;;; cl-loaddefs.el --- automatically extracted autoloads ;; ;;; Code: ;;;### (autoloads (cl-prettyexpand cl-macroexpand-all cl-remprop ;;;;;; cl-do-remf cl-set-getf getf get* tailp list-length nreconc ;;;;;; revappend concatenate subseq cl-float-limits random-state-p ;;;;;; make-random-state random* signum rem* mod* round* truncate* ;;;;;; ceiling* floor* isqrt lcm gcd cl-progv-before cl-set-frame-visible-p ;;;;;; cl-map-overlays cl-map-intervals cl-map-keymap-recursively ;;;;;; notevery notany every some mapcon mapcan mapl maplist map ;;;;;; cl-mapcar-many equalp coerce) "cl-extra" "cl-extra.el" "47c92504dda976a632c2c10bedd4b6a4") ;;; Generated autoloads from cl-extra.el (autoload (quote coerce) "cl-extra" "\ Coerce OBJECT to type TYPE. TYPE is a Common Lisp type specifier. \(fn OBJECT TYPE)" nil nil) (autoload (quote equalp) "cl-extra" "\ Return t if two Lisp objects have similar structures and contents. This is like `equal', except that it accepts numerically equal numbers of different types (float vs. integer), and also compares strings case-insensitively. \(fn X Y)" nil nil) (autoload (quote cl-mapcar-many) "cl-extra" "\ Not documented \(fn CL-FUNC CL-SEQS)" nil nil) (autoload (quote map) "cl-extra" "\ Map a FUNCTION across one or more SEQUENCEs, returning a sequence. TYPE is the sequence type to return. \(fn TYPE FUNCTION SEQUENCE...)" nil nil) (autoload (quote maplist) "cl-extra" "\ Map FUNCTION to each sublist of LIST or LISTs. Like `mapcar', except applies to lists and their cdr's rather than to the elements themselves. \(fn FUNCTION LIST...)" nil nil) (autoload (quote mapl) "cl-extra" "\ Like `maplist', but does not accumulate values returned by the function. \(fn FUNCTION LIST...)" nil nil) (autoload (quote mapcan) "cl-extra" "\ Like `mapcar', but nconc's together the values returned by the function. \(fn FUNCTION SEQUENCE...)" nil nil) (autoload (quote mapcon) "cl-extra" "\ Like `maplist', but nconc's together the values returned by the function. \(fn FUNCTION LIST...)" nil nil) (autoload (quote some) "cl-extra" "\ Return true if PREDICATE is true of any element of SEQ or SEQs. If so, return the true (non-nil) value returned by PREDICATE. \(fn PREDICATE SEQ...)" nil nil) (autoload (quote every) "cl-extra" "\ Return true if PREDICATE is true of every element of SEQ or SEQs. \(fn PREDICATE SEQ...)" nil nil) (autoload (quote notany) "cl-extra" "\ Return true if PREDICATE is false of every element of SEQ or SEQs. \(fn PREDICATE SEQ...)" nil nil) (autoload (quote notevery) "cl-extra" "\ Return true if PREDICATE is false of some element of SEQ or SEQs. \(fn PREDICATE SEQ...)" nil nil) (defalias (quote cl-map-keymap) (quote map-keymap)) (autoload (quote cl-map-keymap-recursively) "cl-extra" "\ Not documented \(fn CL-FUNC-REC CL-MAP &optional CL-BASE)" nil nil) (autoload (quote cl-map-intervals) "cl-extra" "\ Not documented \(fn CL-FUNC &optional CL-WHAT CL-PROP CL-START CL-END)" nil nil) (autoload (quote cl-map-overlays) "cl-extra" "\ Not documented \(fn CL-FUNC &optional CL-BUFFER CL-START CL-END CL-ARG)" nil nil) (autoload (quote cl-set-frame-visible-p) "cl-extra" "\ Not documented \(fn FRAME VAL)" nil nil) (autoload (quote cl-progv-before) "cl-extra" "\ Not documented \(fn SYMS VALUES)" nil nil) (autoload (quote gcd) "cl-extra" "\ Return the greatest common divisor of the arguments. \(fn &rest ARGS)" nil nil) (autoload (quote lcm) "cl-extra" "\ Return the least common multiple of the arguments. \(fn &rest ARGS)" nil nil) (autoload (quote isqrt) "cl-extra" "\ Return the integer square root of the argument. \(fn X)" nil nil) (autoload (quote floor*) "cl-extra" "\ Return a list of the floor of X and the fractional part of X. With two arguments, return floor and remainder of their quotient. \(fn X &optional Y)" nil nil) (autoload (quote ceiling*) "cl-extra" "\ Return a list of the ceiling of X and the fractional part of X. With two arguments, return ceiling and remainder of their quotient. \(fn X &optional Y)" nil nil) (autoload (quote truncate*) "cl-extra" "\ Return a list of the integer part of X and the fractional part of X. With two arguments, return truncation and remainder of their quotient. \(fn X &optional Y)" nil nil) (autoload (quote round*) "cl-extra" "\ Return a list of X rounded to the nearest integer and the remainder. With two arguments, return rounding and remainder of their quotient. \(fn X &optional Y)" nil nil) (autoload (quote mod*) "cl-extra" "\ The remainder of X divided by Y, with the same sign as Y. \(fn X Y)" nil nil) (autoload (quote rem*) "cl-extra" "\ The remainder of X divided by Y, with the same sign as X. \(fn X Y)" nil nil) (autoload (quote signum) "cl-extra" "\ Return 1 if X is positive, -1 if negative, 0 if zero. \(fn X)" nil nil) (autoload (quote random*) "cl-extra" "\ Return a random nonnegative number less than LIM, an integer or float. Optional second arg STATE is a random-state object. \(fn LIM &optional STATE)" nil nil) (autoload (quote make-random-state) "cl-extra" "\ Return a copy of random-state STATE, or of `*random-state*' if omitted. If STATE is t, return a new state object seeded from the time of day. \(fn &optional STATE)" nil nil) (autoload (quote random-state-p) "cl-extra" "\ Return t if OBJECT is a random-state object. \(fn OBJECT)" nil nil) (autoload (quote cl-float-limits) "cl-extra" "\ Not documented \(fn)" nil nil) (autoload (quote subseq) "cl-extra" "\ Return the subsequence of SEQ from START to END. If END is omitted, it defaults to the length of the sequence. If START or END is negative, it counts from the end. \(fn SEQ START &optional END)" nil nil) (autoload (quote concatenate) "cl-extra" "\ Concatenate, into a sequence of type TYPE, the argument SEQUENCEs. \(fn TYPE SEQUENCE...)" nil nil) (autoload (quote revappend) "cl-extra" "\ Equivalent to (append (reverse X) Y). \(fn X Y)" nil nil) (autoload (quote nreconc) "cl-extra" "\ Equivalent to (nconc (nreverse X) Y). \(fn X Y)" nil nil) (autoload (quote list-length) "cl-extra" "\ Return the length of list X. Return nil if list is circular. \(fn X)" nil nil) (autoload (quote tailp) "cl-extra" "\ Return true if SUBLIST is a tail of LIST. \(fn SUBLIST LIST)" nil nil) (autoload (quote get*) "cl-extra" "\ Return the value of SYMBOL's PROPNAME property, or DEFAULT if none. \(fn SYMBOL PROPNAME &optional DEFAULT)" nil nil) (autoload (quote getf) "cl-extra" "\ Search PROPLIST for property PROPNAME; return its value or DEFAULT. PROPLIST is a list of the sort returned by `symbol-plist'. \(fn PROPLIST PROPNAME &optional DEFAULT)" nil nil) (autoload (quote cl-set-getf) "cl-extra" "\ Not documented \(fn PLIST TAG VAL)" nil nil) (autoload (quote cl-do-remf) "cl-extra" "\ Not documented \(fn PLIST TAG)" nil nil) (autoload (quote cl-remprop) "cl-extra" "\ Remove from SYMBOL's plist the property PROPNAME and its value. \(fn SYMBOL PROPNAME)" nil nil) (defalias (quote remprop) (quote cl-remprop)) (defalias (quote cl-gethash) (quote gethash)) (defalias (quote cl-puthash) (quote puthash)) (defalias (quote cl-remhash) (quote remhash)) (defalias (quote cl-clrhash) (quote clrhash)) (defalias (quote cl-maphash) (quote maphash)) (defalias (quote cl-make-hash-table) (quote make-hash-table)) (defalias (quote cl-hash-table-p) (quote hash-table-p)) (defalias (quote cl-hash-table-count) (quote hash-table-count)) (autoload (quote cl-macroexpand-all) "cl-extra" "\ Expand all macro calls through a Lisp FORM. This also does some trivial optimizations to make the form prettier. \(fn FORM &optional ENV)" nil nil) (autoload (quote cl-prettyexpand) "cl-extra" "\ Not documented \(fn FORM &optional FULL)" nil nil) ;;;*** ;;;### (autoloads (compiler-macroexpand define-compiler-macro ignore-errors ;;;;;; assert check-type typep cl-struct-setf-expander defstruct ;;;;;; define-modify-macro callf2 callf letf* letf rotatef shiftf ;;;;;; remf cl-do-pop psetf setf get-setf-method defsetf define-setf-method ;;;;;; declare the locally multiple-value-setq multiple-value-bind ;;;;;; lexical-let* lexical-let symbol-macrolet macrolet labels ;;;;;; flet progv psetq do-all-symbols do-symbols dotimes dolist ;;;;;; do* do loop return-from return block etypecase typecase ecase ;;;;;; case load-time-value eval-when destructuring-bind function* ;;;;;; defmacro* defun* gentemp gensym cl-compile-time-init) "cl-macs" ;;;;;; "cl-macs.el" "7ccc827d272482ca276937ca18a7895a") ;;; Generated autoloads from cl-macs.el (autoload (quote cl-compile-time-init) "cl-macs" "\ Not documented \(fn)" nil nil) (autoload (quote gensym) "cl-macs" "\ Generate a new uninterned symbol. The name is made by appending a number to PREFIX, default \"G\". \(fn &optional PREFIX)" nil nil) (autoload (quote gentemp) "cl-macs" "\ Generate a new interned symbol with a unique name. The name is made by appending a number to PREFIX, default \"G\". \(fn &optional PREFIX)" nil nil) (autoload (quote defun*) "cl-macs" "\ Define NAME as a function. Like normal `defun', except ARGLIST allows full Common Lisp conventions, and BODY is implicitly surrounded by (block NAME ...). \(fn NAME ARGLIST [DOCSTRING] BODY...)" nil (quote macro)) (autoload (quote defmacro*) "cl-macs" "\ Define NAME as a macro. Like normal `defmacro', except ARGLIST allows full Common Lisp conventions, and BODY is implicitly surrounded by (block NAME ...). \(fn NAME ARGLIST [DOCSTRING] BODY...)" nil (quote macro)) (autoload (quote function*) "cl-macs" "\ Introduce a function. Like normal `function', except that if argument is a lambda form, its argument list allows full Common Lisp conventions. \(fn FUNC)" nil (quote macro)) (autoload (quote destructuring-bind) "cl-macs" "\ Not documented \(fn ARGS EXPR &rest BODY)" nil (quote macro)) (autoload (quote eval-when) "cl-macs" "\ Control when BODY is evaluated. If `compile' is in WHEN, BODY is evaluated when compiled at top-level. If `load' is in WHEN, BODY is evaluated when loaded after top-level compile. If `eval' is in WHEN, BODY is evaluated when interpreted or at non-top-level. \(fn (WHEN...) BODY...)" nil (quote macro)) (autoload (quote load-time-value) "cl-macs" "\ Like `progn', but evaluates the body at load time. The result of the body appears to the compiler as a quoted constant. \(fn FORM &optional READ-ONLY)" nil (quote macro)) (autoload (quote case) "cl-macs" "\ Eval EXPR and choose among clauses on that value. Each clause looks like (KEYLIST BODY...). EXPR is evaluated and compared against each key in each KEYLIST; the corresponding BODY is evaluated. If no clause succeeds, case returns nil. A single atom may be used in place of a KEYLIST of one atom. A KEYLIST of t or `otherwise' is allowed only in the final clause, and matches if no other keys match. Key values are compared by `eql'. \(fn EXPR (KEYLIST BODY...)...)" nil (quote macro)) (autoload (quote ecase) "cl-macs" "\ Like `case', but error if no case fits. `otherwise'-clauses are not allowed. \(fn EXPR (KEYLIST BODY...)...)" nil (quote macro)) (autoload (quote typecase) "cl-macs" "\ Evals EXPR, chooses among clauses on that value. Each clause looks like (TYPE BODY...). EXPR is evaluated and, if it satisfies TYPE, the corresponding BODY is evaluated. If no clause succeeds, typecase returns nil. A TYPE of t or `otherwise' is allowed only in the final clause, and matches if no other keys match. \(fn EXPR (TYPE BODY...)...)" nil (quote macro)) (autoload (quote etypecase) "cl-macs" "\ Like `typecase', but error if no case fits. `otherwise'-clauses are not allowed. \(fn EXPR (TYPE BODY...)...)" nil (quote macro)) (autoload (quote block) "cl-macs" "\ Define a lexically-scoped block named NAME. NAME may be any symbol. Code inside the BODY forms can call `return-from' to jump prematurely out of the block. This differs from `catch' and `throw' in two respects: First, the NAME is an unevaluated symbol rather than a quoted symbol or other form; and second, NAME is lexically rather than dynamically scoped: Only references to it within BODY will work. These references may appear inside macro expansions, but not inside functions called from BODY. \(fn NAME &rest BODY)" nil (quote macro)) (autoload (quote return) "cl-macs" "\ Return from the block named nil. This is equivalent to `(return-from nil RESULT)'. \(fn &optional RESULT)" nil (quote macro)) (autoload (quote return-from) "cl-macs" "\ Return from the block named NAME. This jump out to the innermost enclosing `(block NAME ...)' form, returning RESULT from that form (or nil if RESULT is omitted). This is compatible with Common Lisp, but note that `defun' and `defmacro' do not create implicit blocks as they do in Common Lisp. \(fn NAME &optional RESULT)" nil (quote macro)) (autoload (quote loop) "cl-macs" "\ The Common Lisp `loop' macro. Valid clauses are: for VAR from/upfrom/downfrom NUM to/upto/downto/above/below NUM by NUM, for VAR in LIST by FUNC, for VAR on LIST by FUNC, for VAR = INIT then EXPR, for VAR across ARRAY, repeat NUM, with VAR = INIT, while COND, until COND, always COND, never COND, thereis COND, collect EXPR into VAR, append EXPR into VAR, nconc EXPR into VAR, sum EXPR into VAR, count EXPR into VAR, maximize EXPR into VAR, minimize EXPR into VAR, if COND CLAUSE [and CLAUSE]... else CLAUSE [and CLAUSE...], unless COND CLAUSE [and CLAUSE]... else CLAUSE [and CLAUSE...], do EXPRS..., initially EXPRS..., finally EXPRS..., return EXPR, finally return EXPR, named NAME. \(fn CLAUSE...)" nil (quote macro)) (autoload (quote do) "cl-macs" "\ The Common Lisp `do' loop. \(fn ((VAR INIT [STEP])...) (END-TEST [RESULT...]) BODY...)" nil (quote macro)) (autoload (quote do*) "cl-macs" "\ The Common Lisp `do*' loop. \(fn ((VAR INIT [STEP])...) (END-TEST [RESULT...]) BODY...)" nil (quote macro)) (autoload (quote dolist) "cl-macs" "\ Loop over a list. Evaluate BODY with VAR bound to each `car' from LIST, in turn. Then evaluate RESULT to get return value, default nil. \(fn (VAR LIST [RESULT]) BODY...)" nil (quote macro)) (autoload (quote dotimes) "cl-macs" "\ Loop a certain number of times. Evaluate BODY with VAR bound to successive integers from 0, inclusive, to COUNT, exclusive. Then evaluate RESULT to get return value, default nil. \(fn (VAR COUNT [RESULT]) BODY...)" nil (quote macro)) (autoload (quote do-symbols) "cl-macs" "\ Loop over all symbols. Evaluate BODY with VAR bound to each interned symbol, or to each symbol from OBARRAY. \(fn (VAR [OBARRAY [RESULT]]) BODY...)" nil (quote macro)) (autoload (quote do-all-symbols) "cl-macs" "\ Not documented \(fn SPEC &rest BODY)" nil (quote macro)) (autoload (quote psetq) "cl-macs" "\ Set SYMs to the values VALs in parallel. This is like `setq', except that all VAL forms are evaluated (in order) before assigning any symbols SYM to the corresponding values. \(fn SYM VAL SYM VAL ...)" nil (quote macro)) (autoload (quote progv) "cl-macs" "\ Bind SYMBOLS to VALUES dynamically in BODY. The forms SYMBOLS and VALUES are evaluated, and must evaluate to lists. Each symbol in the first list is bound to the corresponding value in the second list (or made unbound if VALUES is shorter than SYMBOLS); then the BODY forms are executed and their result is returned. This is much like a `let' form, except that the list of symbols can be computed at run-time. \(fn SYMBOLS VALUES &rest BODY)" nil (quote macro)) (autoload (quote flet) "cl-macs" "\ Make temporary function definitions. This is an analogue of `let' that operates on the function cell of FUNC rather than its value cell. The FORMs are evaluated with the specified function definitions in place, then the definitions are undone (the FUNCs go back to their previous definitions, or lack thereof). \(fn ((FUNC ARGLIST BODY...) ...) FORM...)" nil (quote macro)) (autoload (quote labels) "cl-macs" "\ Make temporary function bindings. This is like `flet', except the bindings are lexical instead of dynamic. Unlike `flet', this macro is fully compliant with the Common Lisp standard. \(fn ((FUNC ARGLIST BODY...) ...) FORM...)" nil (quote macro)) (autoload (quote macrolet) "cl-macs" "\ Make temporary macro definitions. This is like `flet', but for macros instead of functions. \(fn ((NAME ARGLIST BODY...) ...) FORM...)" nil (quote macro)) (autoload (quote symbol-macrolet) "cl-macs" "\ Make symbol macro definitions. Within the body FORMs, references to the variable NAME will be replaced by EXPANSION, and (setq NAME ...) will act like (setf EXPANSION ...). \(fn ((NAME EXPANSION) ...) FORM...)" nil (quote macro)) (autoload (quote lexical-let) "cl-macs" "\ Like `let', but lexically scoped. The main visible difference is that lambdas inside BODY will create lexical closures as in Common Lisp. \(fn VARLIST BODY)" nil (quote macro)) (autoload (quote lexical-let*) "cl-macs" "\ Like `let*', but lexically scoped. The main visible difference is that lambdas inside BODY will create lexical closures as in Common Lisp. \(fn VARLIST BODY)" nil (quote macro)) (autoload (quote multiple-value-bind) "cl-macs" "\ Collect multiple return values. FORM must return a list; the BODY is then executed with the first N elements of this list bound (`let'-style) to each of the symbols SYM in turn. This is analogous to the Common Lisp `multiple-value-bind' macro, using lists to simulate true multiple return values. For compatibility, (values A B C) is a synonym for (list A B C). \(fn (SYM...) FORM BODY)" nil (quote macro)) (autoload (quote multiple-value-setq) "cl-macs" "\ Collect multiple return values. FORM must return a list; the first N elements of this list are stored in each of the symbols SYM in turn. This is analogous to the Common Lisp `multiple-value-setq' macro, using lists to simulate true multiple return values. For compatibility, (values A B C) is a synonym for (list A B C). \(fn (SYM...) FORM)" nil (quote macro)) (autoload (quote locally) "cl-macs" "\ Not documented \(fn &rest BODY)" nil (quote macro)) (autoload (quote the) "cl-macs" "\ Not documented \(fn TYPE FORM)" nil (quote macro)) (autoload (quote declare) "cl-macs" "\ Not documented \(fn &rest SPECS)" nil (quote macro)) (autoload (quote define-setf-method) "cl-macs" "\ Define a `setf' method. This method shows how to handle `setf's to places of the form (NAME ARGS...). The argument forms ARGS are bound according to ARGLIST, as if NAME were going to be expanded as a macro, then the BODY forms are executed and must return a list of five elements: a temporary-variables list, a value-forms list, a store-variables list (of length one), a store-form, and an access- form. See `defsetf' for a simpler way to define most setf-methods. \(fn NAME ARGLIST BODY...)" nil (quote macro)) (autoload (quote defsetf) "cl-macs" "\ Define a `setf' method. This macro is an easy-to-use substitute for `define-setf-method' that works well for simple place forms. In the simple `defsetf' form, `setf's of the form (setf (NAME ARGS...) VAL) are transformed to function or macro calls of the form (FUNC ARGS... VAL). Example: (defsetf aref aset) Alternate form: (defsetf NAME ARGLIST (STORE) BODY...). Here, the above `setf' call is expanded by binding the argument forms ARGS according to ARGLIST, binding the value form VAL to STORE, then executing BODY, which must return a Lisp form that does the necessary `setf' operation. Actually, ARGLIST and STORE may be bound to temporary variables which are introduced automatically to preserve proper execution order of the arguments. Example: (defsetf nth (n x) (v) (list 'setcar (list 'nthcdr n x) v)) \(fn NAME [FUNC | ARGLIST (STORE) BODY...])" nil (quote macro)) (autoload (quote get-setf-method) "cl-macs" "\ Return a list of five values describing the setf-method for PLACE. PLACE may be any Lisp form which can appear as the PLACE argument to a macro like `setf' or `incf'. \(fn PLACE &optional ENV)" nil nil) (autoload (quote setf) "cl-macs" "\ Set each PLACE to the value of its VAL. This is a generalized version of `setq'; the PLACEs may be symbolic references such as (car x) or (aref x i), as well as plain symbols. For example, (setf (cadar x) y) is equivalent to (setcar (cdar x) y). The return value is the last VAL in the list. \(fn PLACE VAL PLACE VAL ...)" nil (quote macro)) (autoload (quote psetf) "cl-macs" "\ Set PLACEs to the values VALs in parallel. This is like `setf', except that all VAL forms are evaluated (in order) before assigning any PLACEs to the corresponding values. \(fn PLACE VAL PLACE VAL ...)" nil (quote macro)) (autoload (quote cl-do-pop) "cl-macs" "\ Not documented \(fn PLACE)" nil nil) (autoload (quote remf) "cl-macs" "\ Remove TAG from property list PLACE. PLACE may be a symbol, or any generalized variable allowed by `setf'. The form returns true if TAG was found and removed, nil otherwise. \(fn PLACE TAG)" nil (quote macro)) (autoload (quote shiftf) "cl-macs" "\ Shift left among PLACEs. Example: (shiftf A B C) sets A to B, B to C, and returns the old A. Each PLACE may be a symbol, or any generalized variable allowed by `setf'. \(fn PLACE... VAL)" nil (quote macro)) (autoload (quote rotatef) "cl-macs" "\ Rotate left among PLACEs. Example: (rotatef A B C) sets A to B, B to C, and C to A. It returns nil. Each PLACE may be a symbol, or any generalized variable allowed by `setf'. \(fn PLACE...)" nil (quote macro)) (autoload (quote letf) "cl-macs" "\ Temporarily bind to PLACEs. This is the analogue of `let', but with generalized variables (in the sense of `setf') for the PLACEs. Each PLACE is set to the corresponding VALUE, then the BODY forms are executed. On exit, either normally or because of a `throw' or error, the PLACEs are set back to their original values. Note that this macro is *not* available in Common Lisp. As a special case, if `(PLACE)' is used instead of `(PLACE VALUE)', the PLACE is not modified before executing BODY. \(fn ((PLACE VALUE) ...) BODY...)" nil (quote macro)) (autoload (quote letf*) "cl-macs" "\ Temporarily bind to PLACEs. This is the analogue of `let*', but with generalized variables (in the sense of `setf') for the PLACEs. Each PLACE is set to the corresponding VALUE, then the BODY forms are executed. On exit, either normally or because of a `throw' or error, the PLACEs are set back to their original values. Note that this macro is *not* available in Common Lisp. As a special case, if `(PLACE)' is used instead of `(PLACE VALUE)', the PLACE is not modified before executing BODY. \(fn ((PLACE VALUE) ...) BODY...)" nil (quote macro)) (autoload (quote callf) "cl-macs" "\ Set PLACE to (FUNC PLACE ARGS...). FUNC should be an unquoted function name. PLACE may be a symbol, or any generalized variable allowed by `setf'. \(fn FUNC PLACE ARGS...)" nil (quote macro)) (autoload (quote callf2) "cl-macs" "\ Set PLACE to (FUNC ARG1 PLACE ARGS...). Like `callf', but PLACE is the second argument of FUNC, not the first. \(fn FUNC ARG1 PLACE ARGS...)" nil (quote macro)) (autoload (quote define-modify-macro) "cl-macs" "\ Define a `setf'-like modify macro. If NAME is called, it combines its PLACE argument with the other arguments from ARGLIST using FUNC: (define-modify-macro incf (&optional (n 1)) +) \(fn NAME ARGLIST FUNC &optional DOC)" nil (quote macro)) (autoload (quote defstruct) "cl-macs" "\ Define a struct type. This macro defines a new Lisp data type called NAME, which contains data stored in SLOTs. This defines a `make-NAME' constructor, a `copy-NAME' copier, a `NAME-p' predicate, and setf-able `NAME-SLOT' accessors. \(fn (NAME OPTIONS...) (SLOT SLOT-OPTS...)...)" nil (quote macro)) (autoload (quote cl-struct-setf-expander) "cl-macs" "\ Not documented \(fn X NAME ACCESSOR PRED-FORM POS)" nil nil) (autoload (quote typep) "cl-macs" "\ Check that OBJECT is of type TYPE. TYPE is a Common Lisp-style type specifier. \(fn OBJECT TYPE)" nil nil) (autoload (quote check-type) "cl-macs" "\ Verify that FORM is of type TYPE; signal an error if not. STRING is an optional description of the desired type. \(fn FORM TYPE &optional STRING)" nil (quote macro)) (autoload (quote assert) "cl-macs" "\ Verify that FORM returns non-nil; signal an error if not. Second arg SHOW-ARGS means to include arguments of FORM in message. Other args STRING and ARGS... are arguments to be passed to `error'. They are not evaluated unless the assertion fails. If STRING is omitted, a default message listing FORM itself is used. \(fn FORM &optional SHOW-ARGS STRING &rest ARGS)" nil (quote macro)) (autoload (quote ignore-errors) "cl-macs" "\ Execute BODY; if an error occurs, return nil. Otherwise, return result of last form in BODY. \(fn &rest BODY)" nil (quote macro)) (autoload (quote define-compiler-macro) "cl-macs" "\ Define a compiler-only macro. This is like `defmacro', but macro expansion occurs only if the call to FUNC is compiled (i.e., not interpreted). Compiler macros should be used for optimizing the way calls to FUNC are compiled; the form returned by BODY should do the same thing as a call to the normal function called FUNC, though possibly more efficiently. Note that, like regular macros, compiler macros are expanded repeatedly until no further expansions are possible. Unlike regular macros, BODY can decide to \"punt\" and leave the original function call alone by declaring an initial `&whole foo' parameter and then returning foo. \(fn FUNC ARGS &rest BODY)" nil (quote macro)) (autoload (quote compiler-macroexpand) "cl-macs" "\ Not documented \(fn FORM)" nil nil) ;;;*** ;;;### (autoloads (tree-equal nsublis sublis nsubst-if-not nsubst-if ;;;;;; nsubst subst-if-not subst-if subsetp nset-exclusive-or set-exclusive-or ;;;;;; nset-difference set-difference nintersection intersection ;;;;;; nunion union rassoc-if-not rassoc-if rassoc* assoc-if-not ;;;;;; assoc-if assoc* cl-adjoin member-if-not member-if member* ;;;;;; merge stable-sort sort* search mismatch count-if-not count-if ;;;;;; count position-if-not position-if position find-if-not find-if ;;;;;; find nsubstitute-if-not nsubstitute-if nsubstitute substitute-if-not ;;;;;; substitute-if substitute delete-duplicates remove-duplicates ;;;;;; delete-if-not delete-if delete* remove-if-not remove-if remove* ;;;;;; replace fill reduce) "cl-seq" "cl-seq.el" "8805f76626399794931f5db36ddf855f") ;;; Generated autoloads from cl-seq.el (autoload (quote reduce) "cl-seq" "\ Reduce two-argument FUNCTION across SEQ. Keywords supported: :start :end :from-end :initial-value :key \(fn FUNCTION SEQ [KEYWORD VALUE]...)" nil nil) (autoload (quote fill) "cl-seq" "\ Fill the elements of SEQ with ITEM. Keywords supported: :start :end \(fn SEQ ITEM [KEYWORD VALUE]...)" nil nil) (autoload (quote replace) "cl-seq" "\ Replace the elements of SEQ1 with the elements of SEQ2. SEQ1 is destructively modified, then returned. Keywords supported: :start1 :end1 :start2 :end2 \(fn SEQ1 SEQ2 [KEYWORD VALUE]...)" nil nil) (autoload (quote remove*) "cl-seq" "\ Remove all occurrences of ITEM in SEQ. This is a non-destructive function; it makes a copy of SEQ if necessary to avoid corrupting the original SEQ. Keywords supported: :test :test-not :key :count :start :end :from-end \(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil) (autoload (quote remove-if) "cl-seq" "\ Remove all items satisfying PREDICATE in SEQ. This is a non-destructive function; it makes a copy of SEQ if necessary to avoid corrupting the original SEQ. Keywords supported: :key :count :start :end :from-end \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil) (autoload (quote remove-if-not) "cl-seq" "\ Remove all items not satisfying PREDICATE in SEQ. This is a non-destructive function; it makes a copy of SEQ if necessary to avoid corrupting the original SEQ. Keywords supported: :key :count :start :end :from-end \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil) (autoload (quote delete*) "cl-seq" "\ Remove all occurrences of ITEM in SEQ. This is a destructive function; it reuses the storage of SEQ whenever possible. Keywords supported: :test :test-not :key :count :start :end :from-end \(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil) (autoload (quote delete-if) "cl-seq" "\ Remove all items satisfying PREDICATE in SEQ. This is a destructive function; it reuses the storage of SEQ whenever possible. Keywords supported: :key :count :start :end :from-end \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil) (autoload (quote delete-if-not) "cl-seq" "\ Remove all items not satisfying PREDICATE in SEQ. This is a destructive function; it reuses the storage of SEQ whenever possible. Keywords supported: :key :count :start :end :from-end \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil) (autoload (quote remove-duplicates) "cl-seq" "\ Return a copy of SEQ with all duplicate elements removed. Keywords supported: :test :test-not :key :start :end :from-end \(fn SEQ [KEYWORD VALUE]...)" nil nil) (autoload (quote delete-duplicates) "cl-seq" "\ Remove all duplicate elements from SEQ (destructively). Keywords supported: :test :test-not :key :start :end :from-end \(fn SEQ [KEYWORD VALUE]...)" nil nil) (autoload (quote substitute) "cl-seq" "\ Substitute NEW for OLD in SEQ. This is a non-destructive function; it makes a copy of SEQ if necessary to avoid corrupting the original SEQ. Keywords supported: :test :test-not :key :count :start :end :from-end \(fn NEW OLD SEQ [KEYWORD VALUE]...)" nil nil) (autoload (quote substitute-if) "cl-seq" "\ Substitute NEW for all items satisfying PREDICATE in SEQ. This is a non-destructive function; it makes a copy of SEQ if necessary to avoid corrupting the original SEQ. Keywords supported: :key :count :start :end :from-end \(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)" nil nil) (autoload (quote substitute-if-not) "cl-seq" "\ Substitute NEW for all items not satisfying PREDICATE in SEQ. This is a non-destructive function; it makes a copy of SEQ if necessary to avoid corrupting the original SEQ. Keywords supported: :key :count :start :end :from-end \(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)" nil nil) (autoload (quote nsubstitute) "cl-seq" "\ Substitute NEW for OLD in SEQ. This is a destructive function; it reuses the storage of SEQ whenever possible. Keywords supported: :test :test-not :key :count :start :end :from-end \(fn NEW OLD SEQ [KEYWORD VALUE]...)" nil nil) (autoload (quote nsubstitute-if) "cl-seq" "\ Substitute NEW for all items satisfying PREDICATE in SEQ. This is a destructive function; it reuses the storage of SEQ whenever possible. Keywords supported: :key :count :start :end :from-end \(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)" nil nil) (autoload (quote nsubstitute-if-not) "cl-seq" "\ Substitute NEW for all items not satisfying PREDICATE in SEQ. This is a destructive function; it reuses the storage of SEQ whenever possible. Keywords supported: :key :count :start :end :from-end \(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)" nil nil) (autoload (quote find) "cl-seq" "\ Find the first occurrence of ITEM in SEQ. Return the matching ITEM, or nil if not found. Keywords supported: :test :test-not :key :start :end :from-end \(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil) (autoload (quote find-if) "cl-seq" "\ Find the first item satisfying PREDICATE in SEQ. Return the matching item, or nil if not found. Keywords supported: :key :start :end :from-end \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil) (autoload (quote find-if-not) "cl-seq" "\ Find the first item not satisfying PREDICATE in SEQ. Return the matching item, or nil if not found. Keywords supported: :key :start :end :from-end \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil) (autoload (quote position) "cl-seq" "\ Find the first occurrence of ITEM in SEQ. Return the index of the matching item, or nil if not found. Keywords supported: :test :test-not :key :start :end :from-end \(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil) (autoload (quote position-if) "cl-seq" "\ Find the first item satisfying PREDICATE in SEQ. Return the index of the matching item, or nil if not found. Keywords supported: :key :start :end :from-end \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil) (autoload (quote position-if-not) "cl-seq" "\ Find the first item not satisfying PREDICATE in SEQ. Return the index of the matching item, or nil if not found. Keywords supported: :key :start :end :from-end \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil) (autoload (quote count) "cl-seq" "\ Count the number of occurrences of ITEM in SEQ. Keywords supported: :test :test-not :key :start :end \(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil) (autoload (quote count-if) "cl-seq" "\ Count the number of items satisfying PREDICATE in SEQ. Keywords supported: :key :start :end \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil) (autoload (quote count-if-not) "cl-seq" "\ Count the number of items not satisfying PREDICATE in SEQ. Keywords supported: :key :start :end \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil) (autoload (quote mismatch) "cl-seq" "\ Compare SEQ1 with SEQ2, return index of first mismatching element. Return nil if the sequences match. If one sequence is a prefix of the other, the return value indicates the end of the shorter sequence. Keywords supported: :test :test-not :key :start1 :end1 :start2 :end2 :from-end \(fn SEQ1 SEQ2 [KEYWORD VALUE]...)" nil nil) (autoload (quote search) "cl-seq" "\ Search for SEQ1 as a subsequence of SEQ2. Return the index of the leftmost element of the first match found; return nil if there are no matches. Keywords supported: :test :test-not :key :start1 :end1 :start2 :end2 :from-end \(fn SEQ1 SEQ2 [KEYWORD VALUE]...)" nil nil) (autoload (quote sort*) "cl-seq" "\ Sort the argument SEQ according to PREDICATE. This is a destructive function; it reuses the storage of SEQ if possible. Keywords supported: :key \(fn SEQ PREDICATE [KEYWORD VALUE]...)" nil nil) (autoload (quote stable-sort) "cl-seq" "\ Sort the argument SEQ stably according to PREDICATE. This is a destructive function; it reuses the storage of SEQ if possible. Keywords supported: :key \(fn SEQ PREDICATE [KEYWORD VALUE]...)" nil nil) (autoload (quote merge) "cl-seq" "\ Destructively merge the two sequences to produce a new sequence. TYPE is the sequence type to return, SEQ1 and SEQ2 are the two argument sequences, and PREDICATE is a `less-than' predicate on the elements. Keywords supported: :key \(fn TYPE SEQ1 SEQ2 PREDICATE [KEYWORD VALUE]...)" nil nil) (autoload (quote member*) "cl-seq" "\ Find the first occurrence of ITEM in LIST. Return the sublist of LIST whose car is ITEM. Keywords supported: :test :test-not :key \(fn ITEM LIST [KEYWORD VALUE]...)" nil nil) (autoload (quote member-if) "cl-seq" "\ Find the first item satisfying PREDICATE in LIST. Return the sublist of LIST whose car matches. Keywords supported: :key \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil) (autoload (quote member-if-not) "cl-seq" "\ Find the first item not satisfying PREDICATE in LIST. Return the sublist of LIST whose car matches. Keywords supported: :key \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil) (autoload (quote cl-adjoin) "cl-seq" "\ Not documented \(fn CL-ITEM CL-LIST &rest CL-KEYS)" nil nil) (autoload (quote assoc*) "cl-seq" "\ Find the first item whose car matches ITEM in LIST. Keywords supported: :test :test-not :key \(fn ITEM LIST [KEYWORD VALUE]...)" nil nil) (autoload (quote assoc-if) "cl-seq" "\ Find the first item whose car satisfies PREDICATE in LIST. Keywords supported: :key \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil) (autoload (quote assoc-if-not) "cl-seq" "\ Find the first item whose car does not satisfy PREDICATE in LIST. Keywords supported: :key \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil) (autoload (quote rassoc*) "cl-seq" "\ Find the first item whose cdr matches ITEM in LIST. Keywords supported: :test :test-not :key \(fn ITEM LIST [KEYWORD VALUE]...)" nil nil) (autoload (quote rassoc-if) "cl-seq" "\ Find the first item whose cdr satisfies PREDICATE in LIST. Keywords supported: :key \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil) (autoload (quote rassoc-if-not) "cl-seq" "\ Find the first item whose cdr does not satisfy PREDICATE in LIST. Keywords supported: :key \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil) (autoload (quote union) "cl-seq" "\ Combine LIST1 and LIST2 using a set-union operation. The result list contains all items that appear in either LIST1 or LIST2. This is a non-destructive function; it makes a copy of the data if necessary to avoid corrupting the original LIST1 and LIST2. Keywords supported: :test :test-not :key \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil) (autoload (quote nunion) "cl-seq" "\ Combine LIST1 and LIST2 using a set-union operation. The result list contains all items that appear in either LIST1 or LIST2. This is a destructive function; it reuses the storage of LIST1 and LIST2 whenever possible. Keywords supported: :test :test-not :key \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil) (autoload (quote intersection) "cl-seq" "\ Combine LIST1 and LIST2 using a set-intersection operation. The result list contains all items that appear in both LIST1 and LIST2. This is a non-destructive function; it makes a copy of the data if necessary to avoid corrupting the original LIST1 and LIST2. Keywords supported: :test :test-not :key \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil) (autoload (quote nintersection) "cl-seq" "\ Combine LIST1 and LIST2 using a set-intersection operation. The result list contains all items that appear in both LIST1 and LIST2. This is a destructive function; it reuses the storage of LIST1 and LIST2 whenever possible. Keywords supported: :test :test-not :key \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil) (autoload (quote set-difference) "cl-seq" "\ Combine LIST1 and LIST2 using a set-difference operation. The result list contains all items that appear in LIST1 but not LIST2. This is a non-destructive function; it makes a copy of the data if necessary to avoid corrupting the original LIST1 and LIST2. Keywords supported: :test :test-not :key \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil) (autoload (quote nset-difference) "cl-seq" "\ Combine LIST1 and LIST2 using a set-difference operation. The result list contains all items that appear in LIST1 but not LIST2. This is a destructive function; it reuses the storage of LIST1 and LIST2 whenever possible. Keywords supported: :test :test-not :key \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil) (autoload (quote set-exclusive-or) "cl-seq" "\ Combine LIST1 and LIST2 using a set-exclusive-or operation. The result list contains all items that appear in exactly one of LIST1, LIST2. This is a non-destructive function; it makes a copy of the data if necessary to avoid corrupting the original LIST1 and LIST2. Keywords supported: :test :test-not :key \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil) (autoload (quote nset-exclusive-or) "cl-seq" "\ Combine LIST1 and LIST2 using a set-exclusive-or operation. The result list contains all items that appear in exactly one of LIST1, LIST2. This is a destructive function; it reuses the storage of LIST1 and LIST2 whenever possible. Keywords supported: :test :test-not :key \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil) (autoload (quote subsetp) "cl-seq" "\ Return true if LIST1 is a subset of LIST2. I.e., if every element of LIST1 also appears in LIST2. Keywords supported: :test :test-not :key \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil) (autoload (quote subst-if) "cl-seq" "\ Substitute NEW for elements matching PREDICATE in TREE (non-destructively). Return a copy of TREE with all matching elements replaced by NEW. Keywords supported: :key \(fn NEW PREDICATE TREE [KEYWORD VALUE]...)" nil nil) (autoload (quote subst-if-not) "cl-seq" "\ Substitute NEW for elts not matching PREDICATE in TREE (non-destructively). Return a copy of TREE with all non-matching elements replaced by NEW. Keywords supported: :key \(fn NEW PREDICATE TREE [KEYWORD VALUE]...)" nil nil) (autoload (quote nsubst) "cl-seq" "\ Substitute NEW for OLD everywhere in TREE (destructively). Any element of TREE which is `eql' to OLD is changed to NEW (via a call to `setcar'). Keywords supported: :test :test-not :key \(fn NEW OLD TREE [KEYWORD VALUE]...)" nil nil) (autoload (quote nsubst-if) "cl-seq" "\ Substitute NEW for elements matching PREDICATE in TREE (destructively). Any element of TREE which matches is changed to NEW (via a call to `setcar'). Keywords supported: :key \(fn NEW PREDICATE TREE [KEYWORD VALUE]...)" nil nil) (autoload (quote nsubst-if-not) "cl-seq" "\ Substitute NEW for elements not matching PREDICATE in TREE (destructively). Any element of TREE which matches is changed to NEW (via a call to `setcar'). Keywords supported: :key \(fn NEW PREDICATE TREE [KEYWORD VALUE]...)" nil nil) (autoload (quote sublis) "cl-seq" "\ Perform substitutions indicated by ALIST in TREE (non-destructively). Return a copy of TREE with all matching elements replaced. Keywords supported: :test :test-not :key \(fn ALIST TREE [KEYWORD VALUE]...)" nil nil) (autoload (quote nsublis) "cl-seq" "\ Perform substitutions indicated by ALIST in TREE (destructively). Any matching element of TREE is changed via a call to `setcar'. Keywords supported: :test :test-not :key \(fn ALIST TREE [KEYWORD VALUE]...)" nil nil) (autoload (quote tree-equal) "cl-seq" "\ Return t if trees TREE1 and TREE2 have `eql' leaves. Atoms are compared by `eql'; cons cells are compared recursively. Keywords supported: :test :test-not :key \(fn TREE1 TREE2 [KEYWORD VALUE]...)" nil nil) ;;;*** ;; Local Variables: ;; version-control: never ;; no-byte-compile: t ;; no-update-autoloads: t ;; End: ;; arch-tag: 08cc5aab-e992-47f6-992e-12a7428c1a0e ;;; cl-loaddefs.el ends here