATOR (x);
6915 goto again;
6916 }
f92e85f7 6917 else if (SCM_REALP (y))
a5f0b599
KR
6918 {
6919 double yy = SCM_REAL_VALUE (y);
2e65b52f 6920 if (isnan (yy))
a5f0b599 6921 return SCM_BOOL_F;
2e65b52f 6922 if (isinf (yy))
73e4de09 6923 return scm_from_bool (0.0 < yy);
a5f0b599
KR
6924 y = scm_inexact_to_exact (y); /* with y as frac or int */
6925 goto again;
6926 }
f92e85f7 6927 else if (SCM_FRACTIONP (y))
a5f0b599
KR
6928 {
6929 /* "a/b < c/d" becomes "a*d < c*b" */
6930 SCM new_x = scm_product (SCM_FRACTION_NUMERATOR (x),
6931 SCM_FRACTION_DENOMINATOR (y));
6932 SCM new_y = scm_product (SCM_FRACTION_NUMERATOR (y),
6933 SCM_FRACTION_DENOMINATOR (x));
6934 x = new_x;
6935 y = new_y;
6936 goto again;
6937 }
0aacf84e 6938 else
fa075d40
AW
6939 return scm_wta_dispatch_2 (g_scm_i_num_less_p, x, y, SCM_ARGn,
6940 s_scm_i_num_less_p);
f872b822 6941 }
0aacf84e 6942 else
fa075d40
AW
6943 return scm_wta_dispatch_2 (g_scm_i_num_less_p, x, y, SCM_ARG1,
6944 s_scm_i_num_less_p);
0f2d19dd
JB
6945}
6946
6947
8a1f4f98
AW
6948SCM scm_i_num_gr_p (SCM, SCM, SCM);
6949SCM_PRIMITIVE_GENERIC (scm_i_num_gr_p, ">", 0, 2, 1,
6950 (SCM x, SCM y, SCM rest),
6951 "Return @code{#t} if the list of parameters is monotonically\n"
6952 "decreasing.")
6953#define FUNC_NAME s_scm_i_num_gr_p
6954{
6955 if (SCM_UNBNDP (x) || SCM_UNBNDP (y))
6956 return SCM_BOOL_T;
6957 while (!scm_is_null (rest))
6958 {
6959 if (scm_is_false (scm_gr_p (x, y)))
6960 return SCM_BOOL_F;
6961 x = y;
6962 y = scm_car (rest);
6963 rest = scm_cdr (rest);
6964 }
6965 return scm_gr_p (x, y);
6966}
6967#undef FUNC_NAME
6968#define FUNC_NAME s_scm_i_num_gr_p
c76b1eaf
MD
6969SCM
6970scm_gr_p (SCM x, SCM y)
0f2d19dd 6971{
c76b1eaf 6972 if (!SCM_NUMBERP (x))
fa075d40 6973 return scm_wta_dispatch_2 (g_scm_i_num_gr_p, x, y, SCM_ARG1, FUNC_NAME);
c76b1eaf 6974 else if (!SCM_NUMBERP (y))
fa075d40 6975 return scm_wta_dispatch_2 (g_scm_i_num_gr_p, x, y, SCM_ARG2, FUNC_NAME);
c76b1eaf
MD
6976 else
6977 return scm_less_p (y, x);
0f2d19dd 6978}
1bbd0b84 6979#undef FUNC_NAME
0f2d19dd
JB
6980
6981
8a1f4f98
AW
6982SCM scm_i_num_leq_p (SCM, SCM, SCM);
6983SCM_PRIMITIVE_GENERIC (scm_i_num_leq_p, "<=", 0, 2, 1,
6984 (SCM x, SCM y, SCM rest),
6985 "Return @code{#t} if the list of parameters is monotonically\n"
6986 "non-decreasing.")
6987#define FUNC_NAME s_scm_i_num_leq_p
6988{
6989 if (SCM_UNBNDP (x) || SCM_UNBNDP (y))
6990 return SCM_BOOL_T;
6991 while (!scm_is_null (rest))
6992 {
6993 if (scm_is_false (scm_leq_p (x, y)))
6994 return SCM_BOOL_F;
6995 x = y;
6996 y = scm_car (rest);
6997 rest = scm_cdr (rest);
6998 }
6999 return scm_leq_p (x, y);
7000}
7001#undef FUNC_NAME
7002#define FUNC_NAME s_scm_i_num_leq_p
c76b1eaf
MD
7003SCM
7004scm_leq_p (SCM x, SCM y)
0f2d19dd 7005{
c76b1eaf 7006 if (!SCM_NUMBERP (x))
fa075d40 7007 return scm_wta_dispatch_2 (g_scm_i_num_leq_p, x, y, SCM_ARG1, FUNC_NAME);
c76b1eaf 7008 else if (!SCM_NUMBERP (y))
fa075d40 7009 return scm_wta_dispatch_2 (g_scm_i_num_leq_p, x, y, SCM_ARG2, FUNC_NAME);
73e4de09 7010 else if (scm_is_true (scm_nan_p (x)) || scm_is_true (scm_nan_p (y)))
fc194577 7011 return SCM_BOOL_F;
c76b1eaf 7012 else
73e4de09 7013 return scm_not (scm_less_p (y, x));
0f2d19dd 7014}
1bbd0b84 7015#undef FUNC_NAME
0f2d19dd
JB
7016
7017
8a1f4f98
AW
7018SCM scm_i_num_geq_p (SCM, SCM, SCM);
7019SCM_PRIMITIVE_GENERIC (scm_i_num_geq_p, ">=", 0, 2, 1,
7020 (SCM x, SCM y, SCM rest),
7021 "Return @code{#t} if the list of parameters is monotonically\n"
7022 "non-increasing.")
7023#define FUNC_NAME s_scm_i_num_geq_p
7024{
7025 if (SCM_UNBNDP (x) || SCM_UNBNDP (y))
7026 return SCM_BOOL_T;
7027 while (!scm_is_null (rest))
7028 {
7029 if (scm_is_false (scm_geq_p (x, y)))
7030 return SCM_BOOL_F;
7031 x = y;
7032 y = scm_car (rest);
7033 rest = scm_cdr (rest);
7034 }
7035 return scm_geq_p (x, y);
7036}
7037#undef FUNC_NAME
7038#define FUNC_NAME s_scm_i_num_geq_p
c76b1eaf
MD
7039SCM
7040scm_geq_p (SCM x, SCM y)
0f2d19dd 7041{
c76b1eaf 7042 if (!SCM_NUMBERP (x))
fa075d40 7043 return scm_wta_dispatch_2 (g_scm_i_num_geq_p, x, y, SCM_ARG1, FUNC_NAME);
c76b1eaf 7044 else if (!SCM_NUMBERP (y))
fa075d40 7045 return scm_wta_dispatch_2 (g_scm_i_num_geq_p, x, y, SCM_ARG2, FUNC_NAME);
73e4de09 7046 else if (scm_is_true (scm_nan_p (x)) || scm_is_true (scm_nan_p (y)))
fc194577 7047 return SCM_BOOL_F;
c76b1eaf 7048 else
73e4de09 7049 return scm_not (scm_less_p (x, y));
0f2d19dd 7050}
1bbd0b84 7051#undef FUNC_NAME
0f2d19dd
JB
7052
7053
2519490c
MW
7054SCM_PRIMITIVE_GENERIC (scm_zero_p, "zero?", 1, 0, 0,
7055 (SCM z),
7056 "Return @code{#t} if @var{z} is an exact or inexact number equal to\n"
7057 "zero.")
7058#define FUNC_NAME s_scm_zero_p
0f2d19dd 7059{
e11e83f3 7060 if (SCM_I_INUMP (z))
bc36d050 7061 return scm_from_bool (scm_is_eq (z, SCM_INUM0));
0aacf84e 7062 else if (SCM_BIGP (z))
c2ff8ab0 7063 return SCM_BOOL_F;
0aacf84e 7064 else if (SCM_REALP (z))
73e4de09 7065 return scm_from_bool (SCM_REAL_VALUE (z) == 0.0);
0aacf84e 7066 else if (SCM_COMPLEXP (z))
73e4de09 7067 return scm_from_bool (SCM_COMPLEX_REAL (z) == 0.0
c2ff8ab0 7068 && SCM_COMPLEX_IMAG (z) == 0.0);
f92e85f7
MV
7069 else if (SCM_FRACTIONP (z))
7070 return SCM_BOOL_F;
0aacf84e 7071 else
fa075d40 7072 return scm_wta_dispatch_1 (g_scm_zero_p, z, SCM_ARG1, s_scm_zero_p);
0f2d19dd 7073}
2519490c 7074#undef FUNC_NAME
0f2d19dd
JB
7075
7076
2519490c
MW
7077SCM_PRIMITIVE_GENERIC (scm_positive_p, "positive?", 1, 0, 0,
7078 (SCM x),
7079 "Return @code{#t} if @var{x} is an exact or inexact number greater than\n"
7080 "zero.")
7081#define FUNC_NAME s_scm_positive_p
0f2d19dd 7082{
e11e83f3
MV
7083 if (SCM_I_INUMP (x))
7084 return scm_from_bool (SCM_I_INUM (x) > 0);
0aacf84e
MD
7085 else if (SCM_BIGP (x))
7086 {
7087 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
7088 scm_remember_upto_here_1 (x);
73e4de09 7089 return scm_from_bool (sgn > 0);
0aacf84e
MD
7090 }
7091 else if (SCM_REALP (x))
73e4de09 7092 return scm_from_bool(SCM_REAL_VALUE (x) > 0.0);
f92e85f7
MV
7093 else if (SCM_FRACTIONP (x))
7094 return scm_positive_p (SCM_FRACTION_NUMERATOR (x));
0aacf84e 7095 else
fa075d40 7096 return scm_wta_dispatch_1 (g_scm_positive_p, x, SCM_ARG1, s_scm_positive_p);
0f2d19dd 7097}
2519490c 7098#undef FUNC_NAME
0f2d19dd
JB
7099
7100
2519490c
MW
7101SCM_PRIMITIVE_GENERIC (scm_negative_p, "negative?", 1, 0, 0,
7102 (SCM x),
7103 "Return @code{#t} if @var{x} is an exact or inexact number less than\n"
7104 "zero.")
7105#define FUNC_NAME s_scm_negative_p
0f2d19dd 7106{
e11e83f3
MV
7107 if (SCM_I_INUMP (x))
7108 return scm_from_bool (SCM_I_INUM (x) < 0);
0aacf84e
MD
7109 else if (SCM_BIGP (x))
7110 {
7111 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
7112 scm_remember_upto_here_1 (x);
73e4de09 7113 return scm_from_bool (sgn < 0);
0aacf84e
MD
7114 }
7115 else if (SCM_REALP (x))
73e4de09 7116 return scm_from_bool(SCM_REAL_VALUE (x) < 0.0);
f92e85f7
MV
7117 else if (SCM_FRACTIONP (x))
7118 return scm_negative_p (SCM_FRACTION_NUMERATOR (x));
0aacf84e 7119 else
fa075d40 7120 return scm_wta_dispatch_1 (g_scm_negative_p, x, SCM_ARG1, s_scm_negative_p);
0f2d19dd 7121}
2519490c 7122#undef FUNC_NAME
0f2d19dd
JB
7123
7124
2a06f791
KR
7125/* scm_min and scm_max return an inexact when either argument is inexact, as
7126 required by r5rs. On that basis, for exact/inexact combinations the
7127 exact is converted to inexact to compare and possibly return. This is
7128 unlike scm_less_p above which takes some trouble to preserve all bits in
7129 its test, such trouble is not required for min and max. */
7130
78d3deb1
AW
7131SCM_PRIMITIVE_GENERIC (scm_i_max, "max", 0, 2, 1,
7132 (SCM x, SCM y, SCM rest),
7133 "Return the maximum of all parameter values.")
7134#define FUNC_NAME s_scm_i_max
7135{
7136 while (!scm_is_null (rest))
7137 { x = scm_max (x, y);
7138 y = scm_car (rest);
7139 rest = scm_cdr (rest);
7140 }
7141 return scm_max (x, y);
7142}
7143#undef FUNC_NAME
7144
7145#define s_max s_scm_i_max
7146#define g_max g_scm_i_max
7147
0f2d19dd 7148SCM
6e8d25a6 7149scm_max (SCM x, SCM y)
0f2d19dd 7150{
0aacf84e
MD
7151 if (SCM_UNBNDP (y))
7152 {
7153 if (SCM_UNBNDP (x))
fa075d40 7154 return scm_wta_dispatch_0 (g_max, s_max);
e11e83f3 7155 else if (SCM_I_INUMP(x) || SCM_BIGP(x) || SCM_REALP(x) || SCM_FRACTIONP(x))
0aacf84e
MD
7156 return x;
7157 else
fa075d40 7158 return scm_wta_dispatch_1 (g_max, x, SCM_ARG1, s_max);
f872b822 7159 }
f4c627b3 7160
e11e83f3 7161 if (SCM_I_INUMP (x))
0aacf84e 7162 {
e25f3727 7163 scm_t_inum xx = SCM_I_INUM (x);
e11e83f3 7164 if (SCM_I_INUMP (y))
0aacf84e 7165 {
e25f3727 7166 scm_t_inum yy = SCM_I_INUM (y);
0aacf84e
MD
7167 return (xx < yy) ? y : x;
7168 }
7169 else if (SCM_BIGP (y))
7170 {
7171 int sgn = mpz_sgn (SCM_I_BIG_MPZ (y));
7172 scm_remember_upto_here_1 (y);
7173 return (sgn < 0) ? x : y;
7174 }
7175 else if (SCM_REALP (y))
7176 {
2e274311
MW
7177 double xxd = xx;
7178 double yyd = SCM_REAL_VALUE (y);
7179
7180 if (xxd > yyd)
00472a22 7181 return scm_i_from_double (xxd);
2e274311
MW
7182 /* If y is a NaN, then "==" is false and we return the NaN */
7183 else if (SCM_LIKELY (!(xxd == yyd)))
7184 return y;
7185 /* Handle signed zeroes properly */
7186 else if (xx == 0)
7187 return flo0;
7188 else
7189 return y;
0aacf84e 7190 }
f92e85f7
MV
7191 else if (SCM_FRACTIONP (y))
7192 {
e4bc5d6c 7193 use_less:
73e4de09 7194 return (scm_is_false (scm_less_p (x, y)) ? x : y);
f92e85f7 7195 }
0aacf84e 7196 else
fa075d40 7197 return scm_wta_dispatch_2 (g_max, x, y, SCM_ARGn, s_max);
f872b822 7198 }
0aacf84e
MD
7199 else if (SCM_BIGP (x))
7200 {
e11e83f3 7201 if (SCM_I_INUMP (y))
0aacf84e
MD
7202 {
7203 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
7204 scm_remember_upto_here_1 (x);
7205 return (sgn < 0) ? y : x;
7206 }
7207 else if (SCM_BIGP (y))
7208 {
7209 int cmp = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
7210 scm_remember_upto_here_2 (x, y);
7211 return (cmp > 0) ? x : y;
7212 }
7213 else if (SCM_REALP (y))
7214 {
2a06f791
KR
7215 /* if y==NaN then xx>yy is false, so we return the NaN y */
7216 double xx, yy;
7217 big_real:
7218 xx = scm_i_big2dbl (x);
7219 yy = SCM_REAL_VALUE (y);
00472a22 7220 return (xx > yy ? scm_i_from_double (xx) : y);
0aacf84e 7221 }
f92e85f7
MV
7222 else if (SCM_FRACTIONP (y))
7223 {
e4bc5d6c 7224 goto use_less;
f92e85f7 7225 }
0aacf84e 7226 else
fa075d40 7227 return scm_wta_dispatch_2 (g_max, x, y, SCM_ARGn, s_max);
f4c627b3 7228 }
0aacf84e
MD
7229 else if (SCM_REALP (x))
7230 {
e11e83f3 7231 if (SCM_I_INUMP (y))
0aacf84e 7232 {
2e274311
MW
7233 scm_t_inum yy = SCM_I_INUM (y);
7234 double xxd = SCM_REAL_VALUE (x);
7235 double yyd = yy;
7236
7237 if (yyd > xxd)
00472a22 7238 return scm_i_from_double (yyd);
2e274311
MW
7239 /* If x is a NaN, then "==" is false and we return the NaN */
7240 else if (SCM_LIKELY (!(xxd == yyd)))
7241 return x;
7242 /* Handle signed zeroes properly */
7243 else if (yy == 0)
7244 return flo0;
7245 else
7246 return x;
0aacf84e
MD
7247 }
7248 else if (SCM_BIGP (y))
7249 {
b6f8f763 7250 SCM_SWAP (x, y);
2a06f791 7251 goto big_real;
0aacf84e
MD
7252 }
7253 else if (SCM_REALP (y))
7254 {
0aacf84e 7255 double xx = SCM_REAL_VALUE (x);
2e274311
MW
7256 double yy = SCM_REAL_VALUE (y);
7257
b4c55c9c
MW
7258 /* For purposes of max: nan > +inf.0 > everything else,
7259 per the R6RS errata */
2e274311
MW
7260 if (xx > yy)
7261 return x;
7262 else if (SCM_LIKELY (xx < yy))
7263 return y;
7264 /* If neither (xx > yy) nor (xx < yy), then
7265 either they're equal or one is a NaN */
b4c55c9c
MW
7266 else if (SCM_UNLIKELY (xx != yy))
7267 return (xx != xx) ? x : y; /* Return the NaN */
2e274311 7268 /* xx == yy, but handle signed zeroes properly */
e1592f8a 7269 else if (copysign (1.0, yy) < 0.0)
2e274311 7270 return x;
e1592f8a
MW
7271 else
7272 return y;
0aacf84e 7273 }
f92e85f7
MV
7274 else if (SCM_FRACTIONP (y))
7275 {
7276 double yy = scm_i_fraction2double (y);
7277 double xx = SCM_REAL_VALUE (x);
00472a22 7278 return (xx < yy) ? scm_i_from_double (yy) : x;
f92e85f7
MV
7279 }
7280 else
fa075d40 7281 return scm_wta_dispatch_2 (g_max, x, y, SCM_ARGn, s_max);
f92e85f7
MV
7282 }
7283 else if (SCM_FRACTIONP (x))
7284 {
e11e83f3 7285 if (SCM_I_INUMP (y))
f92e85f7 7286 {
e4bc5d6c 7287 goto use_less;
f92e85f7
MV
7288 }
7289 else if (SCM_BIGP (y))
7290 {
e4bc5d6c 7291 goto use_less;
f92e85f7
MV
7292 }
7293 else if (SCM_REALP (y))
7294 {
7295 double xx = scm_i_fraction2double (x);
2e274311 7296 /* if y==NaN then ">" is false, so we return the NaN y */
00472a22 7297 return (xx > SCM_REAL_VALUE (y)) ? scm_i_from_double (xx) : y;
f92e85f7
MV
7298 }
7299 else if (SCM_FRACTIONP (y))
7300 {
e4bc5d6c 7301 goto use_less;
f92e85f7 7302 }
0aacf84e 7303 else
fa075d40 7304 return scm_wta_dispatch_2 (g_max, x, y, SCM_ARGn, s_max);
f872b822 7305 }
0aacf84e 7306 else
fa075d40 7307 return scm_wta_dispatch_2 (g_max, x, y, SCM_ARG1, s_max);
0f2d19dd
JB
7308}
7309
7310
78d3deb1
AW
7311SCM_PRIMITIVE_GENERIC (scm_i_min, "min", 0, 2, 1,
7312 (SCM x, SCM y, SCM rest),
7313 "Return the minimum of all parameter values.")
7314#define FUNC_NAME s_scm_i_min
7315{
7316 while (!scm_is_null (rest))
7317 { x = scm_min (x, y);
7318 y = scm_car (rest);
7319 rest = scm_cdr (rest);
7320 }
7321 return scm_min (x, y);
7322}
7323#undef FUNC_NAME
7324
7325#define s_min s_scm_i_min
7326#define g_min g_scm_i_min
7327
0f2d19dd 7328SCM
6e8d25a6 7329scm_min (SCM x, SCM y)
0f2d19dd 7330{
0aacf84e
MD
7331 if (SCM_UNBNDP (y))
7332 {
7333 if (SCM_UNBNDP (x))
fa075d40 7334 return scm_wta_dispatch_0 (g_min, s_min);
e11e83f3 7335 else if (SCM_I_INUMP(x) || SCM_BIGP(x) || SCM_REALP(x) || SCM_FRACTIONP(x))
0aacf84e
MD
7336 return x;
7337 else
fa075d40 7338 return scm_wta_dispatch_1 (g_min, x, SCM_ARG1, s_min);
f872b822 7339 }
f4c627b3 7340
e11e83f3 7341 if (SCM_I_INUMP (x))
0aacf84e 7342 {
e25f3727 7343 scm_t_inum xx = SCM_I_INUM (x);
e11e83f3 7344 if (SCM_I_INUMP (y))
0aacf84e 7345 {
e25f3727 7346 scm_t_inum yy = SCM_I_INUM (y);
0aacf84e
MD
7347 return (xx < yy) ? x : y;
7348 }
7349 else if (SCM_BIGP (y))
7350 {
7351 int sgn = mpz_sgn (SCM_I_BIG_MPZ (y));
7352 scm_remember_upto_here_1 (y);
7353 return (sgn < 0) ? y : x;
7354 }
7355 else if (SCM_REALP (y))
7356 {
7357 double z = xx;
7358 /* if y==NaN then "<" is false and we return NaN */
00472a22 7359 return (z < SCM_REAL_VALUE (y)) ? scm_i_from_double (z) : y;
0aacf84e 7360 }
f92e85f7
MV
7361 else if (SCM_FRACTIONP (y))
7362 {
e4bc5d6c 7363 use_less:
73e4de09 7364 return (scm_is_false (scm_less_p (x, y)) ? y : x);
f92e85f7 7365 }
0aacf84e 7366 else
fa075d40 7367 return scm_wta_dispatch_2 (g_min, x, y, SCM_ARGn, s_min);
f872b822 7368 }
0aacf84e
MD
7369 else if (SCM_BIGP (x))
7370 {
e11e83f3 7371 if (SCM_I_INUMP (y))
0aacf84e
MD
7372 {
7373 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
7374 scm_remember_upto_here_1 (x);
7375 return (sgn < 0) ? x : y;
7376 }
7377 else if (SCM_BIGP (y))
7378 {
7379 int cmp = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
7380 scm_remember_upto_here_2 (x, y);
7381 return (cmp > 0) ? y : x;
7382 }
7383 else if (SCM_REALP (y))
7384 {
2a06f791
KR
7385 /* if y==NaN then xx<yy is false, so we return the NaN y */
7386 double xx, yy;
7387 big_real:
7388 xx = scm_i_big2dbl (x);
7389 yy = SCM_REAL_VALUE (y);
00472a22 7390 return (xx < yy ? scm_i_from_double (xx) : y);
0aacf84e 7391 }
f92e85f7
MV
7392 else if (SCM_FRACTIONP (y))
7393 {
e4bc5d6c 7394 goto use_less;
f92e85f7 7395 }
0aacf84e 7396 else
fa075d40 7397 return scm_wta_dispatch_2 (g_min, x, y, SCM_ARGn, s_min);
f4c627b3 7398 }
0aacf84e
MD
7399 else if (SCM_REALP (x))
7400 {
e11e83f3 7401 if (SCM_I_INUMP (y))
0aacf84e 7402 {
e11e83f3 7403 double z = SCM_I_INUM (y);
0aacf84e 7404 /* if x==NaN then "<" is false and we return NaN */
00472a22 7405 return (z < SCM_REAL_VALUE (x)) ? scm_i_from_double (z) : x;
0aacf84e
MD
7406 }
7407 else if (SCM_BIGP (y))
7408 {
b6f8f763 7409 SCM_SWAP (x, y);
2a06f791 7410 goto big_real;
0aacf84e
MD
7411 }
7412 else if (SCM_REALP (y))
7413 {
0aacf84e 7414 double xx = SCM_REAL_VALUE (x);
2e274311
MW
7415 double yy = SCM_REAL_VALUE (y);
7416
b4c55c9c
MW
7417 /* For purposes of min: nan < -inf.0 < everything else,
7418 per the R6RS errata */
2e274311
MW
7419 if (xx < yy)
7420 return x;
7421 else if (SCM_LIKELY (xx > yy))
7422 return y;
7423 /* If neither (xx < yy) nor (xx > yy), then
7424 either they're equal or one is a NaN */
b4c55c9c
MW
7425 else if (SCM_UNLIKELY (xx != yy))
7426 return (xx != xx) ? x : y; /* Return the NaN */
2e274311 7427 /* xx == yy, but handle signed zeroes properly */
e1592f8a 7428 else if (copysign (1.0, xx) < 0.0)
2e274311 7429 return x;
e1592f8a
MW
7430 else
7431 return y;
0aacf84e 7432 }
f92e85f7
MV
7433 else if (SCM_FRACTIONP (y))
7434 {
7435 double yy = scm_i_fraction2double (y);
7436 double xx = SCM_REAL_VALUE (x);
00472a22 7437 return (yy < xx) ? scm_i_from_double (yy) : x;
f92e85f7 7438 }
0aacf84e 7439 else
fa075d40 7440 return scm_wta_dispatch_2 (g_min, x, y, SCM_ARGn, s_min);
f872b822 7441 }
f92e85f7
MV
7442 else if (SCM_FRACTIONP (x))
7443 {
e11e83f3 7444 if (SCM_I_INUMP (y))
f92e85f7 7445 {
e4bc5d6c 7446 goto use_less;
f92e85f7
MV
7447 }
7448 else if (SCM_BIGP (y))
7449 {
e4bc5d6c 7450 goto use_less;
f92e85f7
MV
7451 }
7452 else if (SCM_REALP (y))
7453 {
7454 double xx = scm_i_fraction2double (x);
2e274311 7455 /* if y==NaN then "<" is false, so we return the NaN y */
00472a22 7456 return (xx < SCM_REAL_VALUE (y)) ? scm_i_from_double (xx) : y;
f92e85f7
MV
7457 }
7458 else if (SCM_FRACTIONP (y))
7459 {
e4bc5d6c 7460 goto use_less;
f92e85f7
MV
7461 }
7462 else
fa075d40 7463 return scm_wta_dispatch_2 (g_min, x, y, SCM_ARGn, s_min);
f92e85f7 7464 }
0aacf84e 7465 else
fa075d40 7466 return scm_wta_dispatch_2 (g_min, x, y, SCM_ARG1, s_min);
0f2d19dd
JB
7467}
7468
7469
8ccd24f7
AW
7470SCM_PRIMITIVE_GENERIC (scm_i_sum, "+", 0, 2, 1,
7471 (SCM x, SCM y, SCM rest),
7472 "Return the sum of all parameter values. Return 0 if called without\n"
7473 "any parameters." )
7474#define FUNC_NAME s_scm_i_sum
7475{
7476 while (!scm_is_null (rest))
7477 { x = scm_sum (x, y);
7478 y = scm_car (rest);
7479 rest = scm_cdr (rest);
7480 }
7481 return scm_sum (x, y);
7482}
7483#undef FUNC_NAME
7484
7485#define s_sum s_scm_i_sum
7486#define g_sum g_scm_i_sum
7487
0f2d19dd 7488SCM
6e8d25a6 7489scm_sum (SCM x, SCM y)
0f2d19dd 7490{
9cc37597 7491 if (SCM_UNLIKELY (SCM_UNBNDP (y)))
ca46fb90
RB
7492 {
7493 if (SCM_NUMBERP (x)) return x;
7494 if (SCM_UNBNDP (x)) return SCM_INUM0;
fa075d40 7495 return scm_wta_dispatch_1 (g_sum, x, SCM_ARG1, s_sum);
f872b822 7496 }
c209c88e 7497
9cc37597 7498 if (SCM_LIKELY (SCM_I_INUMP (x)))
ca46fb90 7499 {
9cc37597 7500 if (SCM_LIKELY (SCM_I_INUMP (y)))
ca46fb90 7501 {
e25f3727
AW
7502 scm_t_inum xx = SCM_I_INUM (x);
7503 scm_t_inum yy = SCM_I_INUM (y);
7504 scm_t_inum z = xx + yy;
7505 return SCM_FIXABLE (z) ? SCM_I_MAKINUM (z) : scm_i_inum2big (z);
ca46fb90
RB
7506 }
7507 else if (SCM_BIGP (y))
7508 {
7509 SCM_SWAP (x, y);
7510 goto add_big_inum;
7511 }
7512 else if (SCM_REALP (y))
7513 {
e25f3727 7514 scm_t_inum xx = SCM_I_INUM (x);
00472a22 7515 return scm_i_from_double (xx + SCM_REAL_VALUE (y));
ca46fb90
RB
7516 }
7517 else if (SCM_COMPLEXP (y))
7518 {
e25f3727 7519 scm_t_inum xx = SCM_I_INUM (x);
8507ec80 7520 return scm_c_make_rectangular (xx + SCM_COMPLEX_REAL (y),
ca46fb90
RB
7521 SCM_COMPLEX_IMAG (y));
7522 }
f92e85f7 7523 else if (SCM_FRACTIONP (y))
cba42c93 7524 return scm_i_make_ratio (scm_sum (SCM_FRACTION_NUMERATOR (y),
f92e85f7
MV
7525 scm_product (x, SCM_FRACTION_DENOMINATOR (y))),
7526 SCM_FRACTION_DENOMINATOR (y));
ca46fb90 7527 else
fa075d40 7528 return scm_wta_dispatch_2 (g_sum, x, y, SCM_ARGn, s_sum);
0aacf84e
MD
7529 } else if (SCM_BIGP (x))
7530 {
e11e83f3 7531 if (SCM_I_INUMP (y))
0aacf84e 7532 {
e25f3727 7533 scm_t_inum inum;
0aacf84e
MD
7534 int bigsgn;
7535 add_big_inum:
e11e83f3 7536 inum = SCM_I_INUM (y);
0aacf84e
MD
7537 if (inum == 0)
7538 return x;
7539 bigsgn = mpz_sgn (SCM_I_BIG_MPZ (x));
7540 if (inum < 0)
7541 {
7542 SCM result = scm_i_mkbig ();
7543 mpz_sub_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), - inum);
7544 scm_remember_upto_here_1 (x);
7545 /* we know the result will have to be a bignum */
7546 if (bigsgn == -1)
7547 return result;
7548 return scm_i_normbig (result);
7549 }
7550 else
7551 {
7552 SCM result = scm_i_mkbig ();
7553 mpz_add_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), inum);
7554 scm_remember_upto_here_1 (x);
7555 /* we know the result will have to be a bignum */
7556 if (bigsgn == 1)
7557 return result;
7558 return scm_i_normbig (result);
7559 }
7560 }
7561 else if (SCM_BIGP (y))
7562 {
7563 SCM result = scm_i_mkbig ();
7564 int sgn_x = mpz_sgn (SCM_I_BIG_MPZ (x));
7565 int sgn_y = mpz_sgn (SCM_I_BIG_MPZ (y));
7566 mpz_add (SCM_I_BIG_MPZ (result),
7567 SCM_I_BIG_MPZ (x),
7568 SCM_I_BIG_MPZ (y));
7569 scm_remember_upto_here_2 (x, y);
7570 /* we know the result will have to be a bignum */
7571 if (sgn_x == sgn_y)
7572 return result;
7573 return scm_i_normbig (result);
7574 }
7575 else if (SCM_REALP (y))
7576 {
7577 double result = mpz_get_d (SCM_I_BIG_MPZ (x)) + SCM_REAL_VALUE (y);
7578 scm_remember_upto_here_1 (x);
00472a22 7579 return scm_i_from_double (result);
0aacf84e
MD
7580 }
7581 else if (SCM_COMPLEXP (y))
7582 {
7583 double real_part = (mpz_get_d (SCM_I_BIG_MPZ (x))
7584 + SCM_COMPLEX_REAL (y));
7585 scm_remember_upto_here_1 (x);
8507ec80 7586 return scm_c_make_rectangular (real_part, SCM_COMPLEX_IMAG (y));
0aacf84e 7587 }
f92e85f7 7588 else if (SCM_FRACTIONP (y))
cba42c93 7589 return scm_i_make_ratio (scm_sum (SCM_FRACTION_NUMERATOR (y),
f92e85f7
MV
7590 scm_product (x, SCM_FRACTION_DENOMINATOR (y))),
7591 SCM_FRACTION_DENOMINATOR (y));
0aacf84e 7592 else
fa075d40 7593 return scm_wta_dispatch_2 (g_sum, x, y, SCM_ARGn, s_sum);
0f2d19dd 7594 }
0aacf84e
MD
7595 else if (SCM_REALP (x))
7596 {
e11e83f3 7597 if (SCM_I_INUMP (y))
00472a22 7598 return scm_i_from_double (SCM_REAL_VALUE (x) + SCM_I_INUM (y));
0aacf84e
MD
7599 else if (SCM_BIGP (y))
7600 {
7601 double result = mpz_get_d (SCM_I_BIG_MPZ (y)) + SCM_REAL_VALUE (x);
7602 scm_remember_upto_here_1 (y);
00472a22 7603 return scm_i_from_double (result);
0aacf84e
MD
7604 }
7605 else if (SCM_REALP (y))
00472a22 7606 return scm_i_from_double (SCM_REAL_VALUE (x) + SCM_REAL_VALUE (y));
0aacf84e 7607 else if (SCM_COMPLEXP (y))
8507ec80 7608 return scm_c_make_rectangular (SCM_REAL_VALUE (x) + SCM_COMPLEX_REAL (y),
0aacf84e 7609 SCM_COMPLEX_IMAG (y));
f92e85f7 7610 else if (SCM_FRACTIONP (y))
00472a22 7611 return scm_i_from_double (SCM_REAL_VALUE (x) + scm_i_fraction2double (y));
0aacf84e 7612 else
fa075d40 7613 return scm_wta_dispatch_2 (g_sum, x, y, SCM_ARGn, s_sum);
f872b822 7614 }
0aacf84e
MD
7615 else if (SCM_COMPLEXP (x))
7616 {
e11e83f3 7617 if (SCM_I_INUMP (y))
8507ec80 7618 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) + SCM_I_INUM (y),
0aacf84e
MD
7619 SCM_COMPLEX_IMAG (x));
7620 else if (SCM_BIGP (y))
7621 {
7622 double real_part = (mpz_get_d (SCM_I_BIG_MPZ (y))
7623 + SCM_COMPLEX_REAL (x));
7624 scm_remember_upto_here_1 (y);
8507ec80 7625 return scm_c_make_rectangular (real_part, SCM_COMPLEX_IMAG (x));
0aacf84e
MD
7626 }
7627 else if (SCM_REALP (y))
8507ec80 7628 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) + SCM_REAL_VALUE (y),
0aacf84e
MD
7629 SCM_COMPLEX_IMAG (x));
7630 else if (SCM_COMPLEXP (y))
8507ec80 7631 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) + SCM_COMPLEX_REAL (y),
0aacf84e 7632 SCM_COMPLEX_IMAG (x) + SCM_COMPLEX_IMAG (y));
f92e85f7 7633 else if (SCM_FRACTIONP (y))
8507ec80 7634 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) + scm_i_fraction2double (y),
f92e85f7
MV
7635 SCM_COMPLEX_IMAG (x));
7636 else
fa075d40 7637 return scm_wta_dispatch_2 (g_sum, x, y, SCM_ARGn, s_sum);
f92e85f7
MV
7638 }
7639 else if (SCM_FRACTIONP (x))
7640 {
e11e83f3 7641 if (SCM_I_INUMP (y))
cba42c93 7642 return scm_i_make_ratio (scm_sum (SCM_FRACTION_NUMERATOR (x),
f92e85f7
MV
7643 scm_product (y, SCM_FRACTION_DENOMINATOR (x))),
7644 SCM_FRACTION_DENOMINATOR (x));
7645 else if (SCM_BIGP (y))
cba42c93 7646 return scm_i_make_ratio (scm_sum (SCM_FRACTION_NUMERATOR (x),
f92e85f7
MV
7647 scm_product (y, SCM_FRACTION_DENOMINATOR (x))),
7648 SCM_FRACTION_DENOMINATOR (x));
7649 else if (SCM_REALP (y))
00472a22 7650 return scm_i_from_double (SCM_REAL_VALUE (y) + scm_i_fraction2double (x));
f92e85f7 7651 else if (SCM_COMPLEXP (y))
8507ec80 7652 return scm_c_make_rectangular (SCM_COMPLEX_REAL (y) + scm_i_fraction2double (x),
f92e85f7
MV
7653 SCM_COMPLEX_IMAG (y));
7654 else if (SCM_FRACTIONP (y))
7655 /* a/b + c/d = (ad + bc) / bd */
cba42c93 7656 return scm_i_make_ratio (scm_sum (scm_product (SCM_FRACTION_NUMERATOR (x), SCM_FRACTION_DENOMINATOR (y)),
f92e85f7
MV
7657 scm_product (SCM_FRACTION_NUMERATOR (y), SCM_FRACTION_DENOMINATOR (x))),
7658 scm_product (SCM_FRACTION_DENOMINATOR (x), SCM_FRACTION_DENOMINATOR (y)));
0aacf84e 7659 else
fa075d40 7660 return scm_wta_dispatch_2 (g_sum, x, y, SCM_ARGn, s_sum);
98cb6e75 7661 }
0aacf84e 7662 else
fa075d40 7663 return scm_wta_dispatch_2 (g_sum, x, y, SCM_ARG1, s_sum);
0f2d19dd
JB
7664}
7665
7666
40882e3d
KR
7667SCM_DEFINE (scm_oneplus, "1+", 1, 0, 0,
7668 (SCM x),
7669 "Return @math{@var{x}+1}.")
7670#define FUNC_NAME s_scm_oneplus
7671{
cff5fa33 7672 return scm_sum (x, SCM_INUM1);
40882e3d
KR
7673}
7674#undef FUNC_NAME
7675
7676
78d3deb1
AW
7677SCM_PRIMITIVE_GENERIC (scm_i_difference, "-", 0, 2, 1,
7678 (SCM x, SCM y, SCM rest),
7679 "If called with one argument @var{z1}, -@var{z1} returned. Otherwise\n"
7680 "the sum of all but the first argument are subtracted from the first\n"
7681 "argument.")
7682#define FUNC_NAME s_scm_i_difference
7683{
7684 while (!scm_is_null (rest))
7685 { x = scm_difference (x, y);
7686 y = scm_car (rest);
7687 rest = scm_cdr (rest);
7688 }
7689 return scm_difference (x, y);
7690}
7691#undef FUNC_NAME
7692
7693#define s_difference s_scm_i_difference
7694#define g_difference g_scm_i_difference
7695
0f2d19dd 7696SCM
6e8d25a6 7697scm_difference (SCM x, SCM y)
78d3deb1 7698#define FUNC_NAME s_difference
0f2d19dd 7699{
9cc37597 7700 if (SCM_UNLIKELY (SCM_UNBNDP (y)))
ca46fb90
RB
7701 {
7702 if (SCM_UNBNDP (x))
fa075d40 7703 return scm_wta_dispatch_0 (g_difference, s_difference);
ca46fb90 7704 else
e11e83f3 7705 if (SCM_I_INUMP (x))
ca46fb90 7706 {
e25f3727 7707 scm_t_inum xx = -SCM_I_INUM (x);
ca46fb90 7708 if (SCM_FIXABLE (xx))
d956fa6f 7709 return SCM_I_MAKINUM (xx);
ca46fb90 7710 else
e25f3727 7711 return scm_i_inum2big (xx);
ca46fb90
RB
7712 }
7713 else if (SCM_BIGP (x))
a9ad4847
KR
7714 /* Must scm_i_normbig here because -SCM_MOST_NEGATIVE_FIXNUM is a
7715 bignum, but negating that gives a fixnum. */
ca46fb90
RB
7716 return scm_i_normbig (scm_i_clonebig (x, 0));
7717 else if (SCM_REALP (x))
00472a22 7718 return scm_i_from_double (-SCM_REAL_VALUE (x));
ca46fb90 7719 else if (SCM_COMPLEXP (x))
8507ec80 7720 return scm_c_make_rectangular (-SCM_COMPLEX_REAL (x),
ca46fb90 7721 -SCM_COMPLEX_IMAG (x));
f92e85f7 7722 else if (SCM_FRACTIONP (x))
a285b18c
MW
7723 return scm_i_make_ratio_already_reduced
7724 (scm_difference (SCM_FRACTION_NUMERATOR (x), SCM_UNDEFINED),
7725 SCM_FRACTION_DENOMINATOR (x));
ca46fb90 7726 else
fa075d40 7727 return scm_wta_dispatch_1 (g_difference, x, SCM_ARG1, s_difference);
f872b822 7728 }
ca46fb90 7729
9cc37597 7730 if (SCM_LIKELY (SCM_I_INUMP (x)))
0aacf84e 7731 {
9cc37597 7732 if (SCM_LIKELY (SCM_I_INUMP (y)))
0aacf84e 7733 {
e25f3727
AW
7734 scm_t_inum xx = SCM_I_INUM (x);
7735 scm_t_inum yy = SCM_I_INUM (y);
7736 scm_t_inum z = xx - yy;
0aacf84e 7737 if (SCM_FIXABLE (z))
d956fa6f 7738 return SCM_I_MAKINUM (z);
0aacf84e 7739 else
e25f3727 7740 return scm_i_inum2big (z);
0aacf84e
MD
7741 }
7742 else if (SCM_BIGP (y))
7743 {
7744 /* inum-x - big-y */
e25f3727 7745 scm_t_inum xx = SCM_I_INUM (x);
ca46fb90 7746
0aacf84e 7747 if (xx == 0)
b5c40589
MW
7748 {
7749 /* Must scm_i_normbig here because -SCM_MOST_NEGATIVE_FIXNUM is a
7750 bignum, but negating that gives a fixnum. */
7751 return scm_i_normbig (scm_i_clonebig (y, 0));
7752 }
0aacf84e
MD
7753 else
7754 {
7755 int sgn_y = mpz_sgn (SCM_I_BIG_MPZ (y));
7756 SCM result = scm_i_mkbig ();
ca46fb90 7757
0aacf84e
MD
7758 if (xx >= 0)
7759 mpz_ui_sub (SCM_I_BIG_MPZ (result), xx, SCM_I_BIG_MPZ (y));
7760 else
7761 {
7762 /* x - y == -(y + -x) */
7763 mpz_add_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (y), -xx);
7764 mpz_neg (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result));
7765 }
7766 scm_remember_upto_here_1 (y);
ca46fb90 7767
0aacf84e
MD
7768 if ((xx < 0 && (sgn_y > 0)) || ((xx > 0) && sgn_y < 0))
7769 /* we know the result will have to be a bignum */
7770 return result;
7771 else
7772 return scm_i_normbig (result);
7773 }
7774 }
7775 else if (SCM_REALP (y))
7776 {
e25f3727 7777 scm_t_inum xx = SCM_I_INUM (x);
9b9ef10c
MW
7778
7779 /*
7780 * We need to handle x == exact 0
7781 * specially because R6RS states that:
7782 * (- 0.0) ==> -0.0 and
7783 * (- 0.0 0.0) ==> 0.0
7784 * and the scheme compiler changes
7785 * (- 0.0) into (- 0 0.0)
7786 * So we need to treat (- 0 0.0) like (- 0.0).
7787 * At the C level, (-x) is different than (0.0 - x).
7788 * (0.0 - 0.0) ==> 0.0, but (- 0.0) ==> -0.0.
7789 */
7790 if (xx == 0)
00472a22 7791 return scm_i_from_double (- SCM_REAL_VALUE (y));
9b9ef10c 7792 else
00472a22 7793 return scm_i_from_double (xx - SCM_REAL_VALUE (y));
0aacf84e
MD
7794 }
7795 else if (SCM_COMPLEXP (y))
7796 {
e25f3727 7797 scm_t_inum xx = SCM_I_INUM (x);
9b9ef10c
MW
7798
7799 /* We need to handle x == exact 0 specially.
7800 See the comment above (for SCM_REALP (y)) */
7801 if (xx == 0)
7802 return scm_c_make_rectangular (- SCM_COMPLEX_REAL (y),
7803 - SCM_COMPLEX_IMAG (y));
7804 else
7805 return scm_c_make_rectangular (xx - SCM_COMPLEX_REAL (y),
7806 - SCM_COMPLEX_IMAG (y));
0aacf84e 7807 }
f92e85f7
MV
7808 else if (SCM_FRACTIONP (y))
7809 /* a - b/c = (ac - b) / c */
cba42c93 7810 return scm_i_make_ratio (scm_difference (scm_product (x, SCM_FRACTION_DENOMINATOR (y)),
f92e85f7
MV
7811 SCM_FRACTION_NUMERATOR (y)),
7812 SCM_FRACTION_DENOMINATOR (y));
0aacf84e 7813 else
fa075d40 7814 return scm_wta_dispatch_2 (g_difference, x, y, SCM_ARGn, s_difference);
f872b822 7815 }
0aacf84e
MD
7816 else if (SCM_BIGP (x))
7817 {
e11e83f3 7818 if (SCM_I_INUMP (y))
0aacf84e
MD
7819 {
7820 /* big-x - inum-y */
e25f3727 7821 scm_t_inum yy = SCM_I_INUM (y);
0aacf84e 7822 int sgn_x = mpz_sgn (SCM_I_BIG_MPZ (x));
ca46fb90 7823
0aacf84e
MD
7824 scm_remember_upto_here_1 (x);
7825 if (sgn_x == 0)
c71b0706 7826 return (SCM_FIXABLE (-yy) ?
e25f3727 7827 SCM_I_MAKINUM (-yy) : scm_from_inum (-yy));
0aacf84e
MD
7828 else
7829 {
7830 SCM result = scm_i_mkbig ();
ca46fb90 7831
708f22c6
KR
7832 if (yy >= 0)
7833 mpz_sub_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), yy);
7834 else
7835 mpz_add_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), -yy);
0aacf84e 7836 scm_remember_upto_here_1 (x);
ca46fb90 7837
0aacf84e
MD
7838 if ((sgn_x < 0 && (yy > 0)) || ((sgn_x > 0) && yy < 0))
7839 /* we know the result will have to be a bignum */
7840 return result;
7841 else
7842 return scm_i_normbig (result);
7843 }
7844 }
7845 else if (SCM_BIGP (y))
7846 {
7847 int sgn_x = mpz_sgn (SCM_I_BIG_MPZ (x));
7848 int sgn_y = mpz_sgn (SCM_I_BIG_MPZ (y));
7849 SCM result = scm_i_mkbig ();
7850 mpz_sub (SCM_I_BIG_MPZ (result),
7851 SCM_I_BIG_MPZ (x),
7852 SCM_I_BIG_MPZ (y));
7853 scm_remember_upto_here_2 (x, y);
7854 /* we know the result will have to be a bignum */
7855 if ((sgn_x == 1) && (sgn_y == -1))
7856 return result;
7857 if ((sgn_x == -1) && (sgn_y == 1))
7858 return result;
7859 return scm_i_normbig (result);
7860 }
7861 else if (SCM_REALP (y))
7862 {
7863 double result = mpz_get_d (SCM_I_BIG_MPZ (x)) - SCM_REAL_VALUE (y);
7864 scm_remember_upto_here_1 (x);
00472a22 7865 return scm_i_from_double (result);
0aacf84e
MD
7866 }
7867 else if (SCM_COMPLEXP (y))
7868 {
7869 double real_part = (mpz_get_d (SCM_I_BIG_MPZ (x))
7870 - SCM_COMPLEX_REAL (y));
7871 scm_remember_upto_here_1 (x);
8507ec80 7872 return scm_c_make_rectangular (real_part, - SCM_COMPLEX_IMAG (y));
0aacf84e 7873 }
f92e85f7 7874 else if (SCM_FRACTIONP (y))
cba42c93 7875 return scm_i_make_ratio (scm_difference (scm_product (x, SCM_FRACTION_DENOMINATOR (y)),
f92e85f7
MV
7876 SCM_FRACTION_NUMERATOR (y)),
7877 SCM_FRACTION_DENOMINATOR (y));
fa075d40
AW
7878 else
7879 return scm_wta_dispatch_2 (g_difference, x, y, SCM_ARGn, s_difference);
ca46fb90 7880 }
0aacf84e
MD
7881 else if (SCM_REALP (x))
7882 {
e11e83f3 7883 if (SCM_I_INUMP (y))
00472a22 7884 return scm_i_from_double (SCM_REAL_VALUE (x) - SCM_I_INUM (y));
0aacf84e
MD
7885 else if (SCM_BIGP (y))
7886 {
7887 double result = SCM_REAL_VALUE (x) - mpz_get_d (SCM_I_BIG_MPZ (y));
7888 scm_remember_upto_here_1 (x);
00472a22 7889 return scm_i_from_double (result);
0aacf84e
MD
7890 }
7891 else if (SCM_REALP (y))
00472a22 7892 return scm_i_from_double (SCM_REAL_VALUE (x) - SCM_REAL_VALUE (y));
0aacf84e 7893 else if (SCM_COMPLEXP (y))
8507ec80 7894 return scm_c_make_rectangular (SCM_REAL_VALUE (x) - SCM_COMPLEX_REAL (y),
0aacf84e 7895 -SCM_COMPLEX_IMAG (y));
f92e85f7 7896 else if (SCM_FRACTIONP (y))
00472a22 7897 return scm_i_from_double (SCM_REAL_VALUE (x) - scm_i_fraction2double (y));
0aacf84e 7898 else
fa075d40 7899 return scm_wta_dispatch_2 (g_difference, x, y, SCM_ARGn, s_difference);
98cb6e75 7900 }
0aacf84e
MD
7901 else if (SCM_COMPLEXP (x))
7902 {
e11e83f3 7903 if (SCM_I_INUMP (y))
8507ec80 7904 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) - SCM_I_INUM (y),
0aacf84e
MD
7905 SCM_COMPLEX_IMAG (x));
7906 else if (SCM_BIGP (y))
7907 {
7908 double real_part = (SCM_COMPLEX_REAL (x)
7909 - mpz_get_d (SCM_I_BIG_MPZ (y)));
7910 scm_remember_upto_here_1 (x);
8507ec80 7911 return scm_c_make_rectangular (real_part, SCM_COMPLEX_IMAG (y));
0aacf84e
MD
7912 }
7913 else if (SCM_REALP (y))
8507ec80 7914 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) - SCM_REAL_VALUE (y),
0aacf84e
MD
7915 SCM_COMPLEX_IMAG (x));
7916 else if (SCM_COMPLEXP (y))
8507ec80 7917 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) - SCM_COMPLEX_REAL (y),
0aacf84e 7918 SCM_COMPLEX_IMAG (x) - SCM_COMPLEX_IMAG (y));
f92e85f7 7919 else if (SCM_FRACTIONP (y))
8507ec80 7920 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) - scm_i_fraction2double (y),
f92e85f7
MV
7921 SCM_COMPLEX_IMAG (x));
7922 else
fa075d40 7923 return scm_wta_dispatch_2 (g_difference, x, y, SCM_ARGn, s_difference);
f92e85f7
MV
7924 }
7925 else if (SCM_FRACTIONP (x))
7926 {
e11e83f3 7927 if (SCM_I_INUMP (y))
f92e85f7 7928 /* a/b - c = (a - cb) / b */
cba42c93 7929 return scm_i_make_ratio (scm_difference (SCM_FRACTION_NUMERATOR (x),
f92e85f7
MV
7930 scm_product(y, SCM_FRACTION_DENOMINATOR (x))),
7931 SCM_FRACTION_DENOMINATOR (x));
7932 else if (SCM_BIGP (y))
cba42c93 7933 return scm_i_make_ratio (scm_difference (SCM_FRACTION_NUMERATOR (x),
f92e85f7
MV
7934 scm_product(y, SCM_FRACTION_DENOMINATOR (x))),
7935 SCM_FRACTION_DENOMINATOR (x));
7936 else if (SCM_REALP (y))
00472a22 7937 return scm_i_from_double (scm_i_fraction2double (x) - SCM_REAL_VALUE (y));
f92e85f7 7938 else if (SCM_COMPLEXP (y))
8507ec80 7939 return scm_c_make_rectangular (scm_i_fraction2double (x) - SCM_COMPLEX_REAL (y),
f92e85f7
MV
7940 -SCM_COMPLEX_IMAG (y));
7941 else if (SCM_FRACTIONP (y))
7942 /* a/b - c/d = (ad - bc) / bd */
cba42c93 7943 return scm_i_make_ratio (scm_difference (scm_product (SCM_FRACTION_NUMERATOR (x), SCM_FRACTION_DENOMINATOR (y)),
f92e85f7
MV
7944 scm_product (SCM_FRACTION_NUMERATOR (y), SCM_FRACTION_DENOMINATOR (x))),
7945 scm_product (SCM_FRACTION_DENOMINATOR (x), SCM_FRACTION_DENOMINATOR (y)));
0aacf84e 7946 else
fa075d40 7947 return scm_wta_dispatch_2 (g_difference, x, y, SCM_ARGn, s_difference);
98cb6e75 7948 }
0aacf84e 7949 else
fa075d40 7950 return scm_wta_dispatch_2 (g_difference, x, y, SCM_ARG1, s_difference);
0f2d19dd 7951}
c05e97b7 7952#undef FUNC_NAME
0f2d19dd 7953
ca46fb90 7954
40882e3d
KR
7955SCM_DEFINE (scm_oneminus, "1-", 1, 0, 0,
7956 (SCM x),
7957 "Return @math{@var{x}-1}.")
7958#define FUNC_NAME s_scm_oneminus
7959{
cff5fa33 7960 return scm_difference (x, SCM_INUM1);
40882e3d
KR
7961}
7962#undef FUNC_NAME
7963
7964
78d3deb1
AW
7965SCM_PRIMITIVE_GENERIC (scm_i_product, "*", 0, 2, 1,
7966 (SCM x, SCM y, SCM rest),
7967 "Return the product of all arguments. If called without arguments,\n"
7968 "1 is returned.")
7969#define FUNC_NAME s_scm_i_product
7970{
7971 while (!scm_is_null (rest))
7972 { x = scm_product (x, y);
7973 y = scm_car (rest);
7974 rest = scm_cdr (rest);
7975 }
7976 return scm_product (x, y);
7977}
7978#undef FUNC_NAME
7979
7980#define s_product s_scm_i_product
7981#define g_product g_scm_i_product
7982
0f2d19dd 7983SCM
6e8d25a6 7984scm_product (SCM x, SCM y)
0f2d19dd 7985{
9cc37597 7986 if (SCM_UNLIKELY (SCM_UNBNDP (y)))
0aacf84e
MD
7987 {
7988 if (SCM_UNBNDP (x))
d956fa6f 7989 return SCM_I_MAKINUM (1L);
0aacf84e
MD
7990 else if (SCM_NUMBERP (x))
7991 return x;
7992 else
fa075d40 7993 return scm_wta_dispatch_1 (g_product, x, SCM_ARG1, s_product);
f872b822 7994 }
ca46fb90 7995
9cc37597 7996 if (SCM_LIKELY (SCM_I_INUMP (x)))
0aacf84e 7997 {
e25f3727 7998 scm_t_inum xx;
f4c627b3 7999
5e791807 8000 xinum:
e11e83f3 8001 xx = SCM_I_INUM (x);
f4c627b3 8002
0aacf84e
MD
8003 switch (xx)
8004 {
5e791807
MW
8005 case 1:
8006 /* exact1 is the universal multiplicative identity */
8007 return y;
8008 break;
8009 case 0:
8010 /* exact0 times a fixnum is exact0: optimize this case */
8011 if (SCM_LIKELY (SCM_I_INUMP (y)))
8012 return SCM_INUM0;
8013 /* if the other argument is inexact, the result is inexact,
8014 and we must do the multiplication in order to handle
8015 infinities and NaNs properly. */
8016 else if (SCM_REALP (y))
00472a22 8017 return scm_i_from_double (0.0 * SCM_REAL_VALUE (y));
5e791807
MW
8018 else if (SCM_COMPLEXP (y))
8019 return scm_c_make_rectangular (0.0 * SCM_COMPLEX_REAL (y),
8020 0.0 * SCM_COMPLEX_IMAG (y));
8021 /* we've already handled inexact numbers,
8022 so y must be exact, and we return exact0 */
8023 else if (SCM_NUMP (y))
8024 return SCM_INUM0;
8025 else
fa075d40 8026 return scm_wta_dispatch_2 (g_product, x, y, SCM_ARGn, s_product);
5e791807
MW
8027 break;
8028 case -1:
b5c40589 8029 /*
5e791807
MW
8030 * This case is important for more than just optimization.
8031 * It handles the case of negating
b5c40589
MW
8032 * (+ 1 most-positive-fixnum) aka (- most-negative-fixnum),
8033 * which is a bignum that must be changed back into a fixnum.
8034 * Failure to do so will cause the following to return #f:
8035 * (= most-negative-fixnum (* -1 (- most-negative-fixnum)))
8036 */
b5c40589
MW
8037 return scm_difference(y, SCM_UNDEFINED);
8038 break;
0aacf84e 8039 }
f4c627b3 8040
9cc37597 8041 if (SCM_LIKELY (SCM_I_INUMP (y)))
0aacf84e 8042 {
e25f3727 8043 scm_t_inum yy = SCM_I_INUM (y);
2355f017
MW
8044#if SCM_I_FIXNUM_BIT < 32 && SCM_HAVE_T_INT64
8045 scm_t_int64 kk = xx * (scm_t_int64) yy;
8046 if (SCM_FIXABLE (kk))
8047 return SCM_I_MAKINUM (kk);
8048#else
8049 scm_t_inum axx = (xx > 0) ? xx : -xx;
8050 scm_t_inum ayy = (yy > 0) ? yy : -yy;
8051 if (SCM_MOST_POSITIVE_FIXNUM / axx >= ayy)
8052 return SCM_I_MAKINUM (xx * yy);
8053#endif
0aacf84e
MD
8054 else
8055 {
e25f3727 8056 SCM result = scm_i_inum2big (xx);
0aacf84e
MD
8057 mpz_mul_si (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result), yy);
8058 return scm_i_normbig (result);
8059 }
8060 }
8061 else if (SCM_BIGP (y))
8062 {
8063 SCM result = scm_i_mkbig ();
8064 mpz_mul_si (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (y), xx);
8065 scm_remember_upto_here_1 (y);
8066 return result;
8067 }
8068 else if (SCM_REALP (y))
00472a22 8069 return scm_i_from_double (xx * SCM_REAL_VALUE (y));
0aacf84e 8070 else if (SCM_COMPLEXP (y))
8507ec80 8071 return scm_c_make_rectangular (xx * SCM_COMPLEX_REAL (y),
0aacf84e 8072 xx * SCM_COMPLEX_IMAG (y));
f92e85f7 8073 else if (SCM_FRACTIONP (y))
cba42c93 8074 return scm_i_make_ratio (scm_product (x, SCM_FRACTION_NUMERATOR (y)),
f92e85f7 8075 SCM_FRACTION_DENOMINATOR (y));
0aacf84e 8076 else
fa075d40 8077 return scm_wta_dispatch_2 (g_product, x, y, SCM_ARGn, s_product);
f4c627b3 8078 }
0aacf84e
MD
8079 else if (SCM_BIGP (x))
8080 {
e11e83f3 8081 if (SCM_I_INUMP (y))
0aacf84e
MD
8082 {
8083 SCM_SWAP (x, y);
5e791807 8084 goto xinum;
0aacf84e
MD
8085 }
8086 else if (SCM_BIGP (y))
8087 {
8088 SCM result = scm_i_mkbig ();
8089 mpz_mul (SCM_I_BIG_MPZ (result),
8090 SCM_I_BIG_MPZ (x),
8091 SCM_I_BIG_MPZ (y));
8092 scm_remember_upto_here_2 (x, y);
8093 return result;
8094 }
8095 else if (SCM_REALP (y))
8096 {
8097 double result = mpz_get_d (SCM_I_BIG_MPZ (x)) * SCM_REAL_VALUE (y);
8098 scm_remember_upto_here_1 (x);
00472a22 8099 return scm_i_from_double (result);
0aacf84e
MD
8100 }
8101 else if (SCM_COMPLEXP (y))
8102 {
8103 double z = mpz_get_d (SCM_I_BIG_MPZ (x));
8104 scm_remember_upto_here_1 (x);
8507ec80 8105 return scm_c_make_rectangular (z * SCM_COMPLEX_REAL (y),
0aacf84e
MD
8106 z * SCM_COMPLEX_IMAG (y));
8107 }
f92e85f7 8108 else if (SCM_FRACTIONP (y))
cba42c93 8109 return scm_i_make_ratio (scm_product (x, SCM_FRACTION_NUMERATOR (y)),
f92e85f7 8110 SCM_FRACTION_DENOMINATOR (y));
0aacf84e 8111 else
fa075d40 8112 return scm_wta_dispatch_2 (g_product, x, y, SCM_ARGn, s_product);
f4c627b3 8113 }
0aacf84e
MD
8114 else if (SCM_REALP (x))
8115 {
e11e83f3 8116 if (SCM_I_INUMP (y))
5e791807
MW
8117 {
8118 SCM_SWAP (x, y);
8119 goto xinum;
8120 }
0aacf84e
MD
8121 else if (SCM_BIGP (y))
8122 {
8123 double result = mpz_get_d (SCM_I_BIG_MPZ (y)) * SCM_REAL_VALUE (x);
8124 scm_remember_upto_here_1 (y);
00472a22 8125 return scm_i_from_double (result);
0aacf84e
MD
8126 }
8127 else if (SCM_REALP (y))
00472a22 8128 return scm_i_from_double (SCM_REAL_VALUE (x) * SCM_REAL_VALUE (y));
0aacf84e 8129 else if (SCM_COMPLEXP (y))
8507ec80 8130 return scm_c_make_rectangular (SCM_REAL_VALUE (x) * SCM_COMPLEX_REAL (y),
0aacf84e 8131 SCM_REAL_VALUE (x) * SCM_COMPLEX_IMAG (y));
f92e85f7 8132 else if (SCM_FRACTIONP (y))
00472a22 8133 return scm_i_from_double (SCM_REAL_VALUE (x) * scm_i_fraction2double (y));
0aacf84e 8134 else
fa075d40 8135 return scm_wta_dispatch_2 (g_product, x, y, SCM_ARGn, s_product);
f4c627b3 8136 }
0aacf84e
MD
8137 else if (SCM_COMPLEXP (x))
8138 {
e11e83f3 8139 if (SCM_I_INUMP (y))
5e791807
MW
8140 {
8141 SCM_SWAP (x, y);
8142 goto xinum;
8143 }
0aacf84e
MD
8144 else if (SCM_BIGP (y))
8145 {
8146 double z = mpz_get_d (SCM_I_BIG_MPZ (y));
8147 scm_remember_upto_here_1 (y);
8507ec80 8148 return scm_c_make_rectangular (z * SCM_COMPLEX_REAL (x),
76506335 8149 z * SCM_COMPLEX_IMAG (x));
0aacf84e
MD
8150 }
8151 else if (SCM_REALP (y))
8507ec80 8152 return scm_c_make_rectangular (SCM_REAL_VALUE (y) * SCM_COMPLEX_REAL (x),
0aacf84e
MD
8153 SCM_REAL_VALUE (y) * SCM_COMPLEX_IMAG (x));
8154 else if (SCM_COMPLEXP (y))
8155 {
8507ec80 8156 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) * SCM_COMPLEX_REAL (y)
0aacf84e
MD
8157 - SCM_COMPLEX_IMAG (x) * SCM_COMPLEX_IMAG (y),
8158 SCM_COMPLEX_REAL (x) * SCM_COMPLEX_IMAG (y)
8159 + SCM_COMPLEX_IMAG (x) * SCM_COMPLEX_REAL (y));
8160 }
f92e85f7
MV
8161 else if (SCM_FRACTIONP (y))
8162 {
8163 double yy = scm_i_fraction2double (y);
8507ec80 8164 return scm_c_make_rectangular (yy * SCM_COMPLEX_REAL (x),
f92e85f7
MV
8165 yy * SCM_COMPLEX_IMAG (x));
8166 }
8167 else
fa075d40 8168 return scm_wta_dispatch_2 (g_product, x, y, SCM_ARGn, s_product);
f92e85f7
MV
8169 }
8170 else if (SCM_FRACTIONP (x))
8171 {
e11e83f3 8172 if (SCM_I_INUMP (y))
cba42c93 8173 return scm_i_make_ratio (scm_product (y, SCM_FRACTION_NUMERATOR (x)),
f92e85f7
MV
8174 SCM_FRACTION_DENOMINATOR (x));
8175 else if (SCM_BIGP (y))
cba42c93 8176 return scm_i_make_ratio (scm_product (y, SCM_FRACTION_NUMERATOR (x)),
f92e85f7
MV
8177 SCM_FRACTION_DENOMINATOR (x));
8178 else if (SCM_REALP (y))
00472a22 8179 return scm_i_from_double (scm_i_fraction2double (x) * SCM_REAL_VALUE (y));
f92e85f7
MV
8180 else if (SCM_COMPLEXP (y))
8181 {
8182 double xx = scm_i_fraction2double (x);
8507ec80 8183 return scm_c_make_rectangular (xx * SCM_COMPLEX_REAL (y),
f92e85f7
MV
8184 xx * SCM_COMPLEX_IMAG (y));
8185 }
8186 else if (SCM_FRACTIONP (y))
8187 /* a/b * c/d = ac / bd */
cba42c93 8188 return scm_i_make_ratio (scm_product (SCM_FRACTION_NUMERATOR (x),
f92e85f7
MV
8189 SCM_FRACTION_NUMERATOR (y)),
8190 scm_product (SCM_FRACTION_DENOMINATOR (x),
8191 SCM_FRACTION_DENOMINATOR (y)));
0aacf84e 8192 else
fa075d40 8193 return scm_wta_dispatch_2 (g_product, x, y, SCM_ARGn, s_product);
f4c627b3 8194 }
0aacf84e 8195 else
fa075d40 8196 return scm_wta_dispatch_2 (g_product, x, y, SCM_ARG1, s_product);
0f2d19dd
JB
8197}
8198
7351e207
MV
8199#if ((defined (HAVE_ISINF) && defined (HAVE_ISNAN)) \
8200 || (defined (HAVE_FINITE) && defined (HAVE_ISNAN)))
8201#define ALLOW_DIVIDE_BY_ZERO
8202/* #define ALLOW_DIVIDE_BY_EXACT_ZERO */
8203#endif
0f2d19dd 8204
ba74ef4e
MV
8205/* The code below for complex division is adapted from the GNU
8206 libstdc++, which adapted it from f2c's libF77, and is subject to
8207 this copyright: */
8208
8209/****************************************************************
8210Copyright 1990, 1991, 1992, 1993 by AT&T Bell Laboratories and Bellcore.
8211
8212Permission to use, copy, modify, and distribute this software
8213and its documentation for any purpose and without fee is hereby
8214granted, provided that the above copyright notice appear in all
8215copies and that both that the copyright notice and this
8216permission notice and warranty disclaimer appear in supporting
8217documentation, and that the names of AT&T Bell Laboratories or
8218Bellcore or any of their entities not be used in advertising or
8219publicity pertaining to distribution of the software without
8220specific, written prior permission.
8221
8222AT&T and Bellcore disclaim all warranties with regard to this
8223software, including all implied warranties of merchantability
8224and fitness. In no event shall AT&T or Bellcore be liable for
8225any special, indirect or consequential damages or any damages
8226whatsoever resulting from loss of use, data or profits, whether
8227in an action of contract, negligence or other tortious action,
8228arising out of or in connection with the use or performance of
8229this software.
8230****************************************************************/
8231
78d3deb1
AW
8232SCM_PRIMITIVE_GENERIC (scm_i_divide, "/", 0, 2, 1,
8233 (SCM x, SCM y, SCM rest),
8234 "Divide the first argument by the product of the remaining\n"
8235 "arguments. If called with one argument @var{z1}, 1/@var{z1} is\n"
8236 "returned.")
8237#define FUNC_NAME s_scm_i_divide
8238{
8239 while (!scm_is_null (rest))
8240 { x = scm_divide (x, y);
8241 y = scm_car (rest);
8242 rest = scm_cdr (rest);
8243 }
8244 return scm_divide (x, y);
8245}
8246#undef FUNC_NAME
8247
8248#define s_divide s_scm_i_divide
8249#define g_divide g_scm_i_divide
8250
98237784
MW
8251SCM
8252scm_divide (SCM x, SCM y)
78d3deb1 8253#define FUNC_NAME s_divide
0f2d19dd 8254{
f8de44c1
DH
8255 double a;
8256
9cc37597 8257 if (SCM_UNLIKELY (SCM_UNBNDP (y)))
0aacf84e
MD
8258 {
8259 if (SCM_UNBNDP (x))
fa075d40 8260 return scm_wta_dispatch_0 (g_divide, s_divide);
e11e83f3 8261 else if (SCM_I_INUMP (x))
0aacf84e 8262 {
e25f3727 8263 scm_t_inum xx = SCM_I_INUM (x);
0aacf84e
MD
8264 if (xx == 1 || xx == -1)
8265 return x;
7351e207 8266#ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
0aacf84e
MD
8267 else if (xx == 0)
8268 scm_num_overflow (s_divide);
7351e207 8269#endif
0aacf84e 8270 else
98237784 8271 return scm_i_make_ratio_already_reduced (SCM_INUM1, x);
0aacf84e
MD
8272 }
8273 else if (SCM_BIGP (x))
98237784 8274 return scm_i_make_ratio_already_reduced (SCM_INUM1, x);
0aacf84e
MD
8275 else if (SCM_REALP (x))
8276 {
8277 double xx = SCM_REAL_VALUE (x);
7351e207 8278#ifndef ALLOW_DIVIDE_BY_ZERO
0aacf84e
MD
8279 if (xx == 0.0)
8280 scm_num_overflow (s_divide);
8281 else
7351e207 8282#endif
00472a22 8283 return scm_i_from_double (1.0 / xx);
0aacf84e
MD
8284 }
8285 else if (SCM_COMPLEXP (x))
8286 {
8287 double r = SCM_COMPLEX_REAL (x);
8288 double i = SCM_COMPLEX_IMAG (x);
4c6e36a6 8289 if (fabs(r) <= fabs(i))
0aacf84e
MD
8290 {
8291 double t = r / i;
8292 double d = i * (1.0 + t * t);
8507ec80 8293 return scm_c_make_rectangular (t / d, -1.0 / d);
0aacf84e
MD
8294 }
8295 else
8296 {
8297 double t = i / r;
8298 double d = r * (1.0 + t * t);
8507ec80 8299 return scm_c_make_rectangular (1.0 / d, -t / d);
0aacf84e
MD
8300 }
8301 }
f92e85f7 8302 else if (SCM_FRACTIONP (x))
a285b18c
MW
8303 return scm_i_make_ratio_already_reduced (SCM_FRACTION_DENOMINATOR (x),
8304 SCM_FRACTION_NUMERATOR (x));
0aacf84e 8305 else
fa075d40 8306 return scm_wta_dispatch_1 (g_divide, x, SCM_ARG1, s_divide);
f8de44c1 8307 }
f8de44c1 8308
9cc37597 8309 if (SCM_LIKELY (SCM_I_INUMP (x)))
0aacf84e 8310 {
e25f3727 8311 scm_t_inum xx = SCM_I_INUM (x);
9cc37597 8312 if (SCM_LIKELY (SCM_I_INUMP (y)))
0aacf84e 8313 {
e25f3727 8314 scm_t_inum yy = SCM_I_INUM (y);
0aacf84e
MD
8315 if (yy == 0)
8316 {
7351e207 8317#ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
0aacf84e 8318 scm_num_overflow (s_divide);
7351e207 8319#else
00472a22 8320 return scm_i_from_double ((double) xx / (double) yy);
7351e207 8321#endif
0aacf84e
MD
8322 }
8323 else if (xx % yy != 0)
98237784 8324 return scm_i_make_ratio (x, y);
0aacf84e
MD
8325 else
8326 {
e25f3727 8327 scm_t_inum z = xx / yy;
0aacf84e 8328 if (SCM_FIXABLE (z))
d956fa6f 8329 return SCM_I_MAKINUM (z);
0aacf84e 8330 else
e25f3727 8331 return scm_i_inum2big (z);
0aacf84e 8332 }
f872b822 8333 }
0aacf84e 8334 else if (SCM_BIGP (y))
98237784 8335 return scm_i_make_ratio (x, y);
0aacf84e
MD
8336 else if (SCM_REALP (y))
8337 {
8338 double yy = SCM_REAL_VALUE (y);
7351e207 8339#ifndef ALLOW_DIVIDE_BY_ZERO
0aacf84e
MD
8340 if (yy == 0.0)
8341 scm_num_overflow (s_divide);
8342 else
7351e207 8343#endif
98237784
MW
8344 /* FIXME: Precision may be lost here due to:
8345 (1) The cast from 'scm_t_inum' to 'double'
8346 (2) Double rounding */
00472a22 8347 return scm_i_from_double ((double) xx / yy);
ba74ef4e 8348 }
0aacf84e
MD
8349 else if (SCM_COMPLEXP (y))
8350 {
8351 a = xx;
8352 complex_div: /* y _must_ be a complex number */
8353 {
8354 double r = SCM_COMPLEX_REAL (y);
8355 double i = SCM_COMPLEX_IMAG (y);
4c6e36a6 8356 if (fabs(r) <= fabs(i))
0aacf84e
MD
8357 {
8358 double t = r / i;
8359 double d = i * (1.0 + t * t);
8507ec80 8360 return scm_c_make_rectangular ((a * t) / d, -a / d);
0aacf84e
MD
8361 }
8362 else
8363 {
8364 double t = i / r;
8365 double d = r * (1.0 + t * t);
8507ec80 8366 return scm_c_make_rectangular (a / d, -(a * t) / d);
0aacf84e
MD
8367 }
8368 }
8369 }
f92e85f7
MV
8370 else if (SCM_FRACTIONP (y))
8371 /* a / b/c = ac / b */
cba42c93 8372 return scm_i_make_ratio (scm_product (x, SCM_FRACTION_DENOMINATOR (y)),
98237784 8373 SCM_FRACTION_NUMERATOR (y));
0aacf84e 8374 else
fa075d40 8375 return scm_wta_dispatch_2 (g_divide, x, y, SCM_ARGn, s_divide);
f8de44c1 8376 }
0aacf84e
MD
8377 else if (SCM_BIGP (x))
8378 {
e11e83f3 8379 if (SCM_I_INUMP (y))
0aacf84e 8380 {
e25f3727 8381 scm_t_inum yy = SCM_I_INUM (y);
0aacf84e
MD
8382 if (yy == 0)
8383 {
7351e207 8384#ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
0aacf84e 8385 scm_num_overflow (s_divide);
7351e207 8386#else
0aacf84e
MD
8387 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
8388 scm_remember_upto_here_1 (x);
8389 return (sgn == 0) ? scm_nan () : scm_inf ();
7351e207 8390#endif
0aacf84e
MD
8391 }
8392 else if (yy == 1)
8393 return x;
8394 else
8395 {
8396 /* FIXME: HMM, what are the relative performance issues here?
8397 We need to test. Is it faster on average to test
8398 divisible_p, then perform whichever operation, or is it
8399 faster to perform the integer div opportunistically and
8400 switch to real if there's a remainder? For now we take the
8401 middle ground: test, then if divisible, use the faster div
8402 func. */
8403
e25f3727 8404 scm_t_inum abs_yy = yy < 0 ? -yy : yy;
0aacf84e
MD
8405 int divisible_p = mpz_divisible_ui_p (SCM_I_BIG_MPZ (x), abs_yy);
8406
8407 if (divisible_p)
8408 {
8409 SCM result = scm_i_mkbig ();
8410 mpz_divexact_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), abs_yy);
8411 scm_remember_upto_here_1 (x);
8412 if (yy < 0)
8413 mpz_neg (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result));
8414 return scm_i_normbig (result);
8415 }
8416 else
98237784 8417 return scm_i_make_ratio (x, y);
0aacf84e
MD
8418 }
8419 }
8420 else if (SCM_BIGP (y))
8421 {
98237784
MW
8422 int divisible_p = mpz_divisible_p (SCM_I_BIG_MPZ (x),
8423 SCM_I_BIG_MPZ (y));
8424 if (divisible_p)
8425 {
8426 SCM result = scm_i_mkbig ();
8427 mpz_divexact (SCM_I_BIG_MPZ (result),
8428 SCM_I_BIG_MPZ (x),
8429 SCM_I_BIG_MPZ (y));
8430 scm_remember_upto_here_2 (x, y);
8431 return scm_i_normbig (result);
8432 }
8433 else
8434 return scm_i_make_ratio (x, y);
0aacf84e
MD
8435 }
8436 else if (SCM_REALP (y))
8437 {
8438 double yy = SCM_REAL_VALUE (y);
7351e207 8439#ifndef ALLOW_DIVIDE_BY_ZERO
0aacf84e
MD
8440 if (yy == 0.0)
8441 scm_num_overflow (s_divide);
8442 else
7351e207 8443#endif
98237784
MW
8444 /* FIXME: Precision may be lost here due to:
8445 (1) scm_i_big2dbl (2) Double rounding */
00472a22 8446 return scm_i_from_double (scm_i_big2dbl (x) / yy);
0aacf84e
MD
8447 }
8448 else if (SCM_COMPLEXP (y))
8449 {
8450 a = scm_i_big2dbl (x);
8451 goto complex_div;
8452 }
f92e85f7 8453 else if (SCM_FRACTIONP (y))
cba42c93 8454 return scm_i_make_ratio (scm_product (x, SCM_FRACTION_DENOMINATOR (y)),
98237784 8455 SCM_FRACTION_NUMERATOR (y));
0aacf84e 8456 else
fa075d40 8457 return scm_wta_dispatch_2 (g_divide, x, y, SCM_ARGn, s_divide);
f872b822 8458 }
0aacf84e
MD
8459 else if (SCM_REALP (x))
8460 {
8461 double rx = SCM_REAL_VALUE (x);
e11e83f3 8462 if (SCM_I_INUMP (y))
0aacf84e 8463 {
e25f3727 8464 scm_t_inum yy = SCM_I_INUM (y);
7351e207 8465#ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
0aacf84e
MD
8466 if (yy == 0)
8467 scm_num_overflow (s_divide);
8468 else
7351e207 8469#endif
98237784
MW
8470 /* FIXME: Precision may be lost here due to:
8471 (1) The cast from 'scm_t_inum' to 'double'
8472 (2) Double rounding */
00472a22 8473 return scm_i_from_double (rx / (double) yy);
0aacf84e
MD
8474 }
8475 else if (SCM_BIGP (y))
8476 {
98237784
MW
8477 /* FIXME: Precision may be lost here due to:
8478 (1) The conversion from bignum to double
8479 (2) Double rounding */
0aacf84e
MD
8480 double dby = mpz_get_d (SCM_I_BIG_MPZ (y));
8481 scm_remember_upto_here_1 (y);
00472a22 8482 return scm_i_from_double (rx / dby);
0aacf84e
MD
8483 }
8484 else if (SCM_REALP (y))
8485 {
8486 double yy = SCM_REAL_VALUE (y);
7351e207 8487#ifndef ALLOW_DIVIDE_BY_ZERO
0aacf84e
MD
8488 if (yy == 0.0)
8489 scm_num_overflow (s_divide);
8490 else
7351e207 8491#endif
00472a22 8492 return scm_i_from_double (rx / yy);
0aacf84e
MD
8493 }
8494 else if (SCM_COMPLEXP (y))
8495 {
8496 a = rx;
8497 goto complex_div;
8498 }
f92e85f7 8499 else if (SCM_FRACTIONP (y))
00472a22 8500 return scm_i_from_double (rx / scm_i_fraction2double (y));
0aacf84e 8501 else
fa075d40 8502 return scm_wta_dispatch_2 (g_divide, x, y, SCM_ARGn, s_divide);
f872b822 8503 }
0aacf84e
MD
8504 else if (SCM_COMPLEXP (x))
8505 {
8506 double rx = SCM_COMPLEX_REAL (x);
8507 double ix = SCM_COMPLEX_IMAG (x);
e11e83f3 8508 if (SCM_I_INUMP (y))
0aacf84e 8509 {
e25f3727 8510 scm_t_inum yy = SCM_I_INUM (y);
7351e207 8511#ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
0aacf84e
MD
8512 if (yy == 0)
8513 scm_num_overflow (s_divide);
8514 else
7351e207 8515#endif
0aacf84e 8516 {
98237784
MW
8517 /* FIXME: Precision may be lost here due to:
8518 (1) The conversion from 'scm_t_inum' to double
8519 (2) Double rounding */
0aacf84e 8520 double d = yy;
8507ec80 8521 return scm_c_make_rectangular (rx / d, ix / d);
0aacf84e
MD
8522 }
8523 }
8524 else if (SCM_BIGP (y))
8525 {
98237784
MW
8526 /* FIXME: Precision may be lost here due to:
8527 (1) The conversion from bignum to double
8528 (2) Double rounding */
0aacf84e
MD
8529 double dby = mpz_get_d (SCM_I_BIG_MPZ (y));
8530 scm_remember_upto_here_1 (y);
8507ec80 8531 return scm_c_make_rectangular (rx / dby, ix / dby);
0aacf84e
MD
8532 }
8533 else if (SCM_REALP (y))
8534 {
8535 double yy = SCM_REAL_VALUE (y);
7351e207 8536#ifndef ALLOW_DIVIDE_BY_ZERO
0aacf84e
MD
8537 if (yy == 0.0)
8538 scm_num_overflow (s_divide);
8539 else
7351e207 8540#endif
8507ec80 8541 return scm_c_make_rectangular (rx / yy, ix / yy);
0aacf84e
MD
8542 }
8543 else if (SCM_COMPLEXP (y))
8544 {
8545 double ry = SCM_COMPLEX_REAL (y);
8546 double iy = SCM_COMPLEX_IMAG (y);
4c6e36a6 8547 if (fabs(ry) <= fabs(iy))
0aacf84e
MD
8548 {
8549 double t = ry / iy;
8550 double d = iy * (1.0 + t * t);
8507ec80 8551 return scm_c_make_rectangular ((rx * t + ix) / d, (ix * t - rx) / d);
0aacf84e
MD
8552 }
8553 else
8554 {
8555 double t = iy / ry;
8556 double d = ry * (1.0 + t * t);
8507ec80 8557 return scm_c_make_rectangular ((rx + ix * t) / d, (ix - rx * t) / d);
0aacf84e
MD
8558 }
8559 }
f92e85f7
MV
8560 else if (SCM_FRACTIONP (y))
8561 {
98237784
MW
8562 /* FIXME: Precision may be lost here due to:
8563 (1) The conversion from fraction to double
8564 (2) Double rounding */
f92e85f7 8565 double yy = scm_i_fraction2double (y);
8507ec80 8566 return scm_c_make_rectangular (rx / yy, ix / yy);
f92e85f7 8567 }
0aacf84e 8568 else
fa075d40 8569 return scm_wta_dispatch_2 (g_divide, x, y, SCM_ARGn, s_divide);
f8de44c1 8570 }
f92e85f7
MV
8571 else if (SCM_FRACTIONP (x))
8572 {
e11e83f3 8573 if (SCM_I_INUMP (y))
f92e85f7 8574 {
e25f3727 8575 scm_t_inum yy = SCM_I_INUM (y);
f92e85f7
MV
8576#ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
8577 if (yy == 0)
8578 scm_num_overflow (s_divide);
8579 else
8580#endif
cba42c93 8581 return scm_i_make_ratio (SCM_FRACTION_NUMERATOR (x),
98237784 8582 scm_product (SCM_FRACTION_DENOMINATOR (x), y));
f92e85f7
MV
8583 }
8584 else if (SCM_BIGP (y))
8585 {
cba42c93 8586 return scm_i_make_ratio (SCM_FRACTION_NUMERATOR (x),
98237784 8587 scm_product (SCM_FRACTION_DENOMINATOR (x), y));
f92e85f7
MV
8588 }
8589 else if (SCM_REALP (y))
8590 {
8591 double yy = SCM_REAL_VALUE (y);
8592#ifndef ALLOW_DIVIDE_BY_ZERO
8593 if (yy == 0.0)
8594 scm_num_overflow (s_divide);
8595 else
8596#endif
98237784
MW
8597 /* FIXME: Precision may be lost here due to:
8598 (1) The conversion from fraction to double
8599 (2) Double rounding */
00472a22 8600 return scm_i_from_double (scm_i_fraction2double (x) / yy);
f92e85f7
MV
8601 }
8602 else if (SCM_COMPLEXP (y))
8603 {
98237784
MW
8604 /* FIXME: Precision may be lost here due to:
8605 (1) The conversion from fraction to double
8606 (2) Double rounding */
f92e85f7
MV
8607 a = scm_i_fraction2double (x);
8608 goto complex_div;
8609 }
8610 else if (SCM_FRACTIONP (y))
cba42c93 8611 return scm_i_make_ratio (scm_product (SCM_FRACTION_NUMERATOR (x), SCM_FRACTION_DENOMINATOR (y)),
98237784 8612 scm_product (SCM_FRACTION_NUMERATOR (y), SCM_FRACTION_DENOMINATOR (x)));
f92e85f7 8613 else
fa075d40 8614 return scm_wta_dispatch_2 (g_divide, x, y, SCM_ARGn, s_divide);
f92e85f7 8615 }
0aacf84e 8616 else
fa075d40 8617 return scm_wta_dispatch_2 (g_divide, x, y, SCM_ARG1, s_divide);
0f2d19dd 8618}
c05e97b7 8619#undef FUNC_NAME
0f2d19dd 8620
fa605590 8621
0f2d19dd 8622double
3101f40f 8623scm_c_truncate (double x)
0f2d19dd 8624{
fa605590 8625 return trunc (x);
0f2d19dd 8626}
0f2d19dd 8627
3101f40f
MV
8628/* scm_c_round is done using floor(x+0.5) to round to nearest and with
8629 half-way case (ie. when x is an integer plus 0.5) going upwards.
8630 Then half-way cases are identified and adjusted down if the
8631 round-upwards didn't give the desired even integer.
6187f48b
KR
8632
8633 "plus_half == result" identifies a half-way case. If plus_half, which is
8634 x + 0.5, is an integer then x must be an integer plus 0.5.
8635
8636 An odd "result" value is identified with result/2 != floor(result/2).
8637 This is done with plus_half, since that value is ready for use sooner in
8638 a pipelined cpu, and we're already requiring plus_half == result.
8639
8640 Note however that we need to be careful when x is big and already an
8641 integer. In that case "x+0.5" may round to an adjacent integer, causing
8642 us to return such a value, incorrectly. For instance if the hardware is
8643 in the usual default nearest-even rounding, then for x = 0x1FFFFFFFFFFFFF
8644 (ie. 53 one bits) we will have x+0.5 = 0x20000000000000 and that value
8645 returned. Or if the hardware is in round-upwards mode, then other bigger
8646 values like say x == 2^128 will see x+0.5 rounding up to the next higher
8647 representable value, 2^128+2^76 (or whatever), again incorrect.
8648
8649 These bad roundings of x+0.5 are avoided by testing at the start whether
8650 x is already an integer. If it is then clearly that's the desired result
8651 already. And if it's not then the exponent must be small enough to allow
8652 an 0.5 to be represented, and hence added without a bad rounding. */
8653
0f2d19dd 8654double
3101f40f 8655scm_c_round (double x)
0f2d19dd 8656{
6187f48b
KR
8657 double plus_half, result;
8658
8659 if (x == floor (x))
8660 return x;
8661
8662 plus_half = x + 0.5;
8663 result = floor (plus_half);
3101f40f 8664 /* Adjust so that the rounding is towards even. */
0aacf84e
MD
8665 return ((plus_half == result && plus_half / 2 != floor (plus_half / 2))
8666 ? result - 1
8667 : result);
0f2d19dd
JB
8668}
8669
8b56bcec
MW
8670SCM_PRIMITIVE_GENERIC (scm_truncate_number, "truncate", 1, 0, 0,
8671 (SCM x),
8672 "Round the number @var{x} towards zero.")
f92e85f7
MV
8673#define FUNC_NAME s_scm_truncate_number
8674{
8b56bcec
MW
8675 if (SCM_I_INUMP (x) || SCM_BIGP (x))
8676 return x;
8677 else if (SCM_REALP (x))
00472a22 8678 return scm_i_from_double (trunc (SCM_REAL_VALUE (x)));
8b56bcec
MW
8679 else if (SCM_FRACTIONP (x))
8680 return scm_truncate_quotient (SCM_FRACTION_NUMERATOR (x),
8681 SCM_FRACTION_DENOMINATOR (x));
f92e85f7 8682 else
fa075d40 8683 return scm_wta_dispatch_1 (g_scm_truncate_number, x, SCM_ARG1,
8b56bcec 8684 s_scm_truncate_number);
f92e85f7
MV
8685}
8686#undef FUNC_NAME
8687
8b56bcec
MW
8688SCM_PRIMITIVE_GENERIC (scm_round_number, "round", 1, 0, 0,
8689 (SCM x),
8690 "Round the number @var{x} towards the nearest integer. "
8691 "When it is exactly halfway between two integers, "
8692 "round towards the even one.")
f92e85f7
MV
8693#define FUNC_NAME s_scm_round_number
8694{
e11e83f3 8695 if (SCM_I_INUMP (x) || SCM_BIGP (x))
bae30667
KR
8696 return x;
8697 else if (SCM_REALP (x))
00472a22 8698 return scm_i_from_double (scm_c_round (SCM_REAL_VALUE (x)));
8b56bcec
MW
8699 else if (SCM_FRACTIONP (x))
8700 return scm_round_quotient (SCM_FRACTION_NUMERATOR (x),
8701 SCM_FRACTION_DENOMINATOR (x));
f92e85f7 8702 else
fa075d40
AW
8703 return scm_wta_dispatch_1 (g_scm_round_number, x, SCM_ARG1,
8704 s_scm_round_number);
f92e85f7
MV
8705}
8706#undef FUNC_NAME
8707
8708SCM_PRIMITIVE_GENERIC (scm_floor, "floor", 1, 0, 0,
8709 (SCM x),
8710 "Round the number @var{x} towards minus infinity.")
8711#define FUNC_NAME s_scm_floor
8712{
e11e83f3 8713 if (SCM_I_INUMP (x) || SCM_BIGP (x))
f92e85f7
MV
8714 return x;
8715 else if (SCM_REALP (x))
00472a22 8716 return scm_i_from_double (floor (SCM_REAL_VALUE (x)));
f92e85f7 8717 else if (SCM_FRACTIONP (x))
8b56bcec
MW
8718 return scm_floor_quotient (SCM_FRACTION_NUMERATOR (x),
8719 SCM_FRACTION_DENOMINATOR (x));
f92e85f7 8720 else
fa075d40 8721 return scm_wta_dispatch_1 (g_scm_floor, x, 1, s_scm_floor);
f92e85f7
MV
8722}
8723#undef FUNC_NAME
8724
8725SCM_PRIMITIVE_GENERIC (scm_ceiling, "ceiling", 1, 0, 0,
8726 (SCM x),
8727 "Round the number @var{x} towards infinity.")
8728#define FUNC_NAME s_scm_ceiling
8729{
e11e83f3 8730 if (SCM_I_INUMP (x) || SCM_BIGP (x))
f92e85f7
MV
8731 return x;
8732 else if (SCM_REALP (x))
00472a22 8733 return scm_i_from_double (ceil (SCM_REAL_VALUE (x)));
f92e85f7 8734 else if (SCM_FRACTIONP (x))
8b56bcec
MW
8735 return scm_ceiling_quotient (SCM_FRACTION_NUMERATOR (x),
8736 SCM_FRACTION_DENOMINATOR (x));
f92e85f7 8737 else
fa075d40 8738 return scm_wta_dispatch_1 (g_scm_ceiling, x, 1, s_scm_ceiling);
f92e85f7
MV
8739}
8740#undef FUNC_NAME
0f2d19dd 8741
2519490c
MW
8742SCM_PRIMITIVE_GENERIC (scm_expt, "expt", 2, 0, 0,
8743 (SCM x, SCM y),
8744 "Return @var{x} raised to the power of @var{y}.")
6fc4d012 8745#define FUNC_NAME s_scm_expt
0f2d19dd 8746{
01c7284a
MW
8747 if (scm_is_integer (y))
8748 {
8749 if (scm_is_true (scm_exact_p (y)))
8750 return scm_integer_expt (x, y);
8751 else
8752 {
8753 /* Here we handle the case where the exponent is an inexact
8754 integer. We make the exponent exact in order to use
8755 scm_integer_expt, and thus avoid the spurious imaginary
8756 parts that may result from round-off errors in the general
8757 e^(y log x) method below (for example when squaring a large
8758 negative number). In this case, we must return an inexact
8759 result for correctness. We also make the base inexact so
8760 that scm_integer_expt will use fast inexact arithmetic
8761 internally. Note that making the base inexact is not
8762 sufficient to guarantee an inexact result, because
8763 scm_integer_expt will return an exact 1 when the exponent
8764 is 0, even if the base is inexact. */
8765 return scm_exact_to_inexact
8766 (scm_integer_expt (scm_exact_to_inexact (x),
8767 scm_inexact_to_exact (y)));
8768 }
8769 }
6fc4d012
AW
8770 else if (scm_is_real (x) && scm_is_real (y) && scm_to_double (x) >= 0.0)
8771 {
00472a22 8772 return scm_i_from_double (pow (scm_to_double (x), scm_to_double (y)));
6fc4d012 8773 }
2519490c 8774 else if (scm_is_complex (x) && scm_is_complex (y))
6fc4d012 8775 return scm_exp (scm_product (scm_log (x), y));
2519490c 8776 else if (scm_is_complex (x))
fa075d40 8777 return scm_wta_dispatch_2 (g_scm_expt, x, y, SCM_ARG2, s_scm_expt);
2519490c 8778 else
fa075d40 8779 return scm_wta_dispatch_2 (g_scm_expt, x, y, SCM_ARG1, s_scm_expt);
0f2d19dd 8780}
1bbd0b84 8781#undef FUNC_NAME
0f2d19dd 8782
7f41099e
MW
8783/* sin/cos/tan/asin/acos/atan
8784 sinh/cosh/tanh/asinh/acosh/atanh
8785 Derived from "Transcen.scm", Complex trancendental functions for SCM.
8786 Written by Jerry D. Hedden, (C) FSF.
8787 See the file `COPYING' for terms applying to this program. */
8788
ad79736c
AW
8789SCM_PRIMITIVE_GENERIC (scm_sin, "sin", 1, 0, 0,
8790 (SCM z),
8791 "Compute the sine of @var{z}.")
8792#define FUNC_NAME s_scm_sin
8793{
8deddc94
MW
8794 if (SCM_UNLIKELY (scm_is_eq (z, SCM_INUM0)))
8795 return z; /* sin(exact0) = exact0 */
8796 else if (scm_is_real (z))
00472a22 8797 return scm_i_from_double (sin (scm_to_double (z)));
ad79736c
AW
8798 else if (SCM_COMPLEXP (z))
8799 { double x, y;
8800 x = SCM_COMPLEX_REAL (z);
8801 y = SCM_COMPLEX_IMAG (z);
8802 return scm_c_make_rectangular (sin (x) * cosh (y),
8803 cos (x) * sinh (y));
8804 }
8805 else
fa075d40 8806 return scm_wta_dispatch_1 (g_scm_sin, z, 1, s_scm_sin);
ad79736c
AW
8807}
8808#undef FUNC_NAME
0f2d19dd 8809
ad79736c
AW
8810SCM_PRIMITIVE_GENERIC (scm_cos, "cos", 1, 0, 0,
8811 (SCM z),
8812 "Compute the cosine of @var{z}.")
8813#define FUNC_NAME s_scm_cos
8814{
8deddc94
MW
8815 if (SCM_UNLIKELY (scm_is_eq (z, SCM_INUM0)))
8816 return SCM_INUM1; /* cos(exact0) = exact1 */
8817 else if (scm_is_real (z))
00472a22 8818 return scm_i_from_double (cos (scm_to_double (z)));
ad79736c
AW
8819 else if (SCM_COMPLEXP (z))
8820 { double x, y;
8821 x = SCM_COMPLEX_REAL (z);
8822 y = SCM_COMPLEX_IMAG (z);
8823 return scm_c_make_rectangular (cos (x) * cosh (y),
8824 -sin (x) * sinh (y));
8825 }
8826 else
fa075d40 8827 return scm_wta_dispatch_1 (g_scm_cos, z, 1, s_scm_cos);
ad79736c
AW
8828}
8829#undef FUNC_NAME
8830
8831SCM_PRIMITIVE_GENERIC (scm_tan, "tan", 1, 0, 0,
8832 (SCM z),
8833 "Compute the tangent of @var{z}.")
8834#define FUNC_NAME s_scm_tan
0f2d19dd 8835{
8deddc94
MW
8836 if (SCM_UNLIKELY (scm_is_eq (z, SCM_INUM0)))
8837 return z; /* tan(exact0) = exact0 */
8838 else if (scm_is_real (z))
00472a22 8839 return scm_i_from_double (tan (scm_to_double (z)));
ad79736c
AW
8840 else if (SCM_COMPLEXP (z))
8841 { double x, y, w;
8842 x = 2.0 * SCM_COMPLEX_REAL (z);
8843 y = 2.0 * SCM_COMPLEX_IMAG (z);
8844 w = cos (x) + cosh (y);
8845#ifndef ALLOW_DIVIDE_BY_ZERO
8846 if (w == 0.0)
8847 scm_num_overflow (s_scm_tan);
8848#endif
8849 return scm_c_make_rectangular (sin (x) / w, sinh (y) / w);
8850 }
8851 else
fa075d40 8852 return scm_wta_dispatch_1 (g_scm_tan, z, 1, s_scm_tan);
ad79736c
AW
8853}
8854#undef FUNC_NAME
8855
8856SCM_PRIMITIVE_GENERIC (scm_sinh, "sinh", 1, 0, 0,
8857 (SCM z),
8858 "Compute the hyperbolic sine of @var{z}.")
8859#define FUNC_NAME s_scm_sinh
8860{
8deddc94
MW
8861 if (SCM_UNLIKELY (scm_is_eq (z, SCM_INUM0)))
8862 return z; /* sinh(exact0) = exact0 */
8863 else if (scm_is_real (z))
00472a22 8864 return scm_i_from_double (sinh (scm_to_double (z)));
ad79736c
AW
8865 else if (SCM_COMPLEXP (z))
8866 { double x, y;
8867 x = SCM_COMPLEX_REAL (z);
8868 y = SCM_COMPLEX_IMAG (z);
8869 return scm_c_make_rectangular (sinh (x) * cos (y),
8870 cosh (x) * sin (y));
8871 }
8872 else
fa075d40 8873 return scm_wta_dispatch_1 (g_scm_sinh, z, 1, s_scm_sinh);
ad79736c
AW
8874}
8875#undef FUNC_NAME
8876
8877SCM_PRIMITIVE_GENERIC (scm_cosh, "cosh", 1, 0, 0,
8878 (SCM z),
8879 "Compute the hyperbolic cosine of @var{z}.")
8880#define FUNC_NAME s_scm_cosh
8881{
8deddc94
MW
8882 if (SCM_UNLIKELY (scm_is_eq (z, SCM_INUM0)))
8883 return SCM_INUM1; /* cosh(exact0) = exact1 */
8884 else if (scm_is_real (z))
00472a22 8885 return scm_i_from_double (cosh (scm_to_double (z)));
ad79736c
AW
8886 else if (SCM_COMPLEXP (z))
8887 { double x, y;
8888 x = SCM_COMPLEX_REAL (z);
8889 y = SCM_COMPLEX_IMAG (z);
8890 return scm_c_make_rectangular (cosh (x) * cos (y),
8891 sinh (x) * sin (y));
8892 }
8893 else
fa075d40 8894 return scm_wta_dispatch_1 (g_scm_cosh, z, 1, s_scm_cosh);
ad79736c
AW
8895}
8896#undef FUNC_NAME
8897
8898SCM_PRIMITIVE_GENERIC (scm_tanh, "tanh", 1, 0, 0,
8899 (SCM z),
8900 "Compute the hyperbolic tangent of @var{z}.")
8901#define FUNC_NAME s_scm_tanh
8902{
8deddc94
MW
8903 if (SCM_UNLIKELY (scm_is_eq (z, SCM_INUM0)))
8904 return z; /* tanh(exact0) = exact0 */
8905 else if (scm_is_real (z))
00472a22 8906 return scm_i_from_double (tanh (scm_to_double (z)));
ad79736c
AW
8907 else if (SCM_COMPLEXP (z))
8908 { double x, y, w;
8909 x = 2.0 * SCM_COMPLEX_REAL (z);
8910 y = 2.0 * SCM_COMPLEX_IMAG (z);
8911 w = cosh (x) + cos (y);
8912#ifndef ALLOW_DIVIDE_BY_ZERO
8913 if (w == 0.0)
8914 scm_num_overflow (s_scm_tanh);
8915#endif
8916 return scm_c_make_rectangular (sinh (x) / w, sin (y) / w);
8917 }
8918 else
fa075d40 8919 return scm_wta_dispatch_1 (g_scm_tanh, z, 1, s_scm_tanh);
ad79736c
AW
8920}
8921#undef FUNC_NAME
8922
8923SCM_PRIMITIVE_GENERIC (scm_asin, "asin", 1, 0, 0,
8924 (SCM z),
8925 "Compute the arc sine of @var{z}.")
8926#define FUNC_NAME s_scm_asin
8927{
8deddc94
MW
8928 if (SCM_UNLIKELY (scm_is_eq (z, SCM_INUM0)))
8929 return z; /* asin(exact0) = exact0 */
8930 else if (scm_is_real (z))
ad79736c
AW
8931 {
8932 double w = scm_to_double (z);
8933 if (w >= -1.0 && w <= 1.0)
00472a22 8934 return scm_i_from_double (asin (w));
ad79736c
AW
8935 else
8936 return scm_product (scm_c_make_rectangular (0, -1),
8937 scm_sys_asinh (scm_c_make_rectangular (0, w)));
8938 }
8939 else if (SCM_COMPLEXP (z))
8940 { double x, y;
8941 x = SCM_COMPLEX_REAL (z);
8942 y = SCM_COMPLEX_IMAG (z);
8943 return scm_product (scm_c_make_rectangular (0, -1),
8944 scm_sys_asinh (scm_c_make_rectangular (-y, x)));
8945 }
8946 else
fa075d40 8947 return scm_wta_dispatch_1 (g_scm_asin, z, 1, s_scm_asin);
ad79736c
AW
8948}
8949#undef FUNC_NAME
8950
8951SCM_PRIMITIVE_GENERIC (scm_acos, "acos", 1, 0, 0,
8952 (SCM z),
8953 "Compute the arc cosine of @var{z}.")
8954#define FUNC_NAME s_scm_acos
8955{
8deddc94
MW
8956 if (SCM_UNLIKELY (scm_is_eq (z, SCM_INUM1)))
8957 return SCM_INUM0; /* acos(exact1) = exact0 */
8958 else if (scm_is_real (z))
ad79736c
AW
8959 {
8960 double w = scm_to_double (z);
8961 if (w >= -1.0 && w <= 1.0)
00472a22 8962 return scm_i_from_double (acos (w));
ad79736c 8963 else
00472a22 8964 return scm_sum (scm_i_from_double (acos (0.0)),
ad79736c
AW
8965 scm_product (scm_c_make_rectangular (0, 1),
8966 scm_sys_asinh (scm_c_make_rectangular (0, w))));
8967 }
8968 else if (SCM_COMPLEXP (z))
8969 { double x, y;
8970 x = SCM_COMPLEX_REAL (z);
8971 y = SCM_COMPLEX_IMAG (z);
00472a22 8972 return scm_sum (scm_i_from_double (acos (0.0)),
ad79736c
AW
8973 scm_product (scm_c_make_rectangular (0, 1),
8974 scm_sys_asinh (scm_c_make_rectangular (-y, x))));
8975 }
8976 else
fa075d40 8977 return scm_wta_dispatch_1 (g_scm_acos, z, 1, s_scm_acos);
ad79736c
AW
8978}
8979#undef FUNC_NAME
8980
8981SCM_PRIMITIVE_GENERIC (scm_atan, "atan", 1, 1, 0,
8982 (SCM z, SCM y),
8983 "With one argument, compute the arc tangent of @var{z}.\n"
8984 "If @var{y} is present, compute the arc tangent of @var{z}/@var{y},\n"
8985 "using the sign of @var{z} and @var{y} to determine the quadrant.")
8986#define FUNC_NAME s_scm_atan
8987{
8988 if (SCM_UNBNDP (y))
8989 {
8deddc94
MW
8990 if (SCM_UNLIKELY (scm_is_eq (z, SCM_INUM0)))
8991 return z; /* atan(exact0) = exact0 */
8992 else if (scm_is_real (z))
00472a22 8993 return scm_i_from_double (atan (scm_to_double (z)));
ad79736c
AW
8994 else if (SCM_COMPLEXP (z))
8995 {
8996 double v, w;
8997 v = SCM_COMPLEX_REAL (z);
8998 w = SCM_COMPLEX_IMAG (z);
8999 return scm_divide (scm_log (scm_divide (scm_c_make_rectangular (v, w - 1.0),
9000 scm_c_make_rectangular (v, w + 1.0))),
9001 scm_c_make_rectangular (0, 2));
9002 }
9003 else
fa075d40 9004 return scm_wta_dispatch_1 (g_scm_atan, z, SCM_ARG1, s_scm_atan);
ad79736c
AW
9005 }
9006 else if (scm_is_real (z))
9007 {
9008 if (scm_is_real (y))
00472a22 9009 return scm_i_from_double (atan2 (scm_to_double (z), scm_to_double (y)));
ad79736c 9010 else
fa075d40 9011 return scm_wta_dispatch_2 (g_scm_atan, z, y, SCM_ARG2, s_scm_atan);
ad79736c
AW
9012 }
9013 else
fa075d40 9014 return scm_wta_dispatch_2 (g_scm_atan, z, y, SCM_ARG1, s_scm_atan);
ad79736c
AW
9015}
9016#undef FUNC_NAME
9017
9018SCM_PRIMITIVE_GENERIC (scm_sys_asinh, "asinh", 1, 0, 0,
9019 (SCM z),
9020 "Compute the inverse hyperbolic sine of @var{z}.")
9021#define FUNC_NAME s_scm_sys_asinh
9022{
8deddc94
MW
9023 if (SCM_UNLIKELY (scm_is_eq (z, SCM_INUM0)))
9024 return z; /* asinh(exact0) = exact0 */
9025 else if (scm_is_real (z))
00472a22 9026 return scm_i_from_double (asinh (scm_to_double (z)));
ad79736c
AW
9027 else if (scm_is_number (z))
9028 return scm_log (scm_sum (z,
9029 scm_sqrt (scm_sum (scm_product (z, z),
cff5fa33 9030 SCM_INUM1))));
ad79736c 9031 else
fa075d40 9032 return scm_wta_dispatch_1 (g_scm_sys_asinh, z, 1, s_scm_sys_asinh);
ad79736c
AW
9033}
9034#undef FUNC_NAME
9035
9036SCM_PRIMITIVE_GENERIC (scm_sys_acosh, "acosh", 1, 0, 0,
9037 (SCM z),
9038 "Compute the inverse hyperbolic cosine of @var{z}.")
9039#define FUNC_NAME s_scm_sys_acosh
9040{
8deddc94
MW
9041 if (SCM_UNLIKELY (scm_is_eq (z, SCM_INUM1)))
9042 return SCM_INUM0; /* acosh(exact1) = exact0 */
9043 else if (scm_is_real (z) && scm_to_double (z) >= 1.0)
00472a22 9044 return scm_i_from_double (acosh (scm_to_double (z)));
ad79736c
AW
9045 else if (scm_is_number (z))
9046 return scm_log (scm_sum (z,
9047 scm_sqrt (scm_difference (scm_product (z, z),
cff5fa33 9048 SCM_INUM1))));
ad79736c 9049 else
fa075d40 9050 return scm_wta_dispatch_1 (g_scm_sys_acosh, z, 1, s_scm_sys_acosh);
ad79736c
AW
9051}
9052#undef FUNC_NAME
9053
9054SCM_PRIMITIVE_GENERIC (scm_sys_atanh, "atanh", 1, 0, 0,
9055 (SCM z),
9056 "Compute the inverse hyperbolic tangent of @var{z}.")
9057#define FUNC_NAME s_scm_sys_atanh
9058{
8deddc94
MW
9059 if (SCM_UNLIKELY (scm_is_eq (z, SCM_INUM0)))
9060 return z; /* atanh(exact0) = exact0 */
9061 else if (scm_is_real (z) && scm_to_double (z) >= -1.0 && scm_to_double (z) <= 1.0)
00472a22 9062 return scm_i_from_double (atanh (scm_to_double (z)));
ad79736c 9063 else if (scm_is_number (z))
cff5fa33
MW
9064 return scm_divide (scm_log (scm_divide (scm_sum (SCM_INUM1, z),
9065 scm_difference (SCM_INUM1, z))),
ad79736c
AW
9066 SCM_I_MAKINUM (2));
9067 else
fa075d40 9068 return scm_wta_dispatch_1 (g_scm_sys_atanh, z, 1, s_scm_sys_atanh);
0f2d19dd 9069}
1bbd0b84 9070#undef FUNC_NAME
0f2d19dd 9071
8507ec80
MV
9072SCM
9073scm_c_make_rectangular (double re, double im)
9074{
c7218482 9075 SCM z;
03604fcf 9076
21041372 9077 z = SCM_PACK_POINTER (scm_gc_malloc_pointerless (sizeof (scm_t_complex),
c7218482
MW
9078 "complex"));
9079 SCM_SET_CELL_TYPE (z, scm_tc16_complex);
9080 SCM_COMPLEX_REAL (z) = re;
9081 SCM_COMPLEX_IMAG (z) = im;
9082 return z;
8507ec80 9083}
0f2d19dd 9084
a1ec6916 9085SCM_DEFINE (scm_make_rectangular, "make-rectangular", 2, 0, 0,
a2c25234 9086 (SCM real_part, SCM imaginary_part),
b7e64f8b
BT
9087 "Return a complex number constructed of the given @var{real_part} "
9088 "and @var{imaginary_part} parts.")
1bbd0b84 9089#define FUNC_NAME s_scm_make_rectangular
0f2d19dd 9090{
ad79736c
AW
9091 SCM_ASSERT_TYPE (scm_is_real (real_part), real_part,
9092 SCM_ARG1, FUNC_NAME, "real");
9093 SCM_ASSERT_TYPE (scm_is_real (imaginary_part), imaginary_part,
9094 SCM_ARG2, FUNC_NAME, "real");
c7218482
MW
9095
9096 /* Return a real if and only if the imaginary_part is an _exact_ 0 */
9097 if (scm_is_eq (imaginary_part, SCM_INUM0))
9098 return real_part;
9099 else
9100 return scm_c_make_rectangular (scm_to_double (real_part),
9101 scm_to_double (imaginary_part));
0f2d19dd 9102}
1bbd0b84 9103#undef FUNC_NAME
0f2d19dd 9104
8507ec80
MV
9105SCM
9106scm_c_make_polar (double mag, double ang)
9107{
9108 double s, c;
5e647d08
LC
9109
9110 /* The sincos(3) function is undocumented an broken on Tru64. Thus we only
9111 use it on Glibc-based systems that have it (it's a GNU extension). See
9112 http://lists.gnu.org/archive/html/guile-user/2009-04/msg00033.html for
9113 details. */
9114#if (defined HAVE_SINCOS) && (defined __GLIBC__) && (defined _GNU_SOURCE)
8507ec80
MV
9115 sincos (ang, &s, &c);
9116#else
9117 s = sin (ang);
9118 c = cos (ang);
9119#endif
9d427b2c
MW
9120
9121 /* If s and c are NaNs, this indicates that the angle is a NaN,
9122 infinite, or perhaps simply too large to determine its value
9123 mod 2*pi. However, we know something that the floating-point
9124 implementation doesn't know: We know that s and c are finite.
9125 Therefore, if the magnitude is zero, return a complex zero.
9126
9127 The reason we check for the NaNs instead of using this case
9128 whenever mag == 0.0 is because when the angle is known, we'd
9129 like to return the correct kind of non-real complex zero:
9130 +0.0+0.0i, -0.0+0.0i, -0.0-0.0i, or +0.0-0.0i, depending
9131 on which quadrant the angle is in.
9132 */
9133 if (SCM_UNLIKELY (isnan(s)) && isnan(c) && (mag == 0.0))
9134 return scm_c_make_rectangular (0.0, 0.0);
9135 else
9136 return scm_c_make_rectangular (mag * c, mag * s);
8507ec80 9137}
0f2d19dd 9138
a1ec6916 9139SCM_DEFINE (scm_make_polar, "make-polar", 2, 0, 0,
c7218482
MW
9140 (SCM mag, SCM ang),
9141 "Return the complex number @var{mag} * e^(i * @var{ang}).")
1bbd0b84 9142#define FUNC_NAME s_scm_make_polar
0f2d19dd 9143{
c7218482
MW
9144 SCM_ASSERT_TYPE (scm_is_real (mag), mag, SCM_ARG1, FUNC_NAME, "real");
9145 SCM_ASSERT_TYPE (scm_is_real (ang), ang, SCM_ARG2, FUNC_NAME, "real");
9146
9147 /* If mag is exact0, return exact0 */
9148 if (scm_is_eq (mag, SCM_INUM0))
9149 return SCM_INUM0;
9150 /* Return a real if ang is exact0 */
9151 else if (scm_is_eq (ang, SCM_INUM0))
9152 return mag;
9153 else
9154 return scm_c_make_polar (scm_to_double (mag), scm_to_double (ang));
0f2d19dd 9155}
1bbd0b84 9156#undef FUNC_NAME
0f2d19dd
JB
9157
9158
2519490c
MW
9159SCM_PRIMITIVE_GENERIC (scm_real_part, "real-part", 1, 0, 0,
9160 (SCM z),
9161 "Return the real part of the number @var{z}.")
9162#define FUNC_NAME s_scm_real_part
0f2d19dd 9163{
2519490c 9164 if (SCM_COMPLEXP (z))
00472a22 9165 return scm_i_from_double (SCM_COMPLEX_REAL (z));
2519490c 9166 else if (SCM_I_INUMP (z) || SCM_BIGP (z) || SCM_REALP (z) || SCM_FRACTIONP (z))
2fa2d879 9167 return z;
0aacf84e 9168 else
fa075d40 9169 return scm_wta_dispatch_1 (g_scm_real_part, z, SCM_ARG1, s_scm_real_part);
0f2d19dd 9170}
2519490c 9171#undef FUNC_NAME
0f2d19dd
JB
9172
9173
2519490c
MW
9174SCM_PRIMITIVE_GENERIC (scm_imag_part, "imag-part", 1, 0, 0,
9175 (SCM z),
9176 "Return the imaginary part of the number @var{z}.")
9177#define FUNC_NAME s_scm_imag_part
0f2d19dd 9178{
2519490c 9179 if (SCM_COMPLEXP (z))
00472a22 9180 return scm_i_from_double (SCM_COMPLEX_IMAG (z));
c7218482 9181 else if (SCM_I_INUMP (z) || SCM_REALP (z) || SCM_BIGP (z) || SCM_FRACTIONP (z))
f92e85f7 9182 return SCM_INUM0;
0aacf84e 9183 else
fa075d40 9184 return scm_wta_dispatch_1 (g_scm_imag_part, z, SCM_ARG1, s_scm_imag_part);
0f2d19dd 9185}
2519490c 9186#undef FUNC_NAME
0f2d19dd 9187
2519490c
MW
9188SCM_PRIMITIVE_GENERIC (scm_numerator, "numerator", 1, 0, 0,
9189 (SCM z),
9190 "Return the numerator of the number @var{z}.")
9191#define FUNC_NAME s_scm_numerator
f92e85f7 9192{
2519490c 9193 if (SCM_I_INUMP (z) || SCM_BIGP (z))
f92e85f7
MV
9194 return z;
9195 else if (SCM_FRACTIONP (z))
e2bf3b19 9196 return SCM_FRACTION_NUMERATOR (z);
f92e85f7 9197 else if (SCM_REALP (z))
fa102e73
MW
9198 {
9199 double zz = SCM_REAL_VALUE (z);
9200 if (zz == floor (zz))
9201 /* Handle -0.0 and infinities in accordance with R6RS
9202 flnumerator, and optimize handling of integers. */
9203 return z;
9204 else
9205 return scm_exact_to_inexact (scm_numerator (scm_inexact_to_exact (z)));
9206 }
f92e85f7 9207 else
fa075d40 9208 return scm_wta_dispatch_1 (g_scm_numerator, z, SCM_ARG1, s_scm_numerator);
f92e85f7 9209}
2519490c 9210#undef FUNC_NAME
f92e85f7
MV
9211
9212
2519490c
MW
9213SCM_PRIMITIVE_GENERIC (scm_denominator, "denominator", 1, 0, 0,
9214 (SCM z),
9215 "Return the denominator of the number @var{z}.")
9216#define FUNC_NAME s_scm_denominator
f92e85f7 9217{
2519490c 9218 if (SCM_I_INUMP (z) || SCM_BIGP (z))
cff5fa33 9219 return SCM_INUM1;
f92e85f7 9220 else if (SCM_FRACTIONP (z))
e2bf3b19 9221 return SCM_FRACTION_DENOMINATOR (z);
f92e85f7 9222 else if (SCM_REALP (z))
fa102e73
MW
9223 {
9224 double zz = SCM_REAL_VALUE (z);
9225 if (zz == floor (zz))
9226 /* Handle infinities in accordance with R6RS fldenominator, and
9227 optimize handling of integers. */
9228 return scm_i_from_double (1.0);
9229 else
9230 return scm_exact_to_inexact (scm_denominator (scm_inexact_to_exact (z)));
9231 }
f92e85f7 9232 else
fa075d40
AW
9233 return scm_wta_dispatch_1 (g_scm_denominator, z, SCM_ARG1,
9234 s_scm_denominator);
f92e85f7 9235}
2519490c 9236#undef FUNC_NAME
0f2d19dd 9237
2519490c
MW
9238
9239SCM_PRIMITIVE_GENERIC (scm_magnitude, "magnitude", 1, 0, 0,
9240 (SCM z),
9241 "Return the magnitude of the number @var{z}. This is the same as\n"
9242 "@code{abs} for real arguments, but also allows complex numbers.")
9243#define FUNC_NAME s_scm_magnitude
0f2d19dd 9244{
e11e83f3 9245 if (SCM_I_INUMP (z))
0aacf84e 9246 {
e25f3727 9247 scm_t_inum zz = SCM_I_INUM (z);
0aacf84e
MD
9248 if (zz >= 0)
9249 return z;
9250 else if (SCM_POSFIXABLE (-zz))
d956fa6f 9251 return SCM_I_MAKINUM (-zz);
0aacf84e 9252 else
e25f3727 9253 return scm_i_inum2big (-zz);
5986c47d 9254 }
0aacf84e
MD
9255 else if (SCM_BIGP (z))
9256 {
9257 int sgn = mpz_sgn (SCM_I_BIG_MPZ (z));
9258 scm_remember_upto_here_1 (z);
9259 if (sgn < 0)
9260 return scm_i_clonebig (z, 0);
9261 else
9262 return z;
5986c47d 9263 }
0aacf84e 9264 else if (SCM_REALP (z))
00472a22 9265 return scm_i_from_double (fabs (SCM_REAL_VALUE (z)));
0aacf84e 9266 else if (SCM_COMPLEXP (z))
00472a22 9267 return scm_i_from_double (hypot (SCM_COMPLEX_REAL (z), SCM_COMPLEX_IMAG (z)));
f92e85f7
MV
9268 else if (SCM_FRACTIONP (z))
9269 {
73e4de09 9270 if (scm_is_false (scm_negative_p (SCM_FRACTION_NUMERATOR (z))))
f92e85f7 9271 return z;
a285b18c
MW
9272 return scm_i_make_ratio_already_reduced
9273 (scm_difference (SCM_FRACTION_NUMERATOR (z), SCM_UNDEFINED),
9274 SCM_FRACTION_DENOMINATOR (z));
f92e85f7 9275 }
0aacf84e 9276 else
fa075d40
AW
9277 return scm_wta_dispatch_1 (g_scm_magnitude, z, SCM_ARG1,
9278 s_scm_magnitude);
0f2d19dd 9279}
2519490c 9280#undef FUNC_NAME
0f2d19dd
JB
9281
9282
2519490c
MW
9283SCM_PRIMITIVE_GENERIC (scm_angle, "angle", 1, 0, 0,
9284 (SCM z),
9285 "Return the angle of the complex number @var{z}.")
9286#define FUNC_NAME s_scm_angle
0f2d19dd 9287{
c8ae173e 9288 /* atan(0,-1) is pi and it'd be possible to have that as a constant like
00472a22 9289 flo0 to save allocating a new flonum with scm_i_from_double each time.
c8ae173e
KR
9290 But if atan2 follows the floating point rounding mode, then the value
9291 is not a constant. Maybe it'd be close enough though. */
e11e83f3 9292 if (SCM_I_INUMP (z))
0aacf84e 9293 {
e11e83f3 9294 if (SCM_I_INUM (z) >= 0)
e7efe8e7 9295 return flo0;
0aacf84e 9296 else
00472a22 9297 return scm_i_from_double (atan2 (0.0, -1.0));
f872b822 9298 }
0aacf84e
MD
9299 else if (SCM_BIGP (z))
9300 {
9301 int sgn = mpz_sgn (SCM_I_BIG_MPZ (z));
9302 scm_remember_upto_here_1 (z);
9303 if (sgn < 0)
00472a22 9304 return scm_i_from_double (atan2 (0.0, -1.0));
0aacf84e 9305 else
e7efe8e7 9306 return flo0;
0f2d19dd 9307 }
0aacf84e 9308 else if (SCM_REALP (z))
c8ae173e 9309 {
10a97755 9310 double x = SCM_REAL_VALUE (z);
e1592f8a 9311 if (copysign (1.0, x) > 0.0)
e7efe8e7 9312 return flo0;
c8ae173e 9313 else
00472a22 9314 return scm_i_from_double (atan2 (0.0, -1.0));
c8ae173e 9315 }
0aacf84e 9316 else if (SCM_COMPLEXP (z))
00472a22 9317 return scm_i_from_double (atan2 (SCM_COMPLEX_IMAG (z), SCM_COMPLEX_REAL (z)));
f92e85f7
MV
9318 else if (SCM_FRACTIONP (z))
9319 {
73e4de09 9320 if (scm_is_false (scm_negative_p (SCM_FRACTION_NUMERATOR (z))))
e7efe8e7 9321 return flo0;
00472a22 9322 else return scm_i_from_double (atan2 (0.0, -1.0));
f92e85f7 9323 }
0aacf84e 9324 else
fa075d40 9325 return scm_wta_dispatch_1 (g_scm_angle, z, SCM_ARG1, s_scm_angle);
0f2d19dd 9326}
2519490c 9327#undef FUNC_NAME
0f2d19dd
JB
9328
9329
2519490c
MW
9330SCM_PRIMITIVE_GENERIC (scm_exact_to_inexact, "exact->inexact", 1, 0, 0,
9331 (SCM z),
9332 "Convert the number @var{z} to its inexact representation.\n")
9333#define FUNC_NAME s_scm_exact_to_inexact
3c9a524f 9334{
e11e83f3 9335 if (SCM_I_INUMP (z))
00472a22 9336 return scm_i_from_double ((double) SCM_I_INUM (z));
3c9a524f 9337 else if (SCM_BIGP (z))
00472a22 9338 return scm_i_from_double (scm_i_big2dbl (z));
f92e85f7 9339 else if (SCM_FRACTIONP (z))
00472a22 9340 return scm_i_from_double (scm_i_fraction2double (z));
3c9a524f
DH
9341 else if (SCM_INEXACTP (z))
9342 return z;
9343 else
fa075d40
AW
9344 return scm_wta_dispatch_1 (g_scm_exact_to_inexact, z, 1,
9345 s_scm_exact_to_inexact);
3c9a524f 9346}
2519490c 9347#undef FUNC_NAME
3c9a524f
DH
9348
9349
2519490c
MW
9350SCM_PRIMITIVE_GENERIC (scm_inexact_to_exact, "inexact->exact", 1, 0, 0,
9351 (SCM z),
9352 "Return an exact number that is numerically closest to @var{z}.")
1bbd0b84 9353#define FUNC_NAME s_scm_inexact_to_exact
0f2d19dd 9354{
c7218482 9355 if (SCM_I_INUMP (z) || SCM_BIGP (z) || SCM_FRACTIONP (z))
f872b822 9356 return z;
c7218482 9357 else
0aacf84e 9358 {
c7218482
MW
9359 double val;
9360
9361 if (SCM_REALP (z))
9362 val = SCM_REAL_VALUE (z);
9363 else if (SCM_COMPLEXP (z) && SCM_COMPLEX_IMAG (z) == 0.0)
9364 val = SCM_COMPLEX_REAL (z);
9365 else
fa075d40
AW
9366 return scm_wta_dispatch_1 (g_scm_inexact_to_exact, z, 1,
9367 s_scm_inexact_to_exact);
c7218482 9368
19374ad2 9369 if (!SCM_LIKELY (isfinite (val)))
f92e85f7 9370 SCM_OUT_OF_RANGE (1, z);
24475b86
MW
9371 else if (val == 0.0)
9372 return SCM_INUM0;
2be24db4 9373 else
f92e85f7 9374 {
24475b86
MW
9375 int expon;
9376 SCM numerator;
f92e85f7 9377
24475b86
MW
9378 numerator = scm_i_dbl2big (ldexp (frexp (val, &expon),
9379 DBL_MANT_DIG));
9380 expon -= DBL_MANT_DIG;
9381 if (expon < 0)
9382 {
9383 int shift = mpz_scan1 (SCM_I_BIG_MPZ (numerator), 0);
9384
9385 if (shift > -expon)
9386 shift = -expon;
9387 mpz_fdiv_q_2exp (SCM_I_BIG_MPZ (numerator),
9388 SCM_I_BIG_MPZ (numerator),
9389 shift);
9390 expon += shift;
9391 }
9392 numerator = scm_i_normbig (numerator);
9393 if (expon < 0)
9394 return scm_i_make_ratio_already_reduced
9395 (numerator, left_shift_exact_integer (SCM_INUM1, -expon));
9396 else if (expon > 0)
9397 return left_shift_exact_integer (numerator, expon);
9398 else
9399 return numerator;
f92e85f7 9400 }
c2ff8ab0 9401 }
0f2d19dd 9402}
1bbd0b84 9403#undef FUNC_NAME
0f2d19dd 9404
f92e85f7 9405SCM_DEFINE (scm_rationalize, "rationalize", 2, 0, 0,
76dae881
NJ
9406 (SCM x, SCM eps),
9407 "Returns the @emph{simplest} rational number differing\n"
9408 "from @var{x} by no more than @var{eps}.\n"
9409 "\n"
9410 "As required by @acronym{R5RS}, @code{rationalize} only returns an\n"
9411 "exact result when both its arguments are exact. Thus, you might need\n"
9412 "to use @code{inexact->exact} on the arguments.\n"
9413 "\n"
9414 "@lisp\n"
9415 "(rationalize (inexact->exact 1.2) 1/100)\n"
9416 "@result{} 6/5\n"
9417 "@end lisp")
f92e85f7
MV
9418#define FUNC_NAME s_scm_rationalize
9419{
605f6980
MW
9420 SCM_ASSERT_TYPE (scm_is_real (x), x, SCM_ARG1, FUNC_NAME, "real");
9421 SCM_ASSERT_TYPE (scm_is_real (eps), eps, SCM_ARG2, FUNC_NAME, "real");
620c13e8
MW
9422
9423 if (SCM_UNLIKELY (!scm_is_exact (eps) || !scm_is_exact (x)))
605f6980 9424 {
620c13e8
MW
9425 if (SCM_UNLIKELY (scm_is_false (scm_finite_p (eps))))
9426 {
9427 if (scm_is_false (scm_nan_p (eps)) && scm_is_true (scm_finite_p (x)))
9428 return flo0;
9429 else
9430 return scm_nan ();
9431 }
9432 else if (SCM_UNLIKELY (scm_is_false (scm_finite_p (x))))
9433 return x;
605f6980 9434 else
620c13e8
MW
9435 return scm_exact_to_inexact
9436 (scm_rationalize (scm_inexact_to_exact (x),
9437 scm_inexact_to_exact (eps)));
605f6980
MW
9438 }
9439 else
f92e85f7 9440 {
620c13e8
MW
9441 /* X and EPS are exact rationals.
9442
9443 The code that follows is equivalent to the following Scheme code:
9444
9445 (define (exact-rationalize x eps)
9446 (let ((n1 (if (negative? x) -1 1))
9447 (x (abs x))
9448 (eps (abs eps)))
9449 (let ((lo (- x eps))
9450 (hi (+ x eps)))
9451 (if (<= lo 0)
9452 0
9453 (let loop ((nlo (numerator lo)) (dlo (denominator lo))
9454 (nhi (numerator hi)) (dhi (denominator hi))
9455 (n1 n1) (d1 0) (n2 0) (d2 1))
9456 (let-values (((qlo rlo) (floor/ nlo dlo))
9457 ((qhi rhi) (floor/ nhi dhi)))
9458 (let ((n0 (+ n2 (* n1 qlo)))
9459 (d0 (+ d2 (* d1 qlo))))
9460 (cond ((zero? rlo) (/ n0 d0))
9461 ((< qlo qhi) (/ (+ n0 n1) (+ d0 d1)))
9462 (else (loop dhi rhi dlo rlo n0 d0 n1 d1))))))))))
f92e85f7
MV
9463 */
9464
620c13e8
MW
9465 int n1_init = 1;
9466 SCM lo, hi;
f92e85f7 9467
620c13e8
MW
9468 eps = scm_abs (eps);
9469 if (scm_is_true (scm_negative_p (x)))
9470 {
9471 n1_init = -1;
9472 x = scm_difference (x, SCM_UNDEFINED);
9473 }
f92e85f7 9474
620c13e8 9475 /* X and EPS are non-negative exact rationals. */
f92e85f7 9476
620c13e8
MW
9477 lo = scm_difference (x, eps);
9478 hi = scm_sum (x, eps);
f92e85f7 9479
620c13e8
MW
9480 if (scm_is_false (scm_positive_p (lo)))
9481 /* If zero is included in the interval, return it.
9482 It is the simplest rational of all. */
9483 return SCM_INUM0;
9484 else
9485 {
9486 SCM result;
9487 mpz_t n0, d0, n1, d1, n2, d2;
9488 mpz_t nlo, dlo, nhi, dhi;
9489 mpz_t qlo, rlo, qhi, rhi;
9490
9491 /* LO and HI are positive exact rationals. */
9492
9493 /* Our approach here follows the method described by Alan
9494 Bawden in a message entitled "(rationalize x y)" on the
9495 rrrs-authors mailing list, dated 16 Feb 1988 14:08:28 EST:
9496
9497 http://groups.csail.mit.edu/mac/ftpdir/scheme-mail/HTML/rrrs-1988/msg00063.html
9498
9499 In brief, we compute the continued fractions of the two
9500 endpoints of the interval (LO and HI). The continued
9501 fraction of the result consists of the common prefix of the
9502 continued fractions of LO and HI, plus one final term. The
9503 final term of the result is the smallest integer contained
9504 in the interval between the remainders of LO and HI after
9505 the common prefix has been removed.
9506
9507 The following code lazily computes the continued fraction
9508 representations of LO and HI, and simultaneously converts
9509 the continued fraction of the result into a rational
9510 number. We use MPZ functions directly to avoid type
9511 dispatch and GC allocation during the loop. */
9512
9513 mpz_inits (n0, d0, n1, d1, n2, d2,
9514 nlo, dlo, nhi, dhi,
9515 qlo, rlo, qhi, rhi,
9516 NULL);
9517
9518 /* The variables N1, D1, N2 and D2 are used to compute the
9519 resulting rational from its continued fraction. At each
9520 step, N2/D2 and N1/D1 are the last two convergents. They
9521 are normally initialized to 0/1 and 1/0, respectively.
9522 However, if we negated X then we must negate the result as
9523 well, and we do that by initializing N1/D1 to -1/0. */
9524 mpz_set_si (n1, n1_init);
9525 mpz_set_ui (d1, 0);
9526 mpz_set_ui (n2, 0);
9527 mpz_set_ui (d2, 1);
9528
9529 /* The variables NLO, DLO, NHI, and DHI are used to lazily
9530 compute the continued fraction representations of LO and HI
9531 using Euclid's algorithm. Initially, NLO/DLO == LO and
9532 NHI/DHI == HI. */
9533 scm_to_mpz (scm_numerator (lo), nlo);
9534 scm_to_mpz (scm_denominator (lo), dlo);
9535 scm_to_mpz (scm_numerator (hi), nhi);
9536 scm_to_mpz (scm_denominator (hi), dhi);
9537
9538 /* As long as we're using exact arithmetic, the following loop
9539 is guaranteed to terminate. */
9540 for (;;)
9541 {
9542 /* Compute the next terms (QLO and QHI) of the continued
9543 fractions of LO and HI. */
9544 mpz_fdiv_qr (qlo, rlo, nlo, dlo); /* QLO <-- floor (NLO/DLO), RLO <-- NLO - QLO * DLO */
9545 mpz_fdiv_qr (qhi, rhi, nhi, dhi); /* QHI <-- floor (NHI/DHI), RHI <-- NHI - QHI * DHI */
9546
9547 /* The next term of the result will be either QLO or
9548 QLO+1. Here we compute the next convergent of the
9549 result based on the assumption that QLO is the next
9550 term. If that turns out to be wrong, we'll adjust
9551 these later by adding N1 to N0 and D1 to D0. */
9552 mpz_set (n0, n2); mpz_addmul (n0, n1, qlo); /* N0 <-- N2 + (QLO * N1) */
9553 mpz_set (d0, d2); mpz_addmul (d0, d1, qlo); /* D0 <-- D2 + (QLO * D1) */
9554
9555 /* We stop iterating when an integer is contained in the
9556 interval between the remainders NLO/DLO and NHI/DHI.
9557 There are two cases to consider: either NLO/DLO == QLO
9558 is an integer (indicated by RLO == 0), or QLO < QHI. */
d9e7774f
MW
9559 if (mpz_sgn (rlo) == 0 || mpz_cmp (qlo, qhi) != 0)
9560 break;
620c13e8
MW
9561
9562 /* Efficiently shuffle variables around for the next
9563 iteration. First we shift the recent convergents. */
9564 mpz_swap (n2, n1); mpz_swap (n1, n0); /* N2 <-- N1 <-- N0 */
9565 mpz_swap (d2, d1); mpz_swap (d1, d0); /* D2 <-- D1 <-- D0 */
9566
9567 /* The following shuffling is a bit confusing, so some
9568 explanation is in order. Conceptually, we're doing a
9569 couple of things here. After substracting the floor of
9570 NLO/DLO, the remainder is RLO/DLO. The rest of the
9571 continued fraction will represent the remainder's
9572 reciprocal DLO/RLO. Similarly for the HI endpoint.
9573 So in the next iteration, the new endpoints will be
9574 DLO/RLO and DHI/RHI. However, when we take the
9575 reciprocals of these endpoints, their order is
9576 switched. So in summary, we want NLO/DLO <-- DHI/RHI
9577 and NHI/DHI <-- DLO/RLO. */
9578 mpz_swap (nlo, dhi); mpz_swap (dhi, rlo); /* NLO <-- DHI <-- RLO */
9579 mpz_swap (nhi, dlo); mpz_swap (dlo, rhi); /* NHI <-- DLO <-- RHI */
9580 }
9581
9582 /* There is now an integer in the interval [NLO/DLO NHI/DHI].
9583 The last term of the result will be the smallest integer in
9584 that interval, which is ceiling(NLO/DLO). We have already
9585 computed floor(NLO/DLO) in QLO, so now we adjust QLO to be
9586 equal to the ceiling. */
9587 if (mpz_sgn (rlo) != 0)
9588 {
9589 /* If RLO is non-zero, then NLO/DLO is not an integer and
9590 the next term will be QLO+1. QLO was used in the
9591 computation of N0 and D0 above. Here we adjust N0 and
9592 D0 to be based on QLO+1 instead of QLO. */
9593 mpz_add (n0, n0, n1); /* N0 <-- N0 + N1 */
9594 mpz_add (d0, d0, d1); /* D0 <-- D0 + D1 */
9595 }
9596
9597 /* The simplest rational in the interval is N0/D0 */
9598 result = scm_i_make_ratio_already_reduced (scm_from_mpz (n0),
9599 scm_from_mpz (d0));
9600 mpz_clears (n0, d0, n1, d1, n2, d2,
9601 nlo, dlo, nhi, dhi,
9602 qlo, rlo, qhi, rhi,
9603 NULL);
9604 return result;
9605 }
f92e85f7 9606 }
f92e85f7
MV
9607}
9608#undef FUNC_NAME
9609
73e4de09
MV
9610/* conversion functions */
9611
9612int
9613scm_is_integer (SCM val)
9614{
9615 return scm_is_true (scm_integer_p (val));
9616}
9617
9618int
9619scm_is_signed_integer (SCM val, scm_t_intmax min, scm_t_intmax max)
9620{
e11e83f3 9621 if (SCM_I_INUMP (val))
73e4de09 9622 {
e11e83f3 9623 scm_t_signed_bits n = SCM_I_INUM (val);
73e4de09
MV
9624 return n >= min && n <= max;
9625 }
9626 else if (SCM_BIGP (val))
9627 {
9628 if (min >= SCM_MOST_NEGATIVE_FIXNUM && max <= SCM_MOST_POSITIVE_FIXNUM)
9629 return 0;
9630 else if (min >= LONG_MIN && max <= LONG_MAX)
d956fa6f
MV
9631 {
9632 if (mpz_fits_slong_p (SCM_I_BIG_MPZ (val)))
9633 {
9634 long n = mpz_get_si (SCM_I_BIG_MPZ (val));
9635 return n >= min && n <= max;
9636 }
9637 else
9638 return 0;
9639 }
73e4de09
MV
9640 else
9641 {
d956fa6f
MV
9642 scm_t_intmax n;
9643 size_t count;
73e4de09 9644
d956fa6f
MV
9645 if (mpz_sizeinbase (SCM_I_BIG_MPZ (val), 2)
9646 > CHAR_BIT*sizeof (scm_t_uintmax))
9647 return 0;
9648
9649 mpz_export (&n, &count, 1, sizeof (scm_t_uintmax), 0, 0,
9650 SCM_I_BIG_MPZ (val));
73e4de09 9651
d956fa6f 9652 if (mpz_sgn (SCM_I_BIG_MPZ (val)) >= 0)
73e4de09 9653 {
d956fa6f
MV
9654 if (n < 0)
9655 return 0;
73e4de09 9656 }
73e4de09
MV
9657 else
9658 {
d956fa6f
MV
9659 n = -n;
9660 if (n >= 0)
9661 return 0;
73e4de09 9662 }
d956fa6f
MV
9663
9664 return n >= min && n <= max;
73e4de09
MV
9665 }
9666 }
73e4de09
MV
9667 else
9668 return 0;
9669}
9670
9671int
9672scm_is_unsigned_integer (SCM val, scm_t_uintmax min, scm_t_uintmax max)
9673{
e11e83f3 9674 if (SCM_I_INUMP (val))
73e4de09 9675 {
e11e83f3 9676 scm_t_signed_bits n = SCM_I_INUM (val);
73e4de09
MV
9677 return n >= 0 && ((scm_t_uintmax)n) >= min && ((scm_t_uintmax)n) <= max;
9678 }
9679 else if (SCM_BIGP (val))
9680 {
9681 if (max <= SCM_MOST_POSITIVE_FIXNUM)
9682 return 0;
9683 else if (max <= ULONG_MAX)
d956fa6f
MV
9684 {
9685 if (mpz_fits_ulong_p (SCM_I_BIG_MPZ (val)))
9686 {
9687 unsigned long n = mpz_get_ui (SCM_I_BIG_MPZ (val));
9688 return n >= min && n <= max;
9689 }
9690 else
9691 return 0;
9692 }
73e4de09
MV
9693 else
9694 {
d956fa6f
MV
9695 scm_t_uintmax n;
9696 size_t count;
73e4de09 9697
d956fa6f
MV
9698 if (mpz_sgn (SCM_I_BIG_MPZ (val)) < 0)
9699 return 0;
73e4de09 9700
d956fa6f
MV
9701 if (mpz_sizeinbase (SCM_I_BIG_MPZ (val), 2)
9702 > CHAR_BIT*sizeof (scm_t_uintmax))
73e4de09 9703 return 0;
d956fa6f
MV
9704
9705 mpz_export (&n, &count, 1, sizeof (scm_t_uintmax), 0, 0,
9706 SCM_I_BIG_MPZ (val));
73e4de09 9707
d956fa6f 9708 return n >= min && n <= max;
73e4de09
MV
9709 }
9710 }
73e4de09
MV
9711 else
9712 return 0;
9713}
9714
1713d319
MV
9715static void
9716scm_i_range_error (SCM bad_val, SCM min, SCM max)
9717{
9718 scm_error (scm_out_of_range_key,
9719 NULL,
9720 "Value out of range ~S to ~S: ~S",
9721 scm_list_3 (min, max, bad_val),
9722 scm_list_1 (bad_val));
9723}
9724
bfd7932e
MV
9725#define TYPE scm_t_intmax
9726#define TYPE_MIN min
9727#define TYPE_MAX max
9728#define SIZEOF_TYPE 0
9729#define SCM_TO_TYPE_PROTO(arg) scm_to_signed_integer (arg, scm_t_intmax min, scm_t_intmax max)
9730#define SCM_FROM_TYPE_PROTO(arg) scm_from_signed_integer (arg)
9731#include "libguile/conv-integer.i.c"
9732
9733#define TYPE scm_t_uintmax
9734#define TYPE_MIN min
9735#define TYPE_MAX max
9736#define SIZEOF_TYPE 0
9737#define SCM_TO_TYPE_PROTO(arg) scm_to_unsigned_integer (arg, scm_t_uintmax min, scm_t_uintmax max)
9738#define SCM_FROM_TYPE_PROTO(arg) scm_from_unsigned_integer (arg)
9739#include "libguile/conv-uinteger.i.c"
9740
9741#define TYPE scm_t_int8
9742#define TYPE_MIN SCM_T_INT8_MIN
9743#define TYPE_MAX SCM_T_INT8_MAX
9744#define SIZEOF_TYPE 1
9745#define SCM_TO_TYPE_PROTO(arg) scm_to_int8 (arg)
9746#define SCM_FROM_TYPE_PROTO(arg) scm_from_int8 (arg)
9747#include "libguile/conv-integer.i.c"
9748
9749#define TYPE scm_t_uint8
9750#define TYPE_MIN 0
9751#define TYPE_MAX SCM_T_UINT8_MAX
9752#define SIZEOF_TYPE 1
9753#define SCM_TO_TYPE_PROTO(arg) scm_to_uint8 (arg)
9754#define SCM_FROM_TYPE_PROTO(arg) scm_from_uint8 (arg)
9755#include "libguile/conv-uinteger.i.c"
9756
9757#define TYPE scm_t_int16
9758#define TYPE_MIN SCM_T_INT16_MIN
9759#define TYPE_MAX SCM_T_INT16_MAX
9760#define SIZEOF_TYPE 2
9761#define SCM_TO_TYPE_PROTO(arg) scm_to_int16 (arg)
9762#define SCM_FROM_TYPE_PROTO(arg) scm_from_int16 (arg)
9763#include "libguile/conv-integer.i.c"
9764
9765#define TYPE scm_t_uint16
9766#define TYPE_MIN 0
9767#define TYPE_MAX SCM_T_UINT16_MAX
9768#define SIZEOF_TYPE 2
9769#define SCM_TO_TYPE_PROTO(arg) scm_to_uint16 (arg)
9770#define SCM_FROM_TYPE_PROTO(arg) scm_from_uint16 (arg)
9771#include "libguile/conv-uinteger.i.c"
9772
9773#define TYPE scm_t_int32
9774#define TYPE_MIN SCM_T_INT32_MIN
9775#define TYPE_MAX SCM_T_INT32_MAX
9776#define SIZEOF_TYPE 4
9777#define SCM_TO_TYPE_PROTO(arg) scm_to_int32 (arg)
9778#define SCM_FROM_TYPE_PROTO(arg) scm_from_int32 (arg)
9779#include "libguile/conv-integer.i.c"
9780
9781#define TYPE scm_t_uint32
9782#define TYPE_MIN 0
9783#define TYPE_MAX SCM_T_UINT32_MAX
9784#define SIZEOF_TYPE 4
9785#define SCM_TO_TYPE_PROTO(arg) scm_to_uint32 (arg)
9786#define SCM_FROM_TYPE_PROTO(arg) scm_from_uint32 (arg)
9787#include "libguile/conv-uinteger.i.c"
9788
904a78f1
MG
9789#define TYPE scm_t_wchar
9790#define TYPE_MIN (scm_t_int32)-1
9791#define TYPE_MAX (scm_t_int32)0x10ffff
9792#define SIZEOF_TYPE 4
9793#define SCM_TO_TYPE_PROTO(arg) scm_to_wchar (arg)
9794#define SCM_FROM_TYPE_PROTO(arg) scm_from_wchar (arg)
9795#include "libguile/conv-integer.i.c"
9796
bfd7932e
MV
9797#define TYPE scm_t_int64
9798#define TYPE_MIN SCM_T_INT64_MIN
9799#define TYPE_MAX SCM_T_INT64_MAX
9800#define SIZEOF_TYPE 8
9801#define SCM_TO_TYPE_PROTO(arg) scm_to_int64 (arg)
9802#define SCM_FROM_TYPE_PROTO(arg) scm_from_int64 (arg)
9803#include "libguile/conv-integer.i.c"
9804
9805#define TYPE scm_t_uint64
9806#define TYPE_MIN 0
9807#define TYPE_MAX SCM_T_UINT64_MAX
9808#define SIZEOF_TYPE 8
9809#define SCM_TO_TYPE_PROTO(arg) scm_to_uint64 (arg)
9810#define SCM_FROM_TYPE_PROTO(arg) scm_from_uint64 (arg)
9811#include "libguile/conv-uinteger.i.c"
73e4de09 9812
cd036260
MV
9813void
9814scm_to_mpz (SCM val, mpz_t rop)
9815{
9816 if (SCM_I_INUMP (val))
9817 mpz_set_si (rop, SCM_I_INUM (val));
9818 else if (SCM_BIGP (val))
9819 mpz_set (rop, SCM_I_BIG_MPZ (val));
9820 else
9821 scm_wrong_type_arg_msg (NULL, 0, val, "exact integer");
9822}
9823
9824SCM
9825scm_from_mpz (mpz_t val)
9826{
9827 return scm_i_mpz2num (val);
9828}
9829
73e4de09
MV
9830int
9831scm_is_real (SCM val)
9832{
9833 return scm_is_true (scm_real_p (val));
9834}
9835
55f26379
MV
9836int
9837scm_is_rational (SCM val)
9838{
9839 return scm_is_true (scm_rational_p (val));
9840}
9841
73e4de09
MV
9842double
9843scm_to_double (SCM val)
9844{
55f26379
MV
9845 if (SCM_I_INUMP (val))
9846 return SCM_I_INUM (val);
9847 else if (SCM_BIGP (val))
9848 return scm_i_big2dbl (val);
9849 else if (SCM_FRACTIONP (val))
9850 return scm_i_fraction2double (val);
9851 else if (SCM_REALP (val))
9852 return SCM_REAL_VALUE (val);
9853 else
7a1aba42 9854 scm_wrong_type_arg_msg (NULL, 0, val, "real number");
73e4de09
MV
9855}
9856
9857SCM
9858scm_from_double (double val)
9859{
00472a22 9860 return scm_i_from_double (val);
73e4de09
MV
9861}
9862
8507ec80
MV
9863int
9864scm_is_complex (SCM val)
9865{
9866 return scm_is_true (scm_complex_p (val));
9867}
9868
9869double
9870scm_c_real_part (SCM z)
9871{
9872 if (SCM_COMPLEXP (z))
9873 return SCM_COMPLEX_REAL (z);
9874 else
9875 {
9876 /* Use the scm_real_part to get proper error checking and
9877 dispatching.
9878 */
9879 return scm_to_double (scm_real_part (z));
9880 }
9881}
9882
9883double
9884scm_c_imag_part (SCM z)
9885{
9886 if (SCM_COMPLEXP (z))
9887 return SCM_COMPLEX_IMAG (z);
9888 else
9889 {
9890 /* Use the scm_imag_part to get proper error checking and
9891 dispatching. The result will almost always be 0.0, but not
9892 always.
9893 */
9894 return scm_to_double (scm_imag_part (z));
9895 }
9896}
9897
9898double
9899scm_c_magnitude (SCM z)
9900{
9901 return scm_to_double (scm_magnitude (z));
9902}
9903
9904double
9905scm_c_angle (SCM z)
9906{
9907 return scm_to_double (scm_angle (z));
9908}
9909
9910int
9911scm_is_number (SCM z)
9912{
9913 return scm_is_true (scm_number_p (z));
9914}
9915
8ab3d8a0 9916
a5f6b751
MW
9917/* Returns log(x * 2^shift) */
9918static SCM
9919log_of_shifted_double (double x, long shift)
9920{
9921 double ans = log (fabs (x)) + shift * M_LN2;
9922
e1592f8a 9923 if (copysign (1.0, x) > 0.0)
00472a22 9924 return scm_i_from_double (ans);
a5f6b751
MW
9925 else
9926 return scm_c_make_rectangular (ans, M_PI);
9927}
9928
85bdb6ac 9929/* Returns log(n), for exact integer n */
a5f6b751
MW
9930static SCM
9931log_of_exact_integer (SCM n)
9932{
7f34acd8
MW
9933 if (SCM_I_INUMP (n))
9934 return log_of_shifted_double (SCM_I_INUM (n), 0);
9935 else if (SCM_BIGP (n))
9936 {
9937 long expon;
9938 double signif = scm_i_big2dbl_2exp (n, &expon);
9939 return log_of_shifted_double (signif, expon);
9940 }
9941 else
9942 scm_wrong_type_arg ("log_of_exact_integer", SCM_ARG1, n);
a5f6b751
MW
9943}
9944
9945/* Returns log(n/d), for exact non-zero integers n and d */
9946static SCM
9947log_of_fraction (SCM n, SCM d)
9948{
9949 long n_size = scm_to_long (scm_integer_length (n));
9950 long d_size = scm_to_long (scm_integer_length (d));
9951
9952 if (abs (n_size - d_size) > 1)
7f34acd8
MW
9953 return (scm_difference (log_of_exact_integer (n),
9954 log_of_exact_integer (d)));
a5f6b751 9955 else if (scm_is_false (scm_negative_p (n)))
00472a22 9956 return scm_i_from_double
98237784 9957 (log1p (scm_i_divide2double (scm_difference (n, d), d)));
a5f6b751
MW
9958 else
9959 return scm_c_make_rectangular
98237784
MW
9960 (log1p (scm_i_divide2double (scm_difference (scm_abs (n), d),
9961 d)),
a5f6b751
MW
9962 M_PI);
9963}
9964
9965
8ab3d8a0
KR
9966/* In the following functions we dispatch to the real-arg funcs like log()
9967 when we know the arg is real, instead of just handing everything to
9968 clog() for instance. This is in case clog() doesn't optimize for a
9969 real-only case, and because we have to test SCM_COMPLEXP anyway so may as
9970 well use it to go straight to the applicable C func. */
9971
2519490c
MW
9972SCM_PRIMITIVE_GENERIC (scm_log, "log", 1, 0, 0,
9973 (SCM z),
9974 "Return the natural logarithm of @var{z}.")
8ab3d8a0
KR
9975#define FUNC_NAME s_scm_log
9976{
9977 if (SCM_COMPLEXP (z))
9978 {
03976fee
AW
9979#if defined HAVE_COMPLEX_DOUBLE && defined HAVE_CLOG \
9980 && defined (SCM_COMPLEX_VALUE)
8ab3d8a0
KR
9981 return scm_from_complex_double (clog (SCM_COMPLEX_VALUE (z)));
9982#else
9983 double re = SCM_COMPLEX_REAL (z);
9984 double im = SCM_COMPLEX_IMAG (z);
9985 return scm_c_make_rectangular (log (hypot (re, im)),
9986 atan2 (im, re));
9987#endif
9988 }
a5f6b751
MW
9989 else if (SCM_REALP (z))
9990 return log_of_shifted_double (SCM_REAL_VALUE (z), 0);
9991 else if (SCM_I_INUMP (z))
8ab3d8a0 9992 {
a5f6b751
MW
9993#ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
9994 if (scm_is_eq (z, SCM_INUM0))
9995 scm_num_overflow (s_scm_log);
9996#endif
9997 return log_of_shifted_double (SCM_I_INUM (z), 0);
8ab3d8a0 9998 }
a5f6b751
MW
9999 else if (SCM_BIGP (z))
10000 return log_of_exact_integer (z);
10001 else if (SCM_FRACTIONP (z))
10002 return log_of_fraction (SCM_FRACTION_NUMERATOR (z),
10003 SCM_FRACTION_DENOMINATOR (z));
2519490c 10004 else
fa075d40 10005 return scm_wta_dispatch_1 (g_scm_log, z, 1, s_scm_log);
8ab3d8a0
KR
10006}
10007#undef FUNC_NAME
10008
10009
2519490c
MW
10010SCM_PRIMITIVE_GENERIC (scm_log10, "log10", 1, 0, 0,
10011 (SCM z),
10012 "Return the base 10 logarithm of @var{z}.")
8ab3d8a0
KR
10013#define FUNC_NAME s_scm_log10
10014{
10015 if (SCM_COMPLEXP (z))
10016 {
10017 /* Mingw has clog() but not clog10(). (Maybe it'd be worth using
10018 clog() and a multiply by M_LOG10E, rather than the fallback
10019 log10+hypot+atan2.) */
f328f862
LC
10020#if defined HAVE_COMPLEX_DOUBLE && defined HAVE_CLOG10 \
10021 && defined SCM_COMPLEX_VALUE
8ab3d8a0
KR
10022 return scm_from_complex_double (clog10 (SCM_COMPLEX_VALUE (z)));
10023#else
10024 double re = SCM_COMPLEX_REAL (z);
10025 double im = SCM_COMPLEX_IMAG (z);
10026 return scm_c_make_rectangular (log10 (hypot (re, im)),
10027 M_LOG10E * atan2 (im, re));
10028#endif
10029 }
a5f6b751 10030 else if (SCM_REALP (z) || SCM_I_INUMP (z))
8ab3d8a0 10031 {
a5f6b751
MW
10032#ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
10033 if (scm_is_eq (z, SCM_INUM0))
10034 scm_num_overflow (s_scm_log10);
10035#endif
10036 {
10037 double re = scm_to_double (z);
10038 double l = log10 (fabs (re));
e1592f8a 10039 if (copysign (1.0, re) > 0.0)
00472a22 10040 return scm_i_from_double (l);
a5f6b751
MW
10041 else
10042 return scm_c_make_rectangular (l, M_LOG10E * M_PI);
10043 }
8ab3d8a0 10044 }
a5f6b751
MW
10045 else if (SCM_BIGP (z))
10046 return scm_product (flo_log10e, log_of_exact_integer (z));
10047 else if (SCM_FRACTIONP (z))
10048 return scm_product (flo_log10e,
10049 log_of_fraction (SCM_FRACTION_NUMERATOR (z),
10050 SCM_FRACTION_DENOMINATOR (z)));
2519490c 10051 else
fa075d40 10052 return scm_wta_dispatch_1 (g_scm_log10, z, 1, s_scm_log10);
8ab3d8a0
KR
10053}
10054#undef FUNC_NAME
10055
10056
2519490c
MW
10057SCM_PRIMITIVE_GENERIC (scm_exp, "exp", 1, 0, 0,
10058 (SCM z),
10059 "Return @math{e} to the power of @var{z}, where @math{e} is the\n"
10060 "base of natural logarithms (2.71828@dots{}).")
8ab3d8a0
KR
10061#define FUNC_NAME s_scm_exp
10062{
10063 if (SCM_COMPLEXP (z))
10064 {
03976fee
AW
10065#if defined HAVE_COMPLEX_DOUBLE && defined HAVE_CEXP \
10066 && defined (SCM_COMPLEX_VALUE)
8ab3d8a0
KR
10067 return scm_from_complex_double (cexp (SCM_COMPLEX_VALUE (z)));
10068#else
10069 return scm_c_make_polar (exp (SCM_COMPLEX_REAL (z)),
10070 SCM_COMPLEX_IMAG (z));
10071#endif
10072 }
2519490c 10073 else if (SCM_NUMBERP (z))
8ab3d8a0
KR
10074 {
10075 /* When z is a negative bignum the conversion to double overflows,
10076 giving -infinity, but that's ok, the exp is still 0.0. */
00472a22 10077 return scm_i_from_double (exp (scm_to_double (z)));
8ab3d8a0 10078 }
2519490c 10079 else
fa075d40 10080 return scm_wta_dispatch_1 (g_scm_exp, z, 1, s_scm_exp);
8ab3d8a0
KR
10081}
10082#undef FUNC_NAME
10083
10084
882c8963
MW
10085SCM_DEFINE (scm_i_exact_integer_sqrt, "exact-integer-sqrt", 1, 0, 0,
10086 (SCM k),
10087 "Return two exact non-negative integers @var{s} and @var{r}\n"
10088 "such that @math{@var{k} = @var{s}^2 + @var{r}} and\n"
10089 "@math{@var{s}^2 <= @var{k} < (@var{s} + 1)^2}.\n"
10090 "An error is raised if @var{k} is not an exact non-negative integer.\n"
10091 "\n"
10092 "@lisp\n"
10093 "(exact-integer-sqrt 10) @result{} 3 and 1\n"
10094 "@end lisp")
10095#define FUNC_NAME s_scm_i_exact_integer_sqrt
10096{
10097 SCM s, r;
10098
10099 scm_exact_integer_sqrt (k, &s, &r);
10100 return scm_values (scm_list_2 (s, r));
10101}
10102#undef FUNC_NAME
10103
10104void
10105scm_exact_integer_sqrt (SCM k, SCM *sp, SCM *rp)
10106{
10107 if (SCM_LIKELY (SCM_I_INUMP (k)))
10108 {
687a87bf 10109 mpz_t kk, ss, rr;
882c8963 10110
687a87bf 10111 if (SCM_I_INUM (k) < 0)
882c8963
MW
10112 scm_wrong_type_arg_msg ("exact-integer-sqrt", SCM_ARG1, k,
10113 "exact non-negative integer");
687a87bf
MW
10114 mpz_init_set_ui (kk, SCM_I_INUM (k));
10115 mpz_inits (ss, rr, NULL);
10116 mpz_sqrtrem (ss, rr, kk);
10117 *sp = SCM_I_MAKINUM (mpz_get_ui (ss));
10118 *rp = SCM_I_MAKINUM (mpz_get_ui (rr));
10119 mpz_clears (kk, ss, rr, NULL);
882c8963
MW
10120 }
10121 else if (SCM_LIKELY (SCM_BIGP (k)))
10122 {
10123 SCM s, r;
10124
10125 if (mpz_sgn (SCM_I_BIG_MPZ (k)) < 0)
10126 scm_wrong_type_arg_msg ("exact-integer-sqrt", SCM_ARG1, k,
10127 "exact non-negative integer");
10128 s = scm_i_mkbig ();
10129 r = scm_i_mkbig ();
10130 mpz_sqrtrem (SCM_I_BIG_MPZ (s), SCM_I_BIG_MPZ (r), SCM_I_BIG_MPZ (k));
10131 scm_remember_upto_here_1 (k);
10132 *sp = scm_i_normbig (s);
10133 *rp = scm_i_normbig (r);
10134 }
10135 else
10136 scm_wrong_type_arg_msg ("exact-integer-sqrt", SCM_ARG1, k,
10137 "exact non-negative integer");
10138}
10139
ddb71742
MW
10140/* Return true iff K is a perfect square.
10141 K must be an exact integer. */
10142static int
10143exact_integer_is_perfect_square (SCM k)
10144{
10145 int result;
10146
10147 if (SCM_LIKELY (SCM_I_INUMP (k)))
10148 {
10149 mpz_t kk;
10150
10151 mpz_init_set_si (kk, SCM_I_INUM (k));
10152 result = mpz_perfect_square_p (kk);
10153 mpz_clear (kk);
10154 }
10155 else
10156 {
10157 result = mpz_perfect_square_p (SCM_I_BIG_MPZ (k));
10158 scm_remember_upto_here_1 (k);
10159 }
10160 return result;
10161}
10162
10163/* Return the floor of the square root of K.
10164 K must be an exact integer. */
10165static SCM
10166exact_integer_floor_square_root (SCM k)
10167{
10168 if (SCM_LIKELY (SCM_I_INUMP (k)))
10169 {
10170 mpz_t kk;
10171 scm_t_inum ss;
10172
10173 mpz_init_set_ui (kk, SCM_I_INUM (k));
10174 mpz_sqrt (kk, kk);
10175 ss = mpz_get_ui (kk);
10176 mpz_clear (kk);
10177 return SCM_I_MAKINUM (ss);
10178 }
10179 else
10180 {
10181 SCM s;
10182
10183 s = scm_i_mkbig ();
10184 mpz_sqrt (SCM_I_BIG_MPZ (s), SCM_I_BIG_MPZ (k));
10185 scm_remember_upto_here_1 (k);
10186 return scm_i_normbig (s);
10187 }
10188}
10189
882c8963 10190
2519490c
MW
10191SCM_PRIMITIVE_GENERIC (scm_sqrt, "sqrt", 1, 0, 0,
10192 (SCM z),
10193 "Return the square root of @var{z}. Of the two possible roots\n"
ffb62a43 10194 "(positive and negative), the one with positive real part\n"
2519490c
MW
10195 "is returned, or if that's zero then a positive imaginary part.\n"
10196 "Thus,\n"
10197 "\n"
10198 "@example\n"
10199 "(sqrt 9.0) @result{} 3.0\n"
10200 "(sqrt -9.0) @result{} 0.0+3.0i\n"
10201 "(sqrt 1.0+1.0i) @result{} 1.09868411346781+0.455089860562227i\n"
10202 "(sqrt -1.0-1.0i) @result{} 0.455089860562227-1.09868411346781i\n"
10203 "@end example")
8ab3d8a0
KR
10204#define FUNC_NAME s_scm_sqrt
10205{
2519490c 10206 if (SCM_COMPLEXP (z))
8ab3d8a0 10207 {
f328f862
LC
10208#if defined HAVE_COMPLEX_DOUBLE && defined HAVE_USABLE_CSQRT \
10209 && defined SCM_COMPLEX_VALUE
2519490c 10210 return scm_from_complex_double (csqrt (SCM_COMPLEX_VALUE (z)));
8ab3d8a0 10211#else
2519490c
MW
10212 double re = SCM_COMPLEX_REAL (z);
10213 double im = SCM_COMPLEX_IMAG (z);
8ab3d8a0
KR
10214 return scm_c_make_polar (sqrt (hypot (re, im)),
10215 0.5 * atan2 (im, re));
10216#endif
10217 }
2519490c 10218 else if (SCM_NUMBERP (z))
8ab3d8a0 10219 {
44002664
MW
10220 if (SCM_I_INUMP (z))
10221 {
ddb71742
MW
10222 scm_t_inum x = SCM_I_INUM (z);
10223
10224 if (SCM_LIKELY (x >= 0))
44002664 10225 {
ddb71742
MW
10226 if (SCM_LIKELY (SCM_I_FIXNUM_BIT < DBL_MANT_DIG
10227 || x < (1L << (DBL_MANT_DIG - 1))))
44002664 10228 {
ddb71742 10229 double root = sqrt (x);
44002664
MW
10230
10231 /* If 0 <= x < 2^(DBL_MANT_DIG-1) and sqrt(x) is an
10232 integer, then the result is exact. */
10233 if (root == floor (root))
10234 return SCM_I_MAKINUM ((scm_t_inum) root);
10235 else
00472a22 10236 return scm_i_from_double (root);
44002664
MW
10237 }
10238 else
10239 {
ddb71742 10240 mpz_t xx;
44002664
MW
10241 scm_t_inum root;
10242
ddb71742
MW
10243 mpz_init_set_ui (xx, x);
10244 if (mpz_perfect_square_p (xx))
44002664 10245 {
ddb71742
MW
10246 mpz_sqrt (xx, xx);
10247 root = mpz_get_ui (xx);
10248 mpz_clear (xx);
44002664
MW
10249 return SCM_I_MAKINUM (root);
10250 }
10251 else
ddb71742 10252 mpz_clear (xx);
44002664
MW
10253 }
10254 }
10255 }
10256 else if (SCM_BIGP (z))
10257 {
ddb71742 10258 if (mpz_perfect_square_p (SCM_I_BIG_MPZ (z)))
44002664
MW
10259 {
10260 SCM root = scm_i_mkbig ();
10261
10262 mpz_sqrt (SCM_I_BIG_MPZ (root), SCM_I_BIG_MPZ (z));
10263 scm_remember_upto_here_1 (z);
10264 return scm_i_normbig (root);
10265 }
ddb71742
MW
10266 else
10267 {
10268 long expon;
10269 double signif = scm_i_big2dbl_2exp (z, &expon);
10270
10271 if (expon & 1)
10272 {
10273 signif *= 2;
10274 expon--;
10275 }
10276 if (signif < 0)
10277 return scm_c_make_rectangular
10278 (0.0, ldexp (sqrt (-signif), expon / 2));
10279 else
00472a22 10280 return scm_i_from_double (ldexp (sqrt (signif), expon / 2));
ddb71742 10281 }
44002664
MW
10282 }
10283 else if (SCM_FRACTIONP (z))
ddb71742
MW
10284 {
10285 SCM n = SCM_FRACTION_NUMERATOR (z);
10286 SCM d = SCM_FRACTION_DENOMINATOR (z);
10287
10288 if (exact_integer_is_perfect_square (n)
10289 && exact_integer_is_perfect_square (d))
10290 return scm_i_make_ratio_already_reduced
10291 (exact_integer_floor_square_root (n),
10292 exact_integer_floor_square_root (d));
10293 else
10294 {
10295 double xx = scm_i_divide2double (n, d);
10296 double abs_xx = fabs (xx);
10297 long shift = 0;
10298
10299 if (SCM_UNLIKELY (abs_xx > DBL_MAX || abs_xx < DBL_MIN))
10300 {
10301 shift = (scm_to_long (scm_integer_length (n))
10302 - scm_to_long (scm_integer_length (d))) / 2;
10303 if (shift > 0)
10304 d = left_shift_exact_integer (d, 2 * shift);
10305 else
10306 n = left_shift_exact_integer (n, -2 * shift);
10307 xx = scm_i_divide2double (n, d);
10308 }
10309
10310 if (xx < 0)
10311 return scm_c_make_rectangular (0.0, ldexp (sqrt (-xx), shift));
10312 else
00472a22 10313 return scm_i_from_double (ldexp (sqrt (xx), shift));
ddb71742
MW
10314 }
10315 }
44002664
MW
10316
10317 /* Fallback method, when the cases above do not apply. */
10318 {
10319 double xx = scm_to_double (z);
10320 if (xx < 0)
10321 return scm_c_make_rectangular (0.0, sqrt (-xx));
10322 else
00472a22 10323 return scm_i_from_double (sqrt (xx));
44002664 10324 }
8ab3d8a0 10325 }
2519490c 10326 else
fa075d40 10327 return scm_wta_dispatch_1 (g_scm_sqrt, z, 1, s_scm_sqrt);
8ab3d8a0
KR
10328}
10329#undef FUNC_NAME
10330
10331
10332
0f2d19dd
JB
10333void
10334scm_init_numbers ()
0f2d19dd 10335{
b57bf272
AW
10336 if (scm_install_gmp_memory_functions)
10337 mp_set_memory_functions (custom_gmp_malloc,
10338 custom_gmp_realloc,
10339 custom_gmp_free);
10340
713a4259
KR
10341 mpz_init_set_si (z_negative_one, -1);
10342
a261c0e9
DH
10343 /* It may be possible to tune the performance of some algorithms by using
10344 * the following constants to avoid the creation of bignums. Please, before
10345 * using these values, remember the two rules of program optimization:
10346 * 1st Rule: Don't do it. 2nd Rule (experts only): Don't do it yet. */
86d31dfe 10347 scm_c_define ("most-positive-fixnum",
d956fa6f 10348 SCM_I_MAKINUM (SCM_MOST_POSITIVE_FIXNUM));
86d31dfe 10349 scm_c_define ("most-negative-fixnum",
d956fa6f 10350 SCM_I_MAKINUM (SCM_MOST_NEGATIVE_FIXNUM));
a261c0e9 10351
f3ae5d60
MD
10352 scm_add_feature ("complex");
10353 scm_add_feature ("inexact");
00472a22
MW
10354 flo0 = scm_i_from_double (0.0);
10355 flo_log10e = scm_i_from_double (M_LOG10E);
0b799eea 10356
cff5fa33 10357 exactly_one_half = scm_divide (SCM_INUM1, SCM_I_MAKINUM (2));
98237784
MW
10358
10359 {
10360 /* Set scm_i_divide2double_lo2b to (2 b^p - 1) */
10361 mpz_init_set_ui (scm_i_divide2double_lo2b, 1);
10362 mpz_mul_2exp (scm_i_divide2double_lo2b,
10363 scm_i_divide2double_lo2b,
10364 DBL_MANT_DIG + 1); /* 2 b^p */
10365 mpz_sub_ui (scm_i_divide2double_lo2b, scm_i_divide2double_lo2b, 1);
10366 }
10367
1ea37620
MW
10368 {
10369 /* Set dbl_minimum_normal_mantissa to b^{p-1} */
10370 mpz_init_set_ui (dbl_minimum_normal_mantissa, 1);
10371 mpz_mul_2exp (dbl_minimum_normal_mantissa,
10372 dbl_minimum_normal_mantissa,
10373 DBL_MANT_DIG - 1);
10374 }
10375
a0599745 10376#include "libguile/numbers.x"
0f2d19dd 10377}
89e00824
ML
10378
10379/*
10380 Local Variables:
10381 c-file-style: "gnu"
10382 End:
10383*/