9e0099bb649c400ffe80879c87c4ffcf0131c009
[bpt/emacs.git] / lisp / emacs-lisp / cl-loaddefs.el
1 ;;; cl-loaddefs.el --- automatically extracted autoloads
2 ;;
3 ;;; Code:
4
5 \f
6 ;;;### (autoloads (cl-prettyexpand cl-macroexpand-all cl-remprop
7 ;;;;;; cl-do-remf cl-set-getf getf get* tailp list-length nreconc
8 ;;;;;; revappend concatenate subseq cl-float-limits random-state-p
9 ;;;;;; make-random-state random* signum rem* mod* round* truncate*
10 ;;;;;; ceiling* floor* isqrt lcm gcd cl-progv-before cl-set-frame-visible-p
11 ;;;;;; cl-map-overlays cl-map-intervals cl-map-keymap-recursively
12 ;;;;;; notevery notany every some mapcon mapcan mapl maplist map
13 ;;;;;; cl-mapcar-many equalp coerce) "cl-extra" "cl-extra.el" "5a8a7f7ec2dc453113b8cbda577f2acb")
14 ;;; Generated autoloads from cl-extra.el
15
16 (autoload 'coerce "cl-extra" "\
17 Coerce OBJECT to type TYPE.
18 TYPE is a Common Lisp type specifier.
19
20 \(fn OBJECT TYPE)" nil nil)
21
22 (autoload 'equalp "cl-extra" "\
23 Return t if two Lisp objects have similar structures and contents.
24 This is like `equal', except that it accepts numerically equal
25 numbers of different types (float vs. integer), and also compares
26 strings case-insensitively.
27
28 \(fn X Y)" nil nil)
29
30 (autoload 'cl-mapcar-many "cl-extra" "\
31
32
33 \(fn CL-FUNC CL-SEQS)" nil nil)
34
35 (autoload 'map "cl-extra" "\
36 Map a FUNCTION across one or more SEQUENCEs, returning a sequence.
37 TYPE is the sequence type to return.
38
39 \(fn TYPE FUNCTION SEQUENCE...)" nil nil)
40
41 (autoload 'maplist "cl-extra" "\
42 Map FUNCTION to each sublist of LIST or LISTs.
43 Like `mapcar', except applies to lists and their cdr's rather than to
44 the elements themselves.
45
46 \(fn FUNCTION LIST...)" nil nil)
47
48 (autoload 'mapl "cl-extra" "\
49 Like `maplist', but does not accumulate values returned by the function.
50
51 \(fn FUNCTION LIST...)" nil nil)
52
53 (autoload 'mapcan "cl-extra" "\
54 Like `mapcar', but nconc's together the values returned by the function.
55
56 \(fn FUNCTION SEQUENCE...)" nil nil)
57
58 (autoload 'mapcon "cl-extra" "\
59 Like `maplist', but nconc's together the values returned by the function.
60
61 \(fn FUNCTION LIST...)" nil nil)
62
63 (autoload 'some "cl-extra" "\
64 Return true if PREDICATE is true of any element of SEQ or SEQs.
65 If so, return the true (non-nil) value returned by PREDICATE.
66
67 \(fn PREDICATE SEQ...)" nil nil)
68
69 (autoload 'every "cl-extra" "\
70 Return true if PREDICATE is true of every element of SEQ or SEQs.
71
72 \(fn PREDICATE SEQ...)" nil nil)
73
74 (autoload 'notany "cl-extra" "\
75 Return true if PREDICATE is false of every element of SEQ or SEQs.
76
77 \(fn PREDICATE SEQ...)" nil nil)
78
79 (autoload 'notevery "cl-extra" "\
80 Return true if PREDICATE is false of some element of SEQ or SEQs.
81
82 \(fn PREDICATE SEQ...)" nil nil)
83
84 (defalias 'cl-map-keymap 'map-keymap)
85
86 (autoload 'cl-map-keymap-recursively "cl-extra" "\
87
88
89 \(fn CL-FUNC-REC CL-MAP &optional CL-BASE)" nil nil)
90
91 (autoload 'cl-map-intervals "cl-extra" "\
92
93
94 \(fn CL-FUNC &optional CL-WHAT CL-PROP CL-START CL-END)" nil nil)
95
96 (autoload 'cl-map-overlays "cl-extra" "\
97
98
99 \(fn CL-FUNC &optional CL-BUFFER CL-START CL-END CL-ARG)" nil nil)
100
101 (autoload 'cl-set-frame-visible-p "cl-extra" "\
102
103
104 \(fn FRAME VAL)" nil nil)
105
106 (autoload 'cl-progv-before "cl-extra" "\
107
108
109 \(fn SYMS VALUES)" nil nil)
110
111 (autoload 'gcd "cl-extra" "\
112 Return the greatest common divisor of the arguments.
113
114 \(fn &rest ARGS)" nil nil)
115
116 (autoload 'lcm "cl-extra" "\
117 Return the least common multiple of the arguments.
118
119 \(fn &rest ARGS)" nil nil)
120
121 (autoload 'isqrt "cl-extra" "\
122 Return the integer square root of the argument.
123
124 \(fn X)" nil nil)
125
126 (autoload 'floor* "cl-extra" "\
127 Return a list of the floor of X and the fractional part of X.
128 With two arguments, return floor and remainder of their quotient.
129
130 \(fn X &optional Y)" nil nil)
131
132 (autoload 'ceiling* "cl-extra" "\
133 Return a list of the ceiling of X and the fractional part of X.
134 With two arguments, return ceiling and remainder of their quotient.
135
136 \(fn X &optional Y)" nil nil)
137
138 (autoload 'truncate* "cl-extra" "\
139 Return a list of the integer part of X and the fractional part of X.
140 With two arguments, return truncation and remainder of their quotient.
141
142 \(fn X &optional Y)" nil nil)
143
144 (autoload 'round* "cl-extra" "\
145 Return a list of X rounded to the nearest integer and the remainder.
146 With two arguments, return rounding and remainder of their quotient.
147
148 \(fn X &optional Y)" nil nil)
149
150 (autoload 'mod* "cl-extra" "\
151 The remainder of X divided by Y, with the same sign as Y.
152
153 \(fn X Y)" nil nil)
154
155 (autoload 'rem* "cl-extra" "\
156 The remainder of X divided by Y, with the same sign as X.
157
158 \(fn X Y)" nil nil)
159
160 (autoload 'signum "cl-extra" "\
161 Return 1 if X is positive, -1 if negative, 0 if zero.
162
163 \(fn X)" nil nil)
164
165 (autoload 'random* "cl-extra" "\
166 Return a random nonnegative number less than LIM, an integer or float.
167 Optional second arg STATE is a random-state object.
168
169 \(fn LIM &optional STATE)" nil nil)
170
171 (autoload 'make-random-state "cl-extra" "\
172 Return a copy of random-state STATE, or of `*random-state*' if omitted.
173 If STATE is t, return a new state object seeded from the time of day.
174
175 \(fn &optional STATE)" nil nil)
176
177 (autoload 'random-state-p "cl-extra" "\
178 Return t if OBJECT is a random-state object.
179
180 \(fn OBJECT)" nil nil)
181
182 (autoload 'cl-float-limits "cl-extra" "\
183 Initialize the Common Lisp floating-point parameters.
184 This sets the values of: `most-positive-float', `most-negative-float',
185 `least-positive-float', `least-negative-float', `float-epsilon',
186 `float-negative-epsilon', `least-positive-normalized-float', and
187 `least-negative-normalized-float'.
188
189 \(fn)" nil nil)
190
191 (autoload 'subseq "cl-extra" "\
192 Return the subsequence of SEQ from START to END.
193 If END is omitted, it defaults to the length of the sequence.
194 If START or END is negative, it counts from the end.
195
196 \(fn SEQ START &optional END)" nil nil)
197
198 (autoload 'concatenate "cl-extra" "\
199 Concatenate, into a sequence of type TYPE, the argument SEQUENCEs.
200
201 \(fn TYPE SEQUENCE...)" nil nil)
202
203 (autoload 'revappend "cl-extra" "\
204 Equivalent to (append (reverse X) Y).
205
206 \(fn X Y)" nil nil)
207
208 (autoload 'nreconc "cl-extra" "\
209 Equivalent to (nconc (nreverse X) Y).
210
211 \(fn X Y)" nil nil)
212
213 (autoload 'list-length "cl-extra" "\
214 Return the length of list X. Return nil if list is circular.
215
216 \(fn X)" nil nil)
217
218 (autoload 'tailp "cl-extra" "\
219 Return true if SUBLIST is a tail of LIST.
220
221 \(fn SUBLIST LIST)" nil nil)
222
223 (autoload 'get* "cl-extra" "\
224 Return the value of SYMBOL's PROPNAME property, or DEFAULT if none.
225
226 \(fn SYMBOL PROPNAME &optional DEFAULT)" nil nil)
227
228 (autoload 'getf "cl-extra" "\
229 Search PROPLIST for property PROPNAME; return its value or DEFAULT.
230 PROPLIST is a list of the sort returned by `symbol-plist'.
231
232 \(fn PROPLIST PROPNAME &optional DEFAULT)" nil nil)
233
234 (autoload 'cl-set-getf "cl-extra" "\
235
236
237 \(fn PLIST TAG VAL)" nil nil)
238
239 (autoload 'cl-do-remf "cl-extra" "\
240
241
242 \(fn PLIST TAG)" nil nil)
243
244 (autoload 'cl-remprop "cl-extra" "\
245 Remove from SYMBOL's plist the property PROPNAME and its value.
246
247 \(fn SYMBOL PROPNAME)" nil nil)
248
249 (defalias 'remprop 'cl-remprop)
250
251 (defalias 'cl-gethash 'gethash)
252
253 (defalias 'cl-puthash 'puthash)
254
255 (defalias 'cl-remhash 'remhash)
256
257 (defalias 'cl-clrhash 'clrhash)
258
259 (defalias 'cl-maphash 'maphash)
260
261 (defalias 'cl-make-hash-table 'make-hash-table)
262
263 (defalias 'cl-hash-table-p 'hash-table-p)
264
265 (defalias 'cl-hash-table-count 'hash-table-count)
266
267 (autoload 'cl-macroexpand-all "cl-extra" "\
268 Expand all macro calls through a Lisp FORM.
269 This also does some trivial optimizations to make the form prettier.
270
271 \(fn FORM &optional ENV)" nil nil)
272
273 (autoload 'cl-prettyexpand "cl-extra" "\
274
275
276 \(fn FORM &optional FULL)" nil nil)
277
278 ;;;***
279 \f
280 ;;;### (autoloads (defsubst* compiler-macroexpand define-compiler-macro
281 ;;;;;; assert check-type typep deftype cl-struct-setf-expander defstruct
282 ;;;;;; define-modify-macro callf2 callf letf* letf rotatef shiftf
283 ;;;;;; remf cl-do-pop psetf setf get-setf-method defsetf define-setf-method
284 ;;;;;; declare the locally multiple-value-setq multiple-value-bind
285 ;;;;;; lexical-let* lexical-let symbol-macrolet macrolet labels
286 ;;;;;; flet progv psetq do-all-symbols do-symbols dotimes dolist
287 ;;;;;; do* do loop return-from return block etypecase typecase ecase
288 ;;;;;; case load-time-value eval-when destructuring-bind function*
289 ;;;;;; defmacro* defun* gentemp gensym) "cl-macs" "cl-macs.el" "91b45885535a73dd8015973cb8c988e1")
290 ;;; Generated autoloads from cl-macs.el
291
292 (autoload 'gensym "cl-macs" "\
293 Generate a new uninterned symbol.
294 The name is made by appending a number to PREFIX, default \"G\".
295
296 \(fn &optional PREFIX)" nil nil)
297
298 (autoload 'gentemp "cl-macs" "\
299 Generate a new interned symbol with a unique name.
300 The name is made by appending a number to PREFIX, default \"G\".
301
302 \(fn &optional PREFIX)" nil nil)
303
304 (autoload 'defun* "cl-macs" "\
305 Define NAME as a function.
306 Like normal `defun', except ARGLIST allows full Common Lisp conventions,
307 and BODY is implicitly surrounded by (block NAME ...).
308
309 \(fn NAME ARGLIST [DOCSTRING] BODY...)" nil (quote macro))
310
311 (autoload 'defmacro* "cl-macs" "\
312 Define NAME as a macro.
313 Like normal `defmacro', except ARGLIST allows full Common Lisp conventions,
314 and BODY is implicitly surrounded by (block NAME ...).
315
316 \(fn NAME ARGLIST [DOCSTRING] BODY...)" nil (quote macro))
317
318 (autoload 'function* "cl-macs" "\
319 Introduce a function.
320 Like normal `function', except that if argument is a lambda form,
321 its argument list allows full Common Lisp conventions.
322
323 \(fn FUNC)" nil (quote macro))
324
325 (autoload 'destructuring-bind "cl-macs" "\
326
327
328 \(fn ARGS EXPR &rest BODY)" nil (quote macro))
329
330 (autoload 'eval-when "cl-macs" "\
331 Control when BODY is evaluated.
332 If `compile' is in WHEN, BODY is evaluated when compiled at top-level.
333 If `load' is in WHEN, BODY is evaluated when loaded after top-level compile.
334 If `eval' is in WHEN, BODY is evaluated when interpreted or at non-top-level.
335
336 \(fn (WHEN...) BODY...)" nil (quote macro))
337
338 (autoload 'load-time-value "cl-macs" "\
339 Like `progn', but evaluates the body at load time.
340 The result of the body appears to the compiler as a quoted constant.
341
342 \(fn FORM &optional READ-ONLY)" nil (quote macro))
343
344 (autoload 'case "cl-macs" "\
345 Eval EXPR and choose among clauses on that value.
346 Each clause looks like (KEYLIST BODY...). EXPR is evaluated and compared
347 against each key in each KEYLIST; the corresponding BODY is evaluated.
348 If no clause succeeds, case returns nil. A single atom may be used in
349 place of a KEYLIST of one atom. A KEYLIST of t or `otherwise' is
350 allowed only in the final clause, and matches if no other keys match.
351 Key values are compared by `eql'.
352
353 \(fn EXPR (KEYLIST BODY...)...)" nil (quote macro))
354
355 (autoload 'ecase "cl-macs" "\
356 Like `case', but error if no case fits.
357 `otherwise'-clauses are not allowed.
358
359 \(fn EXPR (KEYLIST BODY...)...)" nil (quote macro))
360
361 (autoload 'typecase "cl-macs" "\
362 Evals EXPR, chooses among clauses on that value.
363 Each clause looks like (TYPE BODY...). EXPR is evaluated and, if it
364 satisfies TYPE, the corresponding BODY is evaluated. If no clause succeeds,
365 typecase returns nil. A TYPE of t or `otherwise' is allowed only in the
366 final clause, and matches if no other keys match.
367
368 \(fn EXPR (TYPE BODY...)...)" nil (quote macro))
369
370 (autoload 'etypecase "cl-macs" "\
371 Like `typecase', but error if no case fits.
372 `otherwise'-clauses are not allowed.
373
374 \(fn EXPR (TYPE BODY...)...)" nil (quote macro))
375
376 (autoload 'block "cl-macs" "\
377 Define a lexically-scoped block named NAME.
378 NAME may be any symbol. Code inside the BODY forms can call `return-from'
379 to jump prematurely out of the block. This differs from `catch' and `throw'
380 in two respects: First, the NAME is an unevaluated symbol rather than a
381 quoted symbol or other form; and second, NAME is lexically rather than
382 dynamically scoped: Only references to it within BODY will work. These
383 references may appear inside macro expansions, but not inside functions
384 called from BODY.
385
386 \(fn NAME &rest BODY)" nil (quote macro))
387
388 (autoload 'return "cl-macs" "\
389 Return from the block named nil.
390 This is equivalent to `(return-from nil RESULT)'.
391
392 \(fn &optional RESULT)" nil (quote macro))
393
394 (autoload 'return-from "cl-macs" "\
395 Return from the block named NAME.
396 This jumps out to the innermost enclosing `(block NAME ...)' form,
397 returning RESULT from that form (or nil if RESULT is omitted).
398 This is compatible with Common Lisp, but note that `defun' and
399 `defmacro' do not create implicit blocks as they do in Common Lisp.
400
401 \(fn NAME &optional RESULT)" nil (quote macro))
402
403 (autoload 'loop "cl-macs" "\
404 The Common Lisp `loop' macro.
405 Valid clauses are:
406 for VAR from/upfrom/downfrom NUM to/upto/downto/above/below NUM by NUM,
407 for VAR in LIST by FUNC, for VAR on LIST by FUNC, for VAR = INIT then EXPR,
408 for VAR across ARRAY, repeat NUM, with VAR = INIT, while COND, until COND,
409 always COND, never COND, thereis COND, collect EXPR into VAR,
410 append EXPR into VAR, nconc EXPR into VAR, sum EXPR into VAR,
411 count EXPR into VAR, maximize EXPR into VAR, minimize EXPR into VAR,
412 if COND CLAUSE [and CLAUSE]... else CLAUSE [and CLAUSE...],
413 unless COND CLAUSE [and CLAUSE]... else CLAUSE [and CLAUSE...],
414 do EXPRS..., initially EXPRS..., finally EXPRS..., return EXPR,
415 finally return EXPR, named NAME.
416
417 \(fn CLAUSE...)" nil (quote macro))
418
419 (autoload 'do "cl-macs" "\
420 The Common Lisp `do' loop.
421
422 \(fn ((VAR INIT [STEP])...) (END-TEST [RESULT...]) BODY...)" nil (quote macro))
423
424 (autoload 'do* "cl-macs" "\
425 The Common Lisp `do*' loop.
426
427 \(fn ((VAR INIT [STEP])...) (END-TEST [RESULT...]) BODY...)" nil (quote macro))
428
429 (autoload 'dolist "cl-macs" "\
430 Loop over a list.
431 Evaluate BODY with VAR bound to each `car' from LIST, in turn.
432 Then evaluate RESULT to get return value, default nil.
433 An implicit nil block is established around the loop.
434
435 \(fn (VAR LIST [RESULT]) BODY...)" nil (quote macro))
436
437 (autoload 'dotimes "cl-macs" "\
438 Loop a certain number of times.
439 Evaluate BODY with VAR bound to successive integers from 0, inclusive,
440 to COUNT, exclusive. Then evaluate RESULT to get return value, default
441 nil.
442
443 \(fn (VAR COUNT [RESULT]) BODY...)" nil (quote macro))
444
445 (autoload 'do-symbols "cl-macs" "\
446 Loop over all symbols.
447 Evaluate BODY with VAR bound to each interned symbol, or to each symbol
448 from OBARRAY.
449
450 \(fn (VAR [OBARRAY [RESULT]]) BODY...)" nil (quote macro))
451
452 (autoload 'do-all-symbols "cl-macs" "\
453
454
455 \(fn SPEC &rest BODY)" nil (quote macro))
456
457 (autoload 'psetq "cl-macs" "\
458 Set SYMs to the values VALs in parallel.
459 This is like `setq', except that all VAL forms are evaluated (in order)
460 before assigning any symbols SYM to the corresponding values.
461
462 \(fn SYM VAL SYM VAL ...)" nil (quote macro))
463
464 (autoload 'progv "cl-macs" "\
465 Bind SYMBOLS to VALUES dynamically in BODY.
466 The forms SYMBOLS and VALUES are evaluated, and must evaluate to lists.
467 Each symbol in the first list is bound to the corresponding value in the
468 second list (or made unbound if VALUES is shorter than SYMBOLS); then the
469 BODY forms are executed and their result is returned. This is much like
470 a `let' form, except that the list of symbols can be computed at run-time.
471
472 \(fn SYMBOLS VALUES &rest BODY)" nil (quote macro))
473
474 (autoload 'flet "cl-macs" "\
475 Make temporary function definitions.
476 This is an analogue of `let' that operates on the function cell of FUNC
477 rather than its value cell. The FORMs are evaluated with the specified
478 function definitions in place, then the definitions are undone (the FUNCs
479 go back to their previous definitions, or lack thereof).
480
481 \(fn ((FUNC ARGLIST BODY...) ...) FORM...)" nil (quote macro))
482
483 (autoload 'labels "cl-macs" "\
484 Make temporary function bindings.
485 This is like `flet', except the bindings are lexical instead of dynamic.
486 Unlike `flet', this macro is fully compliant with the Common Lisp standard.
487
488 \(fn ((FUNC ARGLIST BODY...) ...) FORM...)" nil (quote macro))
489
490 (autoload 'macrolet "cl-macs" "\
491 Make temporary macro definitions.
492 This is like `flet', but for macros instead of functions.
493
494 \(fn ((NAME ARGLIST BODY...) ...) FORM...)" nil (quote macro))
495
496 (autoload 'symbol-macrolet "cl-macs" "\
497 Make symbol macro definitions.
498 Within the body FORMs, references to the variable NAME will be replaced
499 by EXPANSION, and (setq NAME ...) will act like (setf EXPANSION ...).
500
501 \(fn ((NAME EXPANSION) ...) FORM...)" nil (quote macro))
502
503 (autoload 'lexical-let "cl-macs" "\
504 Like `let', but lexically scoped.
505 The main visible difference is that lambdas inside BODY will create
506 lexical closures as in Common Lisp.
507
508 \(fn BINDINGS BODY)" nil (quote macro))
509
510 (autoload 'lexical-let* "cl-macs" "\
511 Like `let*', but lexically scoped.
512 The main visible difference is that lambdas inside BODY, and in
513 successive bindings within BINDINGS, will create lexical closures
514 as in Common Lisp. This is similar to the behavior of `let*' in
515 Common Lisp.
516
517 \(fn BINDINGS BODY)" nil (quote macro))
518
519 (autoload 'multiple-value-bind "cl-macs" "\
520 Collect multiple return values.
521 FORM must return a list; the BODY is then executed with the first N elements
522 of this list bound (`let'-style) to each of the symbols SYM in turn. This
523 is analogous to the Common Lisp `multiple-value-bind' macro, using lists to
524 simulate true multiple return values. For compatibility, (values A B C) is
525 a synonym for (list A B C).
526
527 \(fn (SYM...) FORM BODY)" nil (quote macro))
528
529 (autoload 'multiple-value-setq "cl-macs" "\
530 Collect multiple return values.
531 FORM must return a list; the first N elements of this list are stored in
532 each of the symbols SYM in turn. This is analogous to the Common Lisp
533 `multiple-value-setq' macro, using lists to simulate true multiple return
534 values. For compatibility, (values A B C) is a synonym for (list A B C).
535
536 \(fn (SYM...) FORM)" nil (quote macro))
537
538 (autoload 'locally "cl-macs" "\
539
540
541 \(fn &rest BODY)" nil (quote macro))
542
543 (autoload 'the "cl-macs" "\
544
545
546 \(fn TYPE FORM)" nil (quote macro))
547
548 (autoload 'declare "cl-macs" "\
549 Declare SPECS about the current function while compiling.
550 For instance
551
552 (declare (warn 0))
553
554 will turn off byte-compile warnings in the function.
555 See Info node `(cl)Declarations' for details.
556
557 \(fn &rest SPECS)" nil (quote macro))
558
559 (autoload 'define-setf-method "cl-macs" "\
560 Define a `setf' method.
561 This method shows how to handle `setf's to places of the form (NAME ARGS...).
562 The argument forms ARGS are bound according to ARGLIST, as if NAME were
563 going to be expanded as a macro, then the BODY forms are executed and must
564 return a list of five elements: a temporary-variables list, a value-forms
565 list, a store-variables list (of length one), a store-form, and an access-
566 form. See `defsetf' for a simpler way to define most setf-methods.
567
568 \(fn NAME ARGLIST BODY...)" nil (quote macro))
569
570 (autoload 'defsetf "cl-macs" "\
571 Define a `setf' method.
572 This macro is an easy-to-use substitute for `define-setf-method' that works
573 well for simple place forms. In the simple `defsetf' form, `setf's of
574 the form (setf (NAME ARGS...) VAL) are transformed to function or macro
575 calls of the form (FUNC ARGS... VAL). Example:
576
577 (defsetf aref aset)
578
579 Alternate form: (defsetf NAME ARGLIST (STORE) BODY...).
580 Here, the above `setf' call is expanded by binding the argument forms ARGS
581 according to ARGLIST, binding the value form VAL to STORE, then executing
582 BODY, which must return a Lisp form that does the necessary `setf' operation.
583 Actually, ARGLIST and STORE may be bound to temporary variables which are
584 introduced automatically to preserve proper execution order of the arguments.
585 Example:
586
587 (defsetf nth (n x) (v) (list 'setcar (list 'nthcdr n x) v))
588
589 \(fn NAME [FUNC | ARGLIST (STORE) BODY...])" nil (quote macro))
590
591 (autoload 'get-setf-method "cl-macs" "\
592 Return a list of five values describing the setf-method for PLACE.
593 PLACE may be any Lisp form which can appear as the PLACE argument to
594 a macro like `setf' or `incf'.
595
596 \(fn PLACE &optional ENV)" nil nil)
597
598 (autoload 'setf "cl-macs" "\
599 Set each PLACE to the value of its VAL.
600 This is a generalized version of `setq'; the PLACEs may be symbolic
601 references such as (car x) or (aref x i), as well as plain symbols.
602 For example, (setf (cadar x) y) is equivalent to (setcar (cdar x) y).
603 The return value is the last VAL in the list.
604
605 \(fn PLACE VAL PLACE VAL ...)" nil (quote macro))
606
607 (autoload 'psetf "cl-macs" "\
608 Set PLACEs to the values VALs in parallel.
609 This is like `setf', except that all VAL forms are evaluated (in order)
610 before assigning any PLACEs to the corresponding values.
611
612 \(fn PLACE VAL PLACE VAL ...)" nil (quote macro))
613
614 (autoload 'cl-do-pop "cl-macs" "\
615
616
617 \(fn PLACE)" nil nil)
618
619 (autoload 'remf "cl-macs" "\
620 Remove TAG from property list PLACE.
621 PLACE may be a symbol, or any generalized variable allowed by `setf'.
622 The form returns true if TAG was found and removed, nil otherwise.
623
624 \(fn PLACE TAG)" nil (quote macro))
625
626 (autoload 'shiftf "cl-macs" "\
627 Shift left among PLACEs.
628 Example: (shiftf A B C) sets A to B, B to C, and returns the old A.
629 Each PLACE may be a symbol, or any generalized variable allowed by `setf'.
630
631 \(fn PLACE... VAL)" nil (quote macro))
632
633 (autoload 'rotatef "cl-macs" "\
634 Rotate left among PLACEs.
635 Example: (rotatef A B C) sets A to B, B to C, and C to A. It returns nil.
636 Each PLACE may be a symbol, or any generalized variable allowed by `setf'.
637
638 \(fn PLACE...)" nil (quote macro))
639
640 (autoload 'letf "cl-macs" "\
641 Temporarily bind to PLACEs.
642 This is the analogue of `let', but with generalized variables (in the
643 sense of `setf') for the PLACEs. Each PLACE is set to the corresponding
644 VALUE, then the BODY forms are executed. On exit, either normally or
645 because of a `throw' or error, the PLACEs are set back to their original
646 values. Note that this macro is *not* available in Common Lisp.
647 As a special case, if `(PLACE)' is used instead of `(PLACE VALUE)',
648 the PLACE is not modified before executing BODY.
649
650 \(fn ((PLACE VALUE) ...) BODY...)" nil (quote macro))
651
652 (autoload 'letf* "cl-macs" "\
653 Temporarily bind to PLACEs.
654 This is the analogue of `let*', but with generalized variables (in the
655 sense of `setf') for the PLACEs. Each PLACE is set to the corresponding
656 VALUE, then the BODY forms are executed. On exit, either normally or
657 because of a `throw' or error, the PLACEs are set back to their original
658 values. Note that this macro is *not* available in Common Lisp.
659 As a special case, if `(PLACE)' is used instead of `(PLACE VALUE)',
660 the PLACE is not modified before executing BODY.
661
662 \(fn ((PLACE VALUE) ...) BODY...)" nil (quote macro))
663
664 (autoload 'callf "cl-macs" "\
665 Set PLACE to (FUNC PLACE ARGS...).
666 FUNC should be an unquoted function name. PLACE may be a symbol,
667 or any generalized variable allowed by `setf'.
668
669 \(fn FUNC PLACE ARGS...)" nil (quote macro))
670
671 (autoload 'callf2 "cl-macs" "\
672 Set PLACE to (FUNC ARG1 PLACE ARGS...).
673 Like `callf', but PLACE is the second argument of FUNC, not the first.
674
675 \(fn FUNC ARG1 PLACE ARGS...)" nil (quote macro))
676
677 (autoload 'define-modify-macro "cl-macs" "\
678 Define a `setf'-like modify macro.
679 If NAME is called, it combines its PLACE argument with the other arguments
680 from ARGLIST using FUNC: (define-modify-macro incf (&optional (n 1)) +)
681
682 \(fn NAME ARGLIST FUNC &optional DOC)" nil (quote macro))
683
684 (autoload 'defstruct "cl-macs" "\
685 Define a struct type.
686 This macro defines a new data type called NAME that stores data
687 in SLOTs. It defines a `make-NAME' constructor, a `copy-NAME'
688 copier, a `NAME-p' predicate, and slot accessors named `NAME-SLOT'.
689 You can use the accessors to set the corresponding slots, via `setf'.
690
691 NAME may instead take the form (NAME OPTIONS...), where each
692 OPTION is either a single keyword or (KEYWORD VALUE).
693 See Info node `(cl)Structures' for a list of valid keywords.
694
695 Each SLOT may instead take the form (SLOT SLOT-OPTS...), where
696 SLOT-OPTS are keyword-value pairs for that slot. Currently, only
697 one keyword is supported, `:read-only'. If this has a non-nil
698 value, that slot cannot be set via `setf'.
699
700 \(fn NAME SLOTS...)" nil (quote macro))
701
702 (autoload 'cl-struct-setf-expander "cl-macs" "\
703
704
705 \(fn X NAME ACCESSOR PRED-FORM POS)" nil nil)
706
707 (autoload 'deftype "cl-macs" "\
708 Define NAME as a new data type.
709 The type name can then be used in `typecase', `check-type', etc.
710
711 \(fn NAME ARGLIST &rest BODY)" nil (quote macro))
712
713 (autoload 'typep "cl-macs" "\
714 Check that OBJECT is of type TYPE.
715 TYPE is a Common Lisp-style type specifier.
716
717 \(fn OBJECT TYPE)" nil nil)
718
719 (autoload 'check-type "cl-macs" "\
720 Verify that FORM is of type TYPE; signal an error if not.
721 STRING is an optional description of the desired type.
722
723 \(fn FORM TYPE &optional STRING)" nil (quote macro))
724
725 (autoload 'assert "cl-macs" "\
726 Verify that FORM returns non-nil; signal an error if not.
727 Second arg SHOW-ARGS means to include arguments of FORM in message.
728 Other args STRING and ARGS... are arguments to be passed to `error'.
729 They are not evaluated unless the assertion fails. If STRING is
730 omitted, a default message listing FORM itself is used.
731
732 \(fn FORM &optional SHOW-ARGS STRING &rest ARGS)" nil (quote macro))
733
734 (autoload 'define-compiler-macro "cl-macs" "\
735 Define a compiler-only macro.
736 This is like `defmacro', but macro expansion occurs only if the call to
737 FUNC is compiled (i.e., not interpreted). Compiler macros should be used
738 for optimizing the way calls to FUNC are compiled; the form returned by
739 BODY should do the same thing as a call to the normal function called
740 FUNC, though possibly more efficiently. Note that, like regular macros,
741 compiler macros are expanded repeatedly until no further expansions are
742 possible. Unlike regular macros, BODY can decide to \"punt\" and leave the
743 original function call alone by declaring an initial `&whole foo' parameter
744 and then returning foo.
745
746 \(fn FUNC ARGS &rest BODY)" nil (quote macro))
747
748 (autoload 'compiler-macroexpand "cl-macs" "\
749
750
751 \(fn FORM)" nil nil)
752
753 (autoload 'defsubst* "cl-macs" "\
754 Define NAME as a function.
755 Like `defun', except the function is automatically declared `inline',
756 ARGLIST allows full Common Lisp conventions, and BODY is implicitly
757 surrounded by (block NAME ...).
758
759 \(fn NAME ARGLIST [DOCSTRING] BODY...)" nil (quote macro))
760
761 ;;;***
762 \f
763 ;;;### (autoloads (tree-equal nsublis sublis nsubst-if-not nsubst-if
764 ;;;;;; nsubst subst-if-not subst-if subsetp nset-exclusive-or set-exclusive-or
765 ;;;;;; nset-difference set-difference nintersection intersection
766 ;;;;;; nunion union rassoc-if-not rassoc-if rassoc* assoc-if-not
767 ;;;;;; assoc-if assoc* cl-adjoin member-if-not member-if member*
768 ;;;;;; merge stable-sort sort* search mismatch count-if-not count-if
769 ;;;;;; count position-if-not position-if position find-if-not find-if
770 ;;;;;; find nsubstitute-if-not nsubstitute-if nsubstitute substitute-if-not
771 ;;;;;; substitute-if substitute delete-duplicates remove-duplicates
772 ;;;;;; delete-if-not delete-if delete* remove-if-not remove-if remove*
773 ;;;;;; replace fill reduce) "cl-seq" "cl-seq.el" "99095e49c83af1c8bec0fdcf517b3f95")
774 ;;; Generated autoloads from cl-seq.el
775
776 (autoload 'reduce "cl-seq" "\
777 Reduce two-argument FUNCTION across SEQ.
778
779 Keywords supported: :start :end :from-end :initial-value :key
780
781 \(fn FUNCTION SEQ [KEYWORD VALUE]...)" nil nil)
782
783 (autoload 'fill "cl-seq" "\
784 Fill the elements of SEQ with ITEM.
785
786 Keywords supported: :start :end
787
788 \(fn SEQ ITEM [KEYWORD VALUE]...)" nil nil)
789
790 (autoload 'replace "cl-seq" "\
791 Replace the elements of SEQ1 with the elements of SEQ2.
792 SEQ1 is destructively modified, then returned.
793
794 Keywords supported: :start1 :end1 :start2 :end2
795
796 \(fn SEQ1 SEQ2 [KEYWORD VALUE]...)" nil nil)
797
798 (autoload 'remove* "cl-seq" "\
799 Remove all occurrences of ITEM in SEQ.
800 This is a non-destructive function; it makes a copy of SEQ if necessary
801 to avoid corrupting the original SEQ.
802
803 Keywords supported: :test :test-not :key :count :start :end :from-end
804
805 \(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil)
806
807 (autoload 'remove-if "cl-seq" "\
808 Remove all items satisfying PREDICATE in SEQ.
809 This is a non-destructive function; it makes a copy of SEQ if necessary
810 to avoid corrupting the original SEQ.
811
812 Keywords supported: :key :count :start :end :from-end
813
814 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
815
816 (autoload 'remove-if-not "cl-seq" "\
817 Remove all items not satisfying PREDICATE in SEQ.
818 This is a non-destructive function; it makes a copy of SEQ if necessary
819 to avoid corrupting the original SEQ.
820
821 Keywords supported: :key :count :start :end :from-end
822
823 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
824
825 (autoload 'delete* "cl-seq" "\
826 Remove all occurrences of ITEM in SEQ.
827 This is a destructive function; it reuses the storage of SEQ whenever possible.
828
829 Keywords supported: :test :test-not :key :count :start :end :from-end
830
831 \(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil)
832
833 (autoload 'delete-if "cl-seq" "\
834 Remove all items satisfying PREDICATE in SEQ.
835 This is a destructive function; it reuses the storage of SEQ whenever possible.
836
837 Keywords supported: :key :count :start :end :from-end
838
839 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
840
841 (autoload 'delete-if-not "cl-seq" "\
842 Remove all items not satisfying PREDICATE in SEQ.
843 This is a destructive function; it reuses the storage of SEQ whenever possible.
844
845 Keywords supported: :key :count :start :end :from-end
846
847 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
848
849 (autoload 'remove-duplicates "cl-seq" "\
850 Return a copy of SEQ with all duplicate elements removed.
851
852 Keywords supported: :test :test-not :key :start :end :from-end
853
854 \(fn SEQ [KEYWORD VALUE]...)" nil nil)
855
856 (autoload 'delete-duplicates "cl-seq" "\
857 Remove all duplicate elements from SEQ (destructively).
858
859 Keywords supported: :test :test-not :key :start :end :from-end
860
861 \(fn SEQ [KEYWORD VALUE]...)" nil nil)
862
863 (autoload 'substitute "cl-seq" "\
864 Substitute NEW for OLD in SEQ.
865 This is a non-destructive function; it makes a copy of SEQ if necessary
866 to avoid corrupting the original SEQ.
867
868 Keywords supported: :test :test-not :key :count :start :end :from-end
869
870 \(fn NEW OLD SEQ [KEYWORD VALUE]...)" nil nil)
871
872 (autoload 'substitute-if "cl-seq" "\
873 Substitute NEW for all items satisfying PREDICATE in SEQ.
874 This is a non-destructive function; it makes a copy of SEQ if necessary
875 to avoid corrupting the original SEQ.
876
877 Keywords supported: :key :count :start :end :from-end
878
879 \(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
880
881 (autoload 'substitute-if-not "cl-seq" "\
882 Substitute NEW for all items not satisfying PREDICATE in SEQ.
883 This is a non-destructive function; it makes a copy of SEQ if necessary
884 to avoid corrupting the original SEQ.
885
886 Keywords supported: :key :count :start :end :from-end
887
888 \(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
889
890 (autoload 'nsubstitute "cl-seq" "\
891 Substitute NEW for OLD in SEQ.
892 This is a destructive function; it reuses the storage of SEQ whenever possible.
893
894 Keywords supported: :test :test-not :key :count :start :end :from-end
895
896 \(fn NEW OLD SEQ [KEYWORD VALUE]...)" nil nil)
897
898 (autoload 'nsubstitute-if "cl-seq" "\
899 Substitute NEW for all items satisfying PREDICATE in SEQ.
900 This is a destructive function; it reuses the storage of SEQ whenever possible.
901
902 Keywords supported: :key :count :start :end :from-end
903
904 \(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
905
906 (autoload 'nsubstitute-if-not "cl-seq" "\
907 Substitute NEW for all items not satisfying PREDICATE in SEQ.
908 This is a destructive function; it reuses the storage of SEQ whenever possible.
909
910 Keywords supported: :key :count :start :end :from-end
911
912 \(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
913
914 (autoload 'find "cl-seq" "\
915 Find the first occurrence of ITEM in SEQ.
916 Return the matching ITEM, or nil if not found.
917
918 Keywords supported: :test :test-not :key :start :end :from-end
919
920 \(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil)
921
922 (autoload 'find-if "cl-seq" "\
923 Find the first item satisfying PREDICATE in SEQ.
924 Return the matching item, or nil if not found.
925
926 Keywords supported: :key :start :end :from-end
927
928 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
929
930 (autoload 'find-if-not "cl-seq" "\
931 Find the first item not satisfying PREDICATE in SEQ.
932 Return the matching item, or nil if not found.
933
934 Keywords supported: :key :start :end :from-end
935
936 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
937
938 (autoload 'position "cl-seq" "\
939 Find the first occurrence of ITEM in SEQ.
940 Return the index of the matching item, or nil if not found.
941
942 Keywords supported: :test :test-not :key :start :end :from-end
943
944 \(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil)
945
946 (autoload 'position-if "cl-seq" "\
947 Find the first item satisfying PREDICATE in SEQ.
948 Return the index of the matching item, or nil if not found.
949
950 Keywords supported: :key :start :end :from-end
951
952 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
953
954 (autoload 'position-if-not "cl-seq" "\
955 Find the first item not satisfying PREDICATE in SEQ.
956 Return the index of the matching item, or nil if not found.
957
958 Keywords supported: :key :start :end :from-end
959
960 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
961
962 (autoload 'count "cl-seq" "\
963 Count the number of occurrences of ITEM in SEQ.
964
965 Keywords supported: :test :test-not :key :start :end
966
967 \(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil)
968
969 (autoload 'count-if "cl-seq" "\
970 Count the number of items satisfying PREDICATE in SEQ.
971
972 Keywords supported: :key :start :end
973
974 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
975
976 (autoload 'count-if-not "cl-seq" "\
977 Count the number of items not satisfying PREDICATE in SEQ.
978
979 Keywords supported: :key :start :end
980
981 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
982
983 (autoload 'mismatch "cl-seq" "\
984 Compare SEQ1 with SEQ2, return index of first mismatching element.
985 Return nil if the sequences match. If one sequence is a prefix of the
986 other, the return value indicates the end of the shorter sequence.
987
988 Keywords supported: :test :test-not :key :start1 :end1 :start2 :end2 :from-end
989
990 \(fn SEQ1 SEQ2 [KEYWORD VALUE]...)" nil nil)
991
992 (autoload 'search "cl-seq" "\
993 Search for SEQ1 as a subsequence of SEQ2.
994 Return the index of the leftmost element of the first match found;
995 return nil if there are no matches.
996
997 Keywords supported: :test :test-not :key :start1 :end1 :start2 :end2 :from-end
998
999 \(fn SEQ1 SEQ2 [KEYWORD VALUE]...)" nil nil)
1000
1001 (autoload 'sort* "cl-seq" "\
1002 Sort the argument SEQ according to PREDICATE.
1003 This is a destructive function; it reuses the storage of SEQ if possible.
1004
1005 Keywords supported: :key
1006
1007 \(fn SEQ PREDICATE [KEYWORD VALUE]...)" nil nil)
1008
1009 (autoload 'stable-sort "cl-seq" "\
1010 Sort the argument SEQ stably according to PREDICATE.
1011 This is a destructive function; it reuses the storage of SEQ if possible.
1012
1013 Keywords supported: :key
1014
1015 \(fn SEQ PREDICATE [KEYWORD VALUE]...)" nil nil)
1016
1017 (autoload 'merge "cl-seq" "\
1018 Destructively merge the two sequences to produce a new sequence.
1019 TYPE is the sequence type to return, SEQ1 and SEQ2 are the two argument
1020 sequences, and PREDICATE is a `less-than' predicate on the elements.
1021
1022 Keywords supported: :key
1023
1024 \(fn TYPE SEQ1 SEQ2 PREDICATE [KEYWORD VALUE]...)" nil nil)
1025
1026 (autoload 'member* "cl-seq" "\
1027 Find the first occurrence of ITEM in LIST.
1028 Return the sublist of LIST whose car is ITEM.
1029
1030 Keywords supported: :test :test-not :key
1031
1032 \(fn ITEM LIST [KEYWORD VALUE]...)" nil nil)
1033
1034 (autoload 'member-if "cl-seq" "\
1035 Find the first item satisfying PREDICATE in LIST.
1036 Return the sublist of LIST whose car matches.
1037
1038 Keywords supported: :key
1039
1040 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1041
1042 (autoload 'member-if-not "cl-seq" "\
1043 Find the first item not satisfying PREDICATE in LIST.
1044 Return the sublist of LIST whose car matches.
1045
1046 Keywords supported: :key
1047
1048 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1049
1050 (autoload 'cl-adjoin "cl-seq" "\
1051
1052
1053 \(fn CL-ITEM CL-LIST &rest CL-KEYS)" nil nil)
1054
1055 (autoload 'assoc* "cl-seq" "\
1056 Find the first item whose car matches ITEM in LIST.
1057
1058 Keywords supported: :test :test-not :key
1059
1060 \(fn ITEM LIST [KEYWORD VALUE]...)" nil nil)
1061
1062 (autoload 'assoc-if "cl-seq" "\
1063 Find the first item whose car satisfies PREDICATE in LIST.
1064
1065 Keywords supported: :key
1066
1067 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1068
1069 (autoload 'assoc-if-not "cl-seq" "\
1070 Find the first item whose car does not satisfy PREDICATE in LIST.
1071
1072 Keywords supported: :key
1073
1074 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1075
1076 (autoload 'rassoc* "cl-seq" "\
1077 Find the first item whose cdr matches ITEM in LIST.
1078
1079 Keywords supported: :test :test-not :key
1080
1081 \(fn ITEM LIST [KEYWORD VALUE]...)" nil nil)
1082
1083 (autoload 'rassoc-if "cl-seq" "\
1084 Find the first item whose cdr satisfies PREDICATE in LIST.
1085
1086 Keywords supported: :key
1087
1088 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1089
1090 (autoload 'rassoc-if-not "cl-seq" "\
1091 Find the first item whose cdr does not satisfy PREDICATE in LIST.
1092
1093 Keywords supported: :key
1094
1095 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1096
1097 (autoload 'union "cl-seq" "\
1098 Combine LIST1 and LIST2 using a set-union operation.
1099 The resulting list contains all items that appear in either LIST1 or LIST2.
1100 This is a non-destructive function; it makes a copy of the data if necessary
1101 to avoid corrupting the original LIST1 and LIST2.
1102
1103 Keywords supported: :test :test-not :key
1104
1105 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1106
1107 (autoload 'nunion "cl-seq" "\
1108 Combine LIST1 and LIST2 using a set-union operation.
1109 The resulting list contains all items that appear in either LIST1 or LIST2.
1110 This is a destructive function; it reuses the storage of LIST1 and LIST2
1111 whenever possible.
1112
1113 Keywords supported: :test :test-not :key
1114
1115 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1116
1117 (autoload 'intersection "cl-seq" "\
1118 Combine LIST1 and LIST2 using a set-intersection operation.
1119 The resulting list contains all items that appear in both LIST1 and LIST2.
1120 This is a non-destructive function; it makes a copy of the data if necessary
1121 to avoid corrupting the original LIST1 and LIST2.
1122
1123 Keywords supported: :test :test-not :key
1124
1125 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1126
1127 (autoload 'nintersection "cl-seq" "\
1128 Combine LIST1 and LIST2 using a set-intersection operation.
1129 The resulting list contains all items that appear in both LIST1 and LIST2.
1130 This is a destructive function; it reuses the storage of LIST1 and LIST2
1131 whenever possible.
1132
1133 Keywords supported: :test :test-not :key
1134
1135 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1136
1137 (autoload 'set-difference "cl-seq" "\
1138 Combine LIST1 and LIST2 using a set-difference operation.
1139 The resulting list contains all items that appear in LIST1 but not LIST2.
1140 This is a non-destructive function; it makes a copy of the data if necessary
1141 to avoid corrupting the original LIST1 and LIST2.
1142
1143 Keywords supported: :test :test-not :key
1144
1145 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1146
1147 (autoload 'nset-difference "cl-seq" "\
1148 Combine LIST1 and LIST2 using a set-difference operation.
1149 The resulting list contains all items that appear in LIST1 but not LIST2.
1150 This is a destructive function; it reuses the storage of LIST1 and LIST2
1151 whenever possible.
1152
1153 Keywords supported: :test :test-not :key
1154
1155 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1156
1157 (autoload 'set-exclusive-or "cl-seq" "\
1158 Combine LIST1 and LIST2 using a set-exclusive-or operation.
1159 The resulting list contains all items appearing in exactly one of LIST1, LIST2.
1160 This is a non-destructive function; it makes a copy of the data if necessary
1161 to avoid corrupting the original LIST1 and LIST2.
1162
1163 Keywords supported: :test :test-not :key
1164
1165 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1166
1167 (autoload 'nset-exclusive-or "cl-seq" "\
1168 Combine LIST1 and LIST2 using a set-exclusive-or operation.
1169 The resulting list contains all items appearing in exactly one of LIST1, LIST2.
1170 This is a destructive function; it reuses the storage of LIST1 and LIST2
1171 whenever possible.
1172
1173 Keywords supported: :test :test-not :key
1174
1175 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1176
1177 (autoload 'subsetp "cl-seq" "\
1178 Return true if LIST1 is a subset of LIST2.
1179 I.e., if every element of LIST1 also appears in LIST2.
1180
1181 Keywords supported: :test :test-not :key
1182
1183 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1184
1185 (autoload 'subst-if "cl-seq" "\
1186 Substitute NEW for elements matching PREDICATE in TREE (non-destructively).
1187 Return a copy of TREE with all matching elements replaced by NEW.
1188
1189 Keywords supported: :key
1190
1191 \(fn NEW PREDICATE TREE [KEYWORD VALUE]...)" nil nil)
1192
1193 (autoload 'subst-if-not "cl-seq" "\
1194 Substitute NEW for elts not matching PREDICATE in TREE (non-destructively).
1195 Return a copy of TREE with all non-matching elements replaced by NEW.
1196
1197 Keywords supported: :key
1198
1199 \(fn NEW PREDICATE TREE [KEYWORD VALUE]...)" nil nil)
1200
1201 (autoload 'nsubst "cl-seq" "\
1202 Substitute NEW for OLD everywhere in TREE (destructively).
1203 Any element of TREE which is `eql' to OLD is changed to NEW (via a call
1204 to `setcar').
1205
1206 Keywords supported: :test :test-not :key
1207
1208 \(fn NEW OLD TREE [KEYWORD VALUE]...)" nil nil)
1209
1210 (autoload 'nsubst-if "cl-seq" "\
1211 Substitute NEW for elements matching PREDICATE in TREE (destructively).
1212 Any element of TREE which matches is changed to NEW (via a call to `setcar').
1213
1214 Keywords supported: :key
1215
1216 \(fn NEW PREDICATE TREE [KEYWORD VALUE]...)" nil nil)
1217
1218 (autoload 'nsubst-if-not "cl-seq" "\
1219 Substitute NEW for elements not matching PREDICATE in TREE (destructively).
1220 Any element of TREE which matches is changed to NEW (via a call to `setcar').
1221
1222 Keywords supported: :key
1223
1224 \(fn NEW PREDICATE TREE [KEYWORD VALUE]...)" nil nil)
1225
1226 (autoload 'sublis "cl-seq" "\
1227 Perform substitutions indicated by ALIST in TREE (non-destructively).
1228 Return a copy of TREE with all matching elements replaced.
1229
1230 Keywords supported: :test :test-not :key
1231
1232 \(fn ALIST TREE [KEYWORD VALUE]...)" nil nil)
1233
1234 (autoload 'nsublis "cl-seq" "\
1235 Perform substitutions indicated by ALIST in TREE (destructively).
1236 Any matching element of TREE is changed via a call to `setcar'.
1237
1238 Keywords supported: :test :test-not :key
1239
1240 \(fn ALIST TREE [KEYWORD VALUE]...)" nil nil)
1241
1242 (autoload 'tree-equal "cl-seq" "\
1243 Return t if trees TREE1 and TREE2 have `eql' leaves.
1244 Atoms are compared by `eql'; cons cells are compared recursively.
1245
1246 Keywords supported: :test :test-not :key
1247
1248 \(fn TREE1 TREE2 [KEYWORD VALUE]...)" nil nil)
1249
1250 ;;;***
1251 \f
1252 ;; Local Variables:
1253 ;; version-control: never
1254 ;; no-byte-compile: t
1255 ;; no-update-autoloads: t
1256 ;; coding: utf-8
1257 ;; End:
1258 ;;; cl-loaddefs.el ends here