860d295d5a057a634e8ac3510f376e870d42195a
[bpt/emacs.git] / src / fns.c
1 /* Random utility Lisp functions.
2
3 Copyright (C) 1985-1987, 1993-1995, 1997-2013 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software: you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation, either version 3 of the License, or
10 (at your option) any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include <config.h>
21
22 #include <unistd.h>
23 #include <time.h>
24
25 #include <intprops.h>
26
27 #include "lisp.h"
28 #include "commands.h"
29 #include "character.h"
30 #include "coding.h"
31 #include "buffer.h"
32 #include "keyboard.h"
33 #include "keymap.h"
34 #include "intervals.h"
35 #include "frame.h"
36 #include "window.h"
37 #include "blockinput.h"
38 #ifdef HAVE_MENUS
39 #if defined (HAVE_X_WINDOWS)
40 #include "xterm.h"
41 #endif
42 #endif /* HAVE_MENUS */
43
44 Lisp_Object Qstring_lessp;
45 static Lisp_Object Qprovide, Qrequire;
46 static Lisp_Object Qyes_or_no_p_history;
47 Lisp_Object Qcursor_in_echo_area;
48 static Lisp_Object Qwidget_type;
49 static Lisp_Object Qcodeset, Qdays, Qmonths, Qpaper;
50
51 static Lisp_Object Qmd5, Qsha1, Qsha224, Qsha256, Qsha384, Qsha512;
52
53 static bool internal_equal (Lisp_Object, Lisp_Object, int, bool);
54 \f
55 DEFUN ("identity", Fidentity, Sidentity, 1, 1, 0,
56 doc: /* Return the argument unchanged. */)
57 (Lisp_Object arg)
58 {
59 return arg;
60 }
61
62 DEFUN ("random", Frandom, Srandom, 0, 1, 0,
63 doc: /* Return a pseudo-random number.
64 All integers representable in Lisp, i.e. between `most-negative-fixnum'
65 and `most-positive-fixnum', inclusive, are equally likely.
66
67 With positive integer LIMIT, return random number in interval [0,LIMIT).
68 With argument t, set the random number seed from the current time and pid.
69 With a string argument, set the seed based on the string's contents.
70 Other values of LIMIT are ignored.
71
72 See Info node `(elisp)Random Numbers' for more details. */)
73 (Lisp_Object limit)
74 {
75 EMACS_INT val;
76
77 if (EQ (limit, Qt))
78 init_random ();
79 else if (STRINGP (limit))
80 seed_random (SSDATA (limit), SBYTES (limit));
81
82 val = get_random ();
83 if (NATNUMP (limit) && XFASTINT (limit) != 0)
84 val %= XFASTINT (limit);
85 return make_number (val);
86 }
87 \f
88 /* Heuristic on how many iterations of a tight loop can be safely done
89 before it's time to do a QUIT. This must be a power of 2. */
90 enum { QUIT_COUNT_HEURISTIC = 1 << 16 };
91
92 /* Random data-structure functions. */
93
94 DEFUN ("length", Flength, Slength, 1, 1, 0,
95 doc: /* Return the length of vector, list or string SEQUENCE.
96 A byte-code function object is also allowed.
97 If the string contains multibyte characters, this is not necessarily
98 the number of bytes in the string; it is the number of characters.
99 To get the number of bytes, use `string-bytes'. */)
100 (register Lisp_Object sequence)
101 {
102 register Lisp_Object val;
103
104 if (STRINGP (sequence))
105 XSETFASTINT (val, SCHARS (sequence));
106 else if (VECTORP (sequence))
107 XSETFASTINT (val, ASIZE (sequence));
108 else if (CHAR_TABLE_P (sequence))
109 XSETFASTINT (val, MAX_CHAR);
110 else if (BOOL_VECTOR_P (sequence))
111 XSETFASTINT (val, XBOOL_VECTOR (sequence)->size);
112 else if (COMPILEDP (sequence))
113 XSETFASTINT (val, ASIZE (sequence) & PSEUDOVECTOR_SIZE_MASK);
114 else if (CONSP (sequence))
115 {
116 EMACS_INT i = 0;
117
118 do
119 {
120 ++i;
121 if ((i & (QUIT_COUNT_HEURISTIC - 1)) == 0)
122 {
123 if (MOST_POSITIVE_FIXNUM < i)
124 error ("List too long");
125 QUIT;
126 }
127 sequence = XCDR (sequence);
128 }
129 while (CONSP (sequence));
130
131 CHECK_LIST_END (sequence, sequence);
132
133 val = make_number (i);
134 }
135 else if (NILP (sequence))
136 XSETFASTINT (val, 0);
137 else
138 wrong_type_argument (Qsequencep, sequence);
139
140 return val;
141 }
142
143 /* This does not check for quits. That is safe since it must terminate. */
144
145 DEFUN ("safe-length", Fsafe_length, Ssafe_length, 1, 1, 0,
146 doc: /* Return the length of a list, but avoid error or infinite loop.
147 This function never gets an error. If LIST is not really a list,
148 it returns 0. If LIST is circular, it returns a finite value
149 which is at least the number of distinct elements. */)
150 (Lisp_Object list)
151 {
152 Lisp_Object tail, halftail;
153 double hilen = 0;
154 uintmax_t lolen = 1;
155
156 if (! CONSP (list))
157 return make_number (0);
158
159 /* halftail is used to detect circular lists. */
160 for (tail = halftail = list; ; )
161 {
162 tail = XCDR (tail);
163 if (! CONSP (tail))
164 break;
165 if (EQ (tail, halftail))
166 break;
167 lolen++;
168 if ((lolen & 1) == 0)
169 {
170 halftail = XCDR (halftail);
171 if ((lolen & (QUIT_COUNT_HEURISTIC - 1)) == 0)
172 {
173 QUIT;
174 if (lolen == 0)
175 hilen += UINTMAX_MAX + 1.0;
176 }
177 }
178 }
179
180 /* If the length does not fit into a fixnum, return a float.
181 On all known practical machines this returns an upper bound on
182 the true length. */
183 return hilen ? make_float (hilen + lolen) : make_fixnum_or_float (lolen);
184 }
185
186 DEFUN ("string-bytes", Fstring_bytes, Sstring_bytes, 1, 1, 0,
187 doc: /* Return the number of bytes in STRING.
188 If STRING is multibyte, this may be greater than the length of STRING. */)
189 (Lisp_Object string)
190 {
191 CHECK_STRING (string);
192 return make_number (SBYTES (string));
193 }
194
195 DEFUN ("string-equal", Fstring_equal, Sstring_equal, 2, 2, 0,
196 doc: /* Return t if two strings have identical contents.
197 Case is significant, but text properties are ignored.
198 Symbols are also allowed; their print names are used instead. */)
199 (register Lisp_Object s1, Lisp_Object s2)
200 {
201 if (SYMBOLP (s1))
202 s1 = SYMBOL_NAME (s1);
203 if (SYMBOLP (s2))
204 s2 = SYMBOL_NAME (s2);
205 CHECK_STRING (s1);
206 CHECK_STRING (s2);
207
208 if (SCHARS (s1) != SCHARS (s2)
209 || SBYTES (s1) != SBYTES (s2)
210 || memcmp (SDATA (s1), SDATA (s2), SBYTES (s1)))
211 return Qnil;
212 return Qt;
213 }
214
215 DEFUN ("compare-strings", Fcompare_strings, Scompare_strings, 6, 7, 0,
216 doc: /* Compare the contents of two strings, converting to multibyte if needed.
217 The arguments START1, END1, START2, and END2, if non-nil, are
218 positions specifying which parts of STR1 or STR2 to compare. In
219 string STR1, compare the part between START1 (inclusive) and END1
220 \(exclusive). If START1 is nil, it defaults to 0, the beginning of
221 the string; if END1 is nil, it defaults to the length of the string.
222 Likewise, in string STR2, compare the part between START2 and END2.
223
224 The strings are compared by the numeric values of their characters.
225 For instance, STR1 is "less than" STR2 if its first differing
226 character has a smaller numeric value. If IGNORE-CASE is non-nil,
227 characters are converted to lower-case before comparing them. Unibyte
228 strings are converted to multibyte for comparison.
229
230 The value is t if the strings (or specified portions) match.
231 If string STR1 is less, the value is a negative number N;
232 - 1 - N is the number of characters that match at the beginning.
233 If string STR1 is greater, the value is a positive number N;
234 N - 1 is the number of characters that match at the beginning. */)
235 (Lisp_Object str1, Lisp_Object start1, Lisp_Object end1, Lisp_Object str2, Lisp_Object start2, Lisp_Object end2, Lisp_Object ignore_case)
236 {
237 register ptrdiff_t end1_char, end2_char;
238 register ptrdiff_t i1, i1_byte, i2, i2_byte;
239
240 CHECK_STRING (str1);
241 CHECK_STRING (str2);
242 if (NILP (start1))
243 start1 = make_number (0);
244 if (NILP (start2))
245 start2 = make_number (0);
246 CHECK_NATNUM (start1);
247 CHECK_NATNUM (start2);
248 if (! NILP (end1))
249 CHECK_NATNUM (end1);
250 if (! NILP (end2))
251 CHECK_NATNUM (end2);
252
253 end1_char = SCHARS (str1);
254 if (! NILP (end1) && end1_char > XINT (end1))
255 end1_char = XINT (end1);
256 if (end1_char < XINT (start1))
257 args_out_of_range (str1, start1);
258
259 end2_char = SCHARS (str2);
260 if (! NILP (end2) && end2_char > XINT (end2))
261 end2_char = XINT (end2);
262 if (end2_char < XINT (start2))
263 args_out_of_range (str2, start2);
264
265 i1 = XINT (start1);
266 i2 = XINT (start2);
267
268 i1_byte = string_char_to_byte (str1, i1);
269 i2_byte = string_char_to_byte (str2, i2);
270
271 while (i1 < end1_char && i2 < end2_char)
272 {
273 /* When we find a mismatch, we must compare the
274 characters, not just the bytes. */
275 int c1, c2;
276
277 if (STRING_MULTIBYTE (str1))
278 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c1, str1, i1, i1_byte);
279 else
280 {
281 c1 = SREF (str1, i1++);
282 MAKE_CHAR_MULTIBYTE (c1);
283 }
284
285 if (STRING_MULTIBYTE (str2))
286 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c2, str2, i2, i2_byte);
287 else
288 {
289 c2 = SREF (str2, i2++);
290 MAKE_CHAR_MULTIBYTE (c2);
291 }
292
293 if (c1 == c2)
294 continue;
295
296 if (! NILP (ignore_case))
297 {
298 Lisp_Object tem;
299
300 tem = Fupcase (make_number (c1));
301 c1 = XINT (tem);
302 tem = Fupcase (make_number (c2));
303 c2 = XINT (tem);
304 }
305
306 if (c1 == c2)
307 continue;
308
309 /* Note that I1 has already been incremented
310 past the character that we are comparing;
311 hence we don't add or subtract 1 here. */
312 if (c1 < c2)
313 return make_number (- i1 + XINT (start1));
314 else
315 return make_number (i1 - XINT (start1));
316 }
317
318 if (i1 < end1_char)
319 return make_number (i1 - XINT (start1) + 1);
320 if (i2 < end2_char)
321 return make_number (- i1 + XINT (start1) - 1);
322
323 return Qt;
324 }
325
326 DEFUN ("string-lessp", Fstring_lessp, Sstring_lessp, 2, 2, 0,
327 doc: /* Return t if first arg string is less than second in lexicographic order.
328 Case is significant.
329 Symbols are also allowed; their print names are used instead. */)
330 (register Lisp_Object s1, Lisp_Object s2)
331 {
332 register ptrdiff_t end;
333 register ptrdiff_t i1, i1_byte, i2, i2_byte;
334
335 if (SYMBOLP (s1))
336 s1 = SYMBOL_NAME (s1);
337 if (SYMBOLP (s2))
338 s2 = SYMBOL_NAME (s2);
339 CHECK_STRING (s1);
340 CHECK_STRING (s2);
341
342 i1 = i1_byte = i2 = i2_byte = 0;
343
344 end = SCHARS (s1);
345 if (end > SCHARS (s2))
346 end = SCHARS (s2);
347
348 while (i1 < end)
349 {
350 /* When we find a mismatch, we must compare the
351 characters, not just the bytes. */
352 int c1, c2;
353
354 FETCH_STRING_CHAR_ADVANCE (c1, s1, i1, i1_byte);
355 FETCH_STRING_CHAR_ADVANCE (c2, s2, i2, i2_byte);
356
357 if (c1 != c2)
358 return c1 < c2 ? Qt : Qnil;
359 }
360 return i1 < SCHARS (s2) ? Qt : Qnil;
361 }
362 \f
363 static Lisp_Object concat (ptrdiff_t nargs, Lisp_Object *args,
364 enum Lisp_Type target_type, bool last_special);
365
366 /* ARGSUSED */
367 Lisp_Object
368 concat2 (Lisp_Object s1, Lisp_Object s2)
369 {
370 Lisp_Object args[2];
371 args[0] = s1;
372 args[1] = s2;
373 return concat (2, args, Lisp_String, 0);
374 }
375
376 /* ARGSUSED */
377 Lisp_Object
378 concat3 (Lisp_Object s1, Lisp_Object s2, Lisp_Object s3)
379 {
380 Lisp_Object args[3];
381 args[0] = s1;
382 args[1] = s2;
383 args[2] = s3;
384 return concat (3, args, Lisp_String, 0);
385 }
386
387 DEFUN ("append", Fappend, Sappend, 0, MANY, 0,
388 doc: /* Concatenate all the arguments and make the result a list.
389 The result is a list whose elements are the elements of all the arguments.
390 Each argument may be a list, vector or string.
391 The last argument is not copied, just used as the tail of the new list.
392 usage: (append &rest SEQUENCES) */)
393 (ptrdiff_t nargs, Lisp_Object *args)
394 {
395 return concat (nargs, args, Lisp_Cons, 1);
396 }
397
398 DEFUN ("concat", Fconcat, Sconcat, 0, MANY, 0,
399 doc: /* Concatenate all the arguments and make the result a string.
400 The result is a string whose elements are the elements of all the arguments.
401 Each argument may be a string or a list or vector of characters (integers).
402 usage: (concat &rest SEQUENCES) */)
403 (ptrdiff_t nargs, Lisp_Object *args)
404 {
405 return concat (nargs, args, Lisp_String, 0);
406 }
407
408 DEFUN ("vconcat", Fvconcat, Svconcat, 0, MANY, 0,
409 doc: /* Concatenate all the arguments and make the result a vector.
410 The result is a vector whose elements are the elements of all the arguments.
411 Each argument may be a list, vector or string.
412 usage: (vconcat &rest SEQUENCES) */)
413 (ptrdiff_t nargs, Lisp_Object *args)
414 {
415 return concat (nargs, args, Lisp_Vectorlike, 0);
416 }
417
418
419 DEFUN ("copy-sequence", Fcopy_sequence, Scopy_sequence, 1, 1, 0,
420 doc: /* Return a copy of a list, vector, string or char-table.
421 The elements of a list or vector are not copied; they are shared
422 with the original. */)
423 (Lisp_Object arg)
424 {
425 if (NILP (arg)) return arg;
426
427 if (CHAR_TABLE_P (arg))
428 {
429 return copy_char_table (arg);
430 }
431
432 if (BOOL_VECTOR_P (arg))
433 {
434 Lisp_Object val;
435 ptrdiff_t size_in_chars
436 = ((XBOOL_VECTOR (arg)->size + BOOL_VECTOR_BITS_PER_CHAR - 1)
437 / BOOL_VECTOR_BITS_PER_CHAR);
438
439 val = Fmake_bool_vector (Flength (arg), Qnil);
440 memcpy (XBOOL_VECTOR (val)->data, XBOOL_VECTOR (arg)->data,
441 size_in_chars);
442 return val;
443 }
444
445 if (!CONSP (arg) && !VECTORP (arg) && !STRINGP (arg))
446 wrong_type_argument (Qsequencep, arg);
447
448 return concat (1, &arg, CONSP (arg) ? Lisp_Cons : XTYPE (arg), 0);
449 }
450
451 /* This structure holds information of an argument of `concat' that is
452 a string and has text properties to be copied. */
453 struct textprop_rec
454 {
455 ptrdiff_t argnum; /* refer to ARGS (arguments of `concat') */
456 ptrdiff_t from; /* refer to ARGS[argnum] (argument string) */
457 ptrdiff_t to; /* refer to VAL (the target string) */
458 };
459
460 static Lisp_Object
461 concat (ptrdiff_t nargs, Lisp_Object *args,
462 enum Lisp_Type target_type, bool last_special)
463 {
464 Lisp_Object val;
465 Lisp_Object tail;
466 Lisp_Object this;
467 ptrdiff_t toindex;
468 ptrdiff_t toindex_byte = 0;
469 EMACS_INT result_len;
470 EMACS_INT result_len_byte;
471 ptrdiff_t argnum;
472 Lisp_Object last_tail;
473 Lisp_Object prev;
474 bool some_multibyte;
475 /* When we make a multibyte string, we can't copy text properties
476 while concatenating each string because the length of resulting
477 string can't be decided until we finish the whole concatenation.
478 So, we record strings that have text properties to be copied
479 here, and copy the text properties after the concatenation. */
480 struct textprop_rec *textprops = NULL;
481 /* Number of elements in textprops. */
482 ptrdiff_t num_textprops = 0;
483 USE_SAFE_ALLOCA;
484
485 tail = Qnil;
486
487 /* In append, the last arg isn't treated like the others */
488 if (last_special && nargs > 0)
489 {
490 nargs--;
491 last_tail = args[nargs];
492 }
493 else
494 last_tail = Qnil;
495
496 /* Check each argument. */
497 for (argnum = 0; argnum < nargs; argnum++)
498 {
499 this = args[argnum];
500 if (!(CONSP (this) || NILP (this) || VECTORP (this) || STRINGP (this)
501 || COMPILEDP (this) || BOOL_VECTOR_P (this)))
502 wrong_type_argument (Qsequencep, this);
503 }
504
505 /* Compute total length in chars of arguments in RESULT_LEN.
506 If desired output is a string, also compute length in bytes
507 in RESULT_LEN_BYTE, and determine in SOME_MULTIBYTE
508 whether the result should be a multibyte string. */
509 result_len_byte = 0;
510 result_len = 0;
511 some_multibyte = 0;
512 for (argnum = 0; argnum < nargs; argnum++)
513 {
514 EMACS_INT len;
515 this = args[argnum];
516 len = XFASTINT (Flength (this));
517 if (target_type == Lisp_String)
518 {
519 /* We must count the number of bytes needed in the string
520 as well as the number of characters. */
521 ptrdiff_t i;
522 Lisp_Object ch;
523 int c;
524 ptrdiff_t this_len_byte;
525
526 if (VECTORP (this) || COMPILEDP (this))
527 for (i = 0; i < len; i++)
528 {
529 ch = AREF (this, i);
530 CHECK_CHARACTER (ch);
531 c = XFASTINT (ch);
532 this_len_byte = CHAR_BYTES (c);
533 if (STRING_BYTES_BOUND - result_len_byte < this_len_byte)
534 string_overflow ();
535 result_len_byte += this_len_byte;
536 if (! ASCII_CHAR_P (c) && ! CHAR_BYTE8_P (c))
537 some_multibyte = 1;
538 }
539 else if (BOOL_VECTOR_P (this) && XBOOL_VECTOR (this)->size > 0)
540 wrong_type_argument (Qintegerp, Faref (this, make_number (0)));
541 else if (CONSP (this))
542 for (; CONSP (this); this = XCDR (this))
543 {
544 ch = XCAR (this);
545 CHECK_CHARACTER (ch);
546 c = XFASTINT (ch);
547 this_len_byte = CHAR_BYTES (c);
548 if (STRING_BYTES_BOUND - result_len_byte < this_len_byte)
549 string_overflow ();
550 result_len_byte += this_len_byte;
551 if (! ASCII_CHAR_P (c) && ! CHAR_BYTE8_P (c))
552 some_multibyte = 1;
553 }
554 else if (STRINGP (this))
555 {
556 if (STRING_MULTIBYTE (this))
557 {
558 some_multibyte = 1;
559 this_len_byte = SBYTES (this);
560 }
561 else
562 this_len_byte = count_size_as_multibyte (SDATA (this),
563 SCHARS (this));
564 if (STRING_BYTES_BOUND - result_len_byte < this_len_byte)
565 string_overflow ();
566 result_len_byte += this_len_byte;
567 }
568 }
569
570 result_len += len;
571 if (MOST_POSITIVE_FIXNUM < result_len)
572 memory_full (SIZE_MAX);
573 }
574
575 if (! some_multibyte)
576 result_len_byte = result_len;
577
578 /* Create the output object. */
579 if (target_type == Lisp_Cons)
580 val = Fmake_list (make_number (result_len), Qnil);
581 else if (target_type == Lisp_Vectorlike)
582 val = Fmake_vector (make_number (result_len), Qnil);
583 else if (some_multibyte)
584 val = make_uninit_multibyte_string (result_len, result_len_byte);
585 else
586 val = make_uninit_string (result_len);
587
588 /* In `append', if all but last arg are nil, return last arg. */
589 if (target_type == Lisp_Cons && EQ (val, Qnil))
590 return last_tail;
591
592 /* Copy the contents of the args into the result. */
593 if (CONSP (val))
594 tail = val, toindex = -1; /* -1 in toindex is flag we are making a list */
595 else
596 toindex = 0, toindex_byte = 0;
597
598 prev = Qnil;
599 if (STRINGP (val))
600 SAFE_NALLOCA (textprops, 1, nargs);
601
602 for (argnum = 0; argnum < nargs; argnum++)
603 {
604 Lisp_Object thislen;
605 ptrdiff_t thisleni = 0;
606 register ptrdiff_t thisindex = 0;
607 register ptrdiff_t thisindex_byte = 0;
608
609 this = args[argnum];
610 if (!CONSP (this))
611 thislen = Flength (this), thisleni = XINT (thislen);
612
613 /* Between strings of the same kind, copy fast. */
614 if (STRINGP (this) && STRINGP (val)
615 && STRING_MULTIBYTE (this) == some_multibyte)
616 {
617 ptrdiff_t thislen_byte = SBYTES (this);
618
619 memcpy (SDATA (val) + toindex_byte, SDATA (this), SBYTES (this));
620 if (string_intervals (this))
621 {
622 textprops[num_textprops].argnum = argnum;
623 textprops[num_textprops].from = 0;
624 textprops[num_textprops++].to = toindex;
625 }
626 toindex_byte += thislen_byte;
627 toindex += thisleni;
628 }
629 /* Copy a single-byte string to a multibyte string. */
630 else if (STRINGP (this) && STRINGP (val))
631 {
632 if (string_intervals (this))
633 {
634 textprops[num_textprops].argnum = argnum;
635 textprops[num_textprops].from = 0;
636 textprops[num_textprops++].to = toindex;
637 }
638 toindex_byte += copy_text (SDATA (this),
639 SDATA (val) + toindex_byte,
640 SCHARS (this), 0, 1);
641 toindex += thisleni;
642 }
643 else
644 /* Copy element by element. */
645 while (1)
646 {
647 register Lisp_Object elt;
648
649 /* Fetch next element of `this' arg into `elt', or break if
650 `this' is exhausted. */
651 if (NILP (this)) break;
652 if (CONSP (this))
653 elt = XCAR (this), this = XCDR (this);
654 else if (thisindex >= thisleni)
655 break;
656 else if (STRINGP (this))
657 {
658 int c;
659 if (STRING_MULTIBYTE (this))
660 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, this,
661 thisindex,
662 thisindex_byte);
663 else
664 {
665 c = SREF (this, thisindex); thisindex++;
666 if (some_multibyte && !ASCII_CHAR_P (c))
667 c = BYTE8_TO_CHAR (c);
668 }
669 XSETFASTINT (elt, c);
670 }
671 else if (BOOL_VECTOR_P (this))
672 {
673 int byte;
674 byte = XBOOL_VECTOR (this)->data[thisindex / BOOL_VECTOR_BITS_PER_CHAR];
675 if (byte & (1 << (thisindex % BOOL_VECTOR_BITS_PER_CHAR)))
676 elt = Qt;
677 else
678 elt = Qnil;
679 thisindex++;
680 }
681 else
682 {
683 elt = AREF (this, thisindex);
684 thisindex++;
685 }
686
687 /* Store this element into the result. */
688 if (toindex < 0)
689 {
690 XSETCAR (tail, elt);
691 prev = tail;
692 tail = XCDR (tail);
693 }
694 else if (VECTORP (val))
695 {
696 ASET (val, toindex, elt);
697 toindex++;
698 }
699 else
700 {
701 int c;
702 CHECK_CHARACTER (elt);
703 c = XFASTINT (elt);
704 if (some_multibyte)
705 toindex_byte += CHAR_STRING (c, SDATA (val) + toindex_byte);
706 else
707 SSET (val, toindex_byte++, c);
708 toindex++;
709 }
710 }
711 }
712 if (!NILP (prev))
713 XSETCDR (prev, last_tail);
714
715 if (num_textprops > 0)
716 {
717 Lisp_Object props;
718 ptrdiff_t last_to_end = -1;
719
720 for (argnum = 0; argnum < num_textprops; argnum++)
721 {
722 this = args[textprops[argnum].argnum];
723 props = text_property_list (this,
724 make_number (0),
725 make_number (SCHARS (this)),
726 Qnil);
727 /* If successive arguments have properties, be sure that the
728 value of `composition' property be the copy. */
729 if (last_to_end == textprops[argnum].to)
730 make_composition_value_copy (props);
731 add_text_properties_from_list (val, props,
732 make_number (textprops[argnum].to));
733 last_to_end = textprops[argnum].to + SCHARS (this);
734 }
735 }
736
737 SAFE_FREE ();
738 return val;
739 }
740 \f
741 static Lisp_Object string_char_byte_cache_string;
742 static ptrdiff_t string_char_byte_cache_charpos;
743 static ptrdiff_t string_char_byte_cache_bytepos;
744
745 void
746 clear_string_char_byte_cache (void)
747 {
748 string_char_byte_cache_string = Qnil;
749 }
750
751 /* Return the byte index corresponding to CHAR_INDEX in STRING. */
752
753 ptrdiff_t
754 string_char_to_byte (Lisp_Object string, ptrdiff_t char_index)
755 {
756 ptrdiff_t i_byte;
757 ptrdiff_t best_below, best_below_byte;
758 ptrdiff_t best_above, best_above_byte;
759
760 best_below = best_below_byte = 0;
761 best_above = SCHARS (string);
762 best_above_byte = SBYTES (string);
763 if (best_above == best_above_byte)
764 return char_index;
765
766 if (EQ (string, string_char_byte_cache_string))
767 {
768 if (string_char_byte_cache_charpos < char_index)
769 {
770 best_below = string_char_byte_cache_charpos;
771 best_below_byte = string_char_byte_cache_bytepos;
772 }
773 else
774 {
775 best_above = string_char_byte_cache_charpos;
776 best_above_byte = string_char_byte_cache_bytepos;
777 }
778 }
779
780 if (char_index - best_below < best_above - char_index)
781 {
782 unsigned char *p = SDATA (string) + best_below_byte;
783
784 while (best_below < char_index)
785 {
786 p += BYTES_BY_CHAR_HEAD (*p);
787 best_below++;
788 }
789 i_byte = p - SDATA (string);
790 }
791 else
792 {
793 unsigned char *p = SDATA (string) + best_above_byte;
794
795 while (best_above > char_index)
796 {
797 p--;
798 while (!CHAR_HEAD_P (*p)) p--;
799 best_above--;
800 }
801 i_byte = p - SDATA (string);
802 }
803
804 string_char_byte_cache_bytepos = i_byte;
805 string_char_byte_cache_charpos = char_index;
806 string_char_byte_cache_string = string;
807
808 return i_byte;
809 }
810 \f
811 /* Return the character index corresponding to BYTE_INDEX in STRING. */
812
813 ptrdiff_t
814 string_byte_to_char (Lisp_Object string, ptrdiff_t byte_index)
815 {
816 ptrdiff_t i, i_byte;
817 ptrdiff_t best_below, best_below_byte;
818 ptrdiff_t best_above, best_above_byte;
819
820 best_below = best_below_byte = 0;
821 best_above = SCHARS (string);
822 best_above_byte = SBYTES (string);
823 if (best_above == best_above_byte)
824 return byte_index;
825
826 if (EQ (string, string_char_byte_cache_string))
827 {
828 if (string_char_byte_cache_bytepos < byte_index)
829 {
830 best_below = string_char_byte_cache_charpos;
831 best_below_byte = string_char_byte_cache_bytepos;
832 }
833 else
834 {
835 best_above = string_char_byte_cache_charpos;
836 best_above_byte = string_char_byte_cache_bytepos;
837 }
838 }
839
840 if (byte_index - best_below_byte < best_above_byte - byte_index)
841 {
842 unsigned char *p = SDATA (string) + best_below_byte;
843 unsigned char *pend = SDATA (string) + byte_index;
844
845 while (p < pend)
846 {
847 p += BYTES_BY_CHAR_HEAD (*p);
848 best_below++;
849 }
850 i = best_below;
851 i_byte = p - SDATA (string);
852 }
853 else
854 {
855 unsigned char *p = SDATA (string) + best_above_byte;
856 unsigned char *pbeg = SDATA (string) + byte_index;
857
858 while (p > pbeg)
859 {
860 p--;
861 while (!CHAR_HEAD_P (*p)) p--;
862 best_above--;
863 }
864 i = best_above;
865 i_byte = p - SDATA (string);
866 }
867
868 string_char_byte_cache_bytepos = i_byte;
869 string_char_byte_cache_charpos = i;
870 string_char_byte_cache_string = string;
871
872 return i;
873 }
874 \f
875 /* Convert STRING to a multibyte string. */
876
877 static Lisp_Object
878 string_make_multibyte (Lisp_Object string)
879 {
880 unsigned char *buf;
881 ptrdiff_t nbytes;
882 Lisp_Object ret;
883 USE_SAFE_ALLOCA;
884
885 if (STRING_MULTIBYTE (string))
886 return string;
887
888 nbytes = count_size_as_multibyte (SDATA (string),
889 SCHARS (string));
890 /* If all the chars are ASCII, they won't need any more bytes
891 once converted. In that case, we can return STRING itself. */
892 if (nbytes == SBYTES (string))
893 return string;
894
895 buf = SAFE_ALLOCA (nbytes);
896 copy_text (SDATA (string), buf, SBYTES (string),
897 0, 1);
898
899 ret = make_multibyte_string ((char *) buf, SCHARS (string), nbytes);
900 SAFE_FREE ();
901
902 return ret;
903 }
904
905
906 /* Convert STRING (if unibyte) to a multibyte string without changing
907 the number of characters. Characters 0200 trough 0237 are
908 converted to eight-bit characters. */
909
910 Lisp_Object
911 string_to_multibyte (Lisp_Object string)
912 {
913 unsigned char *buf;
914 ptrdiff_t nbytes;
915 Lisp_Object ret;
916 USE_SAFE_ALLOCA;
917
918 if (STRING_MULTIBYTE (string))
919 return string;
920
921 nbytes = count_size_as_multibyte (SDATA (string), SBYTES (string));
922 /* If all the chars are ASCII, they won't need any more bytes once
923 converted. */
924 if (nbytes == SBYTES (string))
925 return make_multibyte_string (SSDATA (string), nbytes, nbytes);
926
927 buf = SAFE_ALLOCA (nbytes);
928 memcpy (buf, SDATA (string), SBYTES (string));
929 str_to_multibyte (buf, nbytes, SBYTES (string));
930
931 ret = make_multibyte_string ((char *) buf, SCHARS (string), nbytes);
932 SAFE_FREE ();
933
934 return ret;
935 }
936
937
938 /* Convert STRING to a single-byte string. */
939
940 Lisp_Object
941 string_make_unibyte (Lisp_Object string)
942 {
943 ptrdiff_t nchars;
944 unsigned char *buf;
945 Lisp_Object ret;
946 USE_SAFE_ALLOCA;
947
948 if (! STRING_MULTIBYTE (string))
949 return string;
950
951 nchars = SCHARS (string);
952
953 buf = SAFE_ALLOCA (nchars);
954 copy_text (SDATA (string), buf, SBYTES (string),
955 1, 0);
956
957 ret = make_unibyte_string ((char *) buf, nchars);
958 SAFE_FREE ();
959
960 return ret;
961 }
962
963 DEFUN ("string-make-multibyte", Fstring_make_multibyte, Sstring_make_multibyte,
964 1, 1, 0,
965 doc: /* Return the multibyte equivalent of STRING.
966 If STRING is unibyte and contains non-ASCII characters, the function
967 `unibyte-char-to-multibyte' is used to convert each unibyte character
968 to a multibyte character. In this case, the returned string is a
969 newly created string with no text properties. If STRING is multibyte
970 or entirely ASCII, it is returned unchanged. In particular, when
971 STRING is unibyte and entirely ASCII, the returned string is unibyte.
972 \(When the characters are all ASCII, Emacs primitives will treat the
973 string the same way whether it is unibyte or multibyte.) */)
974 (Lisp_Object string)
975 {
976 CHECK_STRING (string);
977
978 return string_make_multibyte (string);
979 }
980
981 DEFUN ("string-make-unibyte", Fstring_make_unibyte, Sstring_make_unibyte,
982 1, 1, 0,
983 doc: /* Return the unibyte equivalent of STRING.
984 Multibyte character codes are converted to unibyte according to
985 `nonascii-translation-table' or, if that is nil, `nonascii-insert-offset'.
986 If the lookup in the translation table fails, this function takes just
987 the low 8 bits of each character. */)
988 (Lisp_Object string)
989 {
990 CHECK_STRING (string);
991
992 return string_make_unibyte (string);
993 }
994
995 DEFUN ("string-as-unibyte", Fstring_as_unibyte, Sstring_as_unibyte,
996 1, 1, 0,
997 doc: /* Return a unibyte string with the same individual bytes as STRING.
998 If STRING is unibyte, the result is STRING itself.
999 Otherwise it is a newly created string, with no text properties.
1000 If STRING is multibyte and contains a character of charset
1001 `eight-bit', it is converted to the corresponding single byte. */)
1002 (Lisp_Object string)
1003 {
1004 CHECK_STRING (string);
1005
1006 if (STRING_MULTIBYTE (string))
1007 {
1008 ptrdiff_t bytes = SBYTES (string);
1009 unsigned char *str = xmalloc (bytes);
1010
1011 memcpy (str, SDATA (string), bytes);
1012 bytes = str_as_unibyte (str, bytes);
1013 string = make_unibyte_string ((char *) str, bytes);
1014 xfree (str);
1015 }
1016 return string;
1017 }
1018
1019 DEFUN ("string-as-multibyte", Fstring_as_multibyte, Sstring_as_multibyte,
1020 1, 1, 0,
1021 doc: /* Return a multibyte string with the same individual bytes as STRING.
1022 If STRING is multibyte, the result is STRING itself.
1023 Otherwise it is a newly created string, with no text properties.
1024
1025 If STRING is unibyte and contains an individual 8-bit byte (i.e. not
1026 part of a correct utf-8 sequence), it is converted to the corresponding
1027 multibyte character of charset `eight-bit'.
1028 See also `string-to-multibyte'.
1029
1030 Beware, this often doesn't really do what you think it does.
1031 It is similar to (decode-coding-string STRING 'utf-8-emacs).
1032 If you're not sure, whether to use `string-as-multibyte' or
1033 `string-to-multibyte', use `string-to-multibyte'. */)
1034 (Lisp_Object string)
1035 {
1036 CHECK_STRING (string);
1037
1038 if (! STRING_MULTIBYTE (string))
1039 {
1040 Lisp_Object new_string;
1041 ptrdiff_t nchars, nbytes;
1042
1043 parse_str_as_multibyte (SDATA (string),
1044 SBYTES (string),
1045 &nchars, &nbytes);
1046 new_string = make_uninit_multibyte_string (nchars, nbytes);
1047 memcpy (SDATA (new_string), SDATA (string), SBYTES (string));
1048 if (nbytes != SBYTES (string))
1049 str_as_multibyte (SDATA (new_string), nbytes,
1050 SBYTES (string), NULL);
1051 string = new_string;
1052 set_string_intervals (string, NULL);
1053 }
1054 return string;
1055 }
1056
1057 DEFUN ("string-to-multibyte", Fstring_to_multibyte, Sstring_to_multibyte,
1058 1, 1, 0,
1059 doc: /* Return a multibyte string with the same individual chars as STRING.
1060 If STRING is multibyte, the result is STRING itself.
1061 Otherwise it is a newly created string, with no text properties.
1062
1063 If STRING is unibyte and contains an 8-bit byte, it is converted to
1064 the corresponding multibyte character of charset `eight-bit'.
1065
1066 This differs from `string-as-multibyte' by converting each byte of a correct
1067 utf-8 sequence to an eight-bit character, not just bytes that don't form a
1068 correct sequence. */)
1069 (Lisp_Object string)
1070 {
1071 CHECK_STRING (string);
1072
1073 return string_to_multibyte (string);
1074 }
1075
1076 DEFUN ("string-to-unibyte", Fstring_to_unibyte, Sstring_to_unibyte,
1077 1, 1, 0,
1078 doc: /* Return a unibyte string with the same individual chars as STRING.
1079 If STRING is unibyte, the result is STRING itself.
1080 Otherwise it is a newly created string, with no text properties,
1081 where each `eight-bit' character is converted to the corresponding byte.
1082 If STRING contains a non-ASCII, non-`eight-bit' character,
1083 an error is signaled. */)
1084 (Lisp_Object string)
1085 {
1086 CHECK_STRING (string);
1087
1088 if (STRING_MULTIBYTE (string))
1089 {
1090 ptrdiff_t chars = SCHARS (string);
1091 unsigned char *str = xmalloc (chars);
1092 ptrdiff_t converted = str_to_unibyte (SDATA (string), str, chars);
1093
1094 if (converted < chars)
1095 error ("Can't convert the %"pD"dth character to unibyte", converted);
1096 string = make_unibyte_string ((char *) str, chars);
1097 xfree (str);
1098 }
1099 return string;
1100 }
1101
1102 \f
1103 DEFUN ("copy-alist", Fcopy_alist, Scopy_alist, 1, 1, 0,
1104 doc: /* Return a copy of ALIST.
1105 This is an alist which represents the same mapping from objects to objects,
1106 but does not share the alist structure with ALIST.
1107 The objects mapped (cars and cdrs of elements of the alist)
1108 are shared, however.
1109 Elements of ALIST that are not conses are also shared. */)
1110 (Lisp_Object alist)
1111 {
1112 register Lisp_Object tem;
1113
1114 CHECK_LIST (alist);
1115 if (NILP (alist))
1116 return alist;
1117 alist = concat (1, &alist, Lisp_Cons, 0);
1118 for (tem = alist; CONSP (tem); tem = XCDR (tem))
1119 {
1120 register Lisp_Object car;
1121 car = XCAR (tem);
1122
1123 if (CONSP (car))
1124 XSETCAR (tem, Fcons (XCAR (car), XCDR (car)));
1125 }
1126 return alist;
1127 }
1128
1129 DEFUN ("substring", Fsubstring, Ssubstring, 2, 3, 0,
1130 doc: /* Return a new string whose contents are a substring of STRING.
1131 The returned string consists of the characters between index FROM
1132 \(inclusive) and index TO (exclusive) of STRING. FROM and TO are
1133 zero-indexed: 0 means the first character of STRING. Negative values
1134 are counted from the end of STRING. If TO is nil, the substring runs
1135 to the end of STRING.
1136
1137 The STRING argument may also be a vector. In that case, the return
1138 value is a new vector that contains the elements between index FROM
1139 \(inclusive) and index TO (exclusive) of that vector argument. */)
1140 (Lisp_Object string, register Lisp_Object from, Lisp_Object to)
1141 {
1142 Lisp_Object res;
1143 ptrdiff_t size;
1144 EMACS_INT from_char, to_char;
1145
1146 CHECK_VECTOR_OR_STRING (string);
1147 CHECK_NUMBER (from);
1148
1149 if (STRINGP (string))
1150 size = SCHARS (string);
1151 else
1152 size = ASIZE (string);
1153
1154 if (NILP (to))
1155 to_char = size;
1156 else
1157 {
1158 CHECK_NUMBER (to);
1159
1160 to_char = XINT (to);
1161 if (to_char < 0)
1162 to_char += size;
1163 }
1164
1165 from_char = XINT (from);
1166 if (from_char < 0)
1167 from_char += size;
1168 if (!(0 <= from_char && from_char <= to_char && to_char <= size))
1169 args_out_of_range_3 (string, make_number (from_char),
1170 make_number (to_char));
1171
1172 if (STRINGP (string))
1173 {
1174 ptrdiff_t to_byte =
1175 (NILP (to) ? SBYTES (string) : string_char_to_byte (string, to_char));
1176 ptrdiff_t from_byte = string_char_to_byte (string, from_char);
1177 res = make_specified_string (SSDATA (string) + from_byte,
1178 to_char - from_char, to_byte - from_byte,
1179 STRING_MULTIBYTE (string));
1180 copy_text_properties (make_number (from_char), make_number (to_char),
1181 string, make_number (0), res, Qnil);
1182 }
1183 else
1184 res = Fvector (to_char - from_char, aref_addr (string, from_char));
1185
1186 return res;
1187 }
1188
1189
1190 DEFUN ("substring-no-properties", Fsubstring_no_properties, Ssubstring_no_properties, 1, 3, 0,
1191 doc: /* Return a substring of STRING, without text properties.
1192 It starts at index FROM and ends before TO.
1193 TO may be nil or omitted; then the substring runs to the end of STRING.
1194 If FROM is nil or omitted, the substring starts at the beginning of STRING.
1195 If FROM or TO is negative, it counts from the end.
1196
1197 With one argument, just copy STRING without its properties. */)
1198 (Lisp_Object string, register Lisp_Object from, Lisp_Object to)
1199 {
1200 ptrdiff_t size;
1201 EMACS_INT from_char, to_char;
1202 ptrdiff_t from_byte, to_byte;
1203
1204 CHECK_STRING (string);
1205
1206 size = SCHARS (string);
1207
1208 if (NILP (from))
1209 from_char = 0;
1210 else
1211 {
1212 CHECK_NUMBER (from);
1213 from_char = XINT (from);
1214 if (from_char < 0)
1215 from_char += size;
1216 }
1217
1218 if (NILP (to))
1219 to_char = size;
1220 else
1221 {
1222 CHECK_NUMBER (to);
1223 to_char = XINT (to);
1224 if (to_char < 0)
1225 to_char += size;
1226 }
1227
1228 if (!(0 <= from_char && from_char <= to_char && to_char <= size))
1229 args_out_of_range_3 (string, make_number (from_char),
1230 make_number (to_char));
1231
1232 from_byte = NILP (from) ? 0 : string_char_to_byte (string, from_char);
1233 to_byte =
1234 NILP (to) ? SBYTES (string) : string_char_to_byte (string, to_char);
1235 return make_specified_string (SSDATA (string) + from_byte,
1236 to_char - from_char, to_byte - from_byte,
1237 STRING_MULTIBYTE (string));
1238 }
1239
1240 /* Extract a substring of STRING, giving start and end positions
1241 both in characters and in bytes. */
1242
1243 Lisp_Object
1244 substring_both (Lisp_Object string, ptrdiff_t from, ptrdiff_t from_byte,
1245 ptrdiff_t to, ptrdiff_t to_byte)
1246 {
1247 Lisp_Object res;
1248 ptrdiff_t size;
1249
1250 CHECK_VECTOR_OR_STRING (string);
1251
1252 size = STRINGP (string) ? SCHARS (string) : ASIZE (string);
1253
1254 if (!(0 <= from && from <= to && to <= size))
1255 args_out_of_range_3 (string, make_number (from), make_number (to));
1256
1257 if (STRINGP (string))
1258 {
1259 res = make_specified_string (SSDATA (string) + from_byte,
1260 to - from, to_byte - from_byte,
1261 STRING_MULTIBYTE (string));
1262 copy_text_properties (make_number (from), make_number (to),
1263 string, make_number (0), res, Qnil);
1264 }
1265 else
1266 res = Fvector (to - from, aref_addr (string, from));
1267
1268 return res;
1269 }
1270 \f
1271 DEFUN ("nthcdr", Fnthcdr, Snthcdr, 2, 2, 0,
1272 doc: /* Take cdr N times on LIST, return the result. */)
1273 (Lisp_Object n, Lisp_Object list)
1274 {
1275 EMACS_INT i, num;
1276 CHECK_NUMBER (n);
1277 num = XINT (n);
1278 for (i = 0; i < num && !NILP (list); i++)
1279 {
1280 QUIT;
1281 CHECK_LIST_CONS (list, list);
1282 list = XCDR (list);
1283 }
1284 return list;
1285 }
1286
1287 DEFUN ("nth", Fnth, Snth, 2, 2, 0,
1288 doc: /* Return the Nth element of LIST.
1289 N counts from zero. If LIST is not that long, nil is returned. */)
1290 (Lisp_Object n, Lisp_Object list)
1291 {
1292 return Fcar (Fnthcdr (n, list));
1293 }
1294
1295 DEFUN ("elt", Felt, Selt, 2, 2, 0,
1296 doc: /* Return element of SEQUENCE at index N. */)
1297 (register Lisp_Object sequence, Lisp_Object n)
1298 {
1299 CHECK_NUMBER (n);
1300 if (CONSP (sequence) || NILP (sequence))
1301 return Fcar (Fnthcdr (n, sequence));
1302
1303 /* Faref signals a "not array" error, so check here. */
1304 CHECK_ARRAY (sequence, Qsequencep);
1305 return Faref (sequence, n);
1306 }
1307
1308 DEFUN ("member", Fmember, Smember, 2, 2, 0,
1309 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `equal'.
1310 The value is actually the tail of LIST whose car is ELT. */)
1311 (register Lisp_Object elt, Lisp_Object list)
1312 {
1313 register Lisp_Object tail;
1314 for (tail = list; CONSP (tail); tail = XCDR (tail))
1315 {
1316 register Lisp_Object tem;
1317 CHECK_LIST_CONS (tail, list);
1318 tem = XCAR (tail);
1319 if (! NILP (Fequal (elt, tem)))
1320 return tail;
1321 QUIT;
1322 }
1323 return Qnil;
1324 }
1325
1326 DEFUN ("memq", Fmemq, Smemq, 2, 2, 0,
1327 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `eq'.
1328 The value is actually the tail of LIST whose car is ELT. */)
1329 (register Lisp_Object elt, Lisp_Object list)
1330 {
1331 while (1)
1332 {
1333 if (!CONSP (list) || EQ (XCAR (list), elt))
1334 break;
1335
1336 list = XCDR (list);
1337 if (!CONSP (list) || EQ (XCAR (list), elt))
1338 break;
1339
1340 list = XCDR (list);
1341 if (!CONSP (list) || EQ (XCAR (list), elt))
1342 break;
1343
1344 list = XCDR (list);
1345 QUIT;
1346 }
1347
1348 CHECK_LIST (list);
1349 return list;
1350 }
1351
1352 DEFUN ("memql", Fmemql, Smemql, 2, 2, 0,
1353 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `eql'.
1354 The value is actually the tail of LIST whose car is ELT. */)
1355 (register Lisp_Object elt, Lisp_Object list)
1356 {
1357 register Lisp_Object tail;
1358
1359 if (!FLOATP (elt))
1360 return Fmemq (elt, list);
1361
1362 for (tail = list; CONSP (tail); tail = XCDR (tail))
1363 {
1364 register Lisp_Object tem;
1365 CHECK_LIST_CONS (tail, list);
1366 tem = XCAR (tail);
1367 if (FLOATP (tem) && internal_equal (elt, tem, 0, 0))
1368 return tail;
1369 QUIT;
1370 }
1371 return Qnil;
1372 }
1373
1374 DEFUN ("assq", Fassq, Sassq, 2, 2, 0,
1375 doc: /* Return non-nil if KEY is `eq' to the car of an element of LIST.
1376 The value is actually the first element of LIST whose car is KEY.
1377 Elements of LIST that are not conses are ignored. */)
1378 (Lisp_Object key, Lisp_Object list)
1379 {
1380 while (1)
1381 {
1382 if (!CONSP (list)
1383 || (CONSP (XCAR (list))
1384 && EQ (XCAR (XCAR (list)), key)))
1385 break;
1386
1387 list = XCDR (list);
1388 if (!CONSP (list)
1389 || (CONSP (XCAR (list))
1390 && EQ (XCAR (XCAR (list)), key)))
1391 break;
1392
1393 list = XCDR (list);
1394 if (!CONSP (list)
1395 || (CONSP (XCAR (list))
1396 && EQ (XCAR (XCAR (list)), key)))
1397 break;
1398
1399 list = XCDR (list);
1400 QUIT;
1401 }
1402
1403 return CAR (list);
1404 }
1405
1406 /* Like Fassq but never report an error and do not allow quits.
1407 Use only on lists known never to be circular. */
1408
1409 Lisp_Object
1410 assq_no_quit (Lisp_Object key, Lisp_Object list)
1411 {
1412 while (CONSP (list)
1413 && (!CONSP (XCAR (list))
1414 || !EQ (XCAR (XCAR (list)), key)))
1415 list = XCDR (list);
1416
1417 return CAR_SAFE (list);
1418 }
1419
1420 DEFUN ("assoc", Fassoc, Sassoc, 2, 2, 0,
1421 doc: /* Return non-nil if KEY is `equal' to the car of an element of LIST.
1422 The value is actually the first element of LIST whose car equals KEY. */)
1423 (Lisp_Object key, Lisp_Object list)
1424 {
1425 Lisp_Object car;
1426
1427 while (1)
1428 {
1429 if (!CONSP (list)
1430 || (CONSP (XCAR (list))
1431 && (car = XCAR (XCAR (list)),
1432 EQ (car, key) || !NILP (Fequal (car, key)))))
1433 break;
1434
1435 list = XCDR (list);
1436 if (!CONSP (list)
1437 || (CONSP (XCAR (list))
1438 && (car = XCAR (XCAR (list)),
1439 EQ (car, key) || !NILP (Fequal (car, key)))))
1440 break;
1441
1442 list = XCDR (list);
1443 if (!CONSP (list)
1444 || (CONSP (XCAR (list))
1445 && (car = XCAR (XCAR (list)),
1446 EQ (car, key) || !NILP (Fequal (car, key)))))
1447 break;
1448
1449 list = XCDR (list);
1450 QUIT;
1451 }
1452
1453 return CAR (list);
1454 }
1455
1456 /* Like Fassoc but never report an error and do not allow quits.
1457 Use only on lists known never to be circular. */
1458
1459 Lisp_Object
1460 assoc_no_quit (Lisp_Object key, Lisp_Object list)
1461 {
1462 while (CONSP (list)
1463 && (!CONSP (XCAR (list))
1464 || (!EQ (XCAR (XCAR (list)), key)
1465 && NILP (Fequal (XCAR (XCAR (list)), key)))))
1466 list = XCDR (list);
1467
1468 return CONSP (list) ? XCAR (list) : Qnil;
1469 }
1470
1471 DEFUN ("rassq", Frassq, Srassq, 2, 2, 0,
1472 doc: /* Return non-nil if KEY is `eq' to the cdr of an element of LIST.
1473 The value is actually the first element of LIST whose cdr is KEY. */)
1474 (register Lisp_Object key, Lisp_Object list)
1475 {
1476 while (1)
1477 {
1478 if (!CONSP (list)
1479 || (CONSP (XCAR (list))
1480 && EQ (XCDR (XCAR (list)), key)))
1481 break;
1482
1483 list = XCDR (list);
1484 if (!CONSP (list)
1485 || (CONSP (XCAR (list))
1486 && EQ (XCDR (XCAR (list)), key)))
1487 break;
1488
1489 list = XCDR (list);
1490 if (!CONSP (list)
1491 || (CONSP (XCAR (list))
1492 && EQ (XCDR (XCAR (list)), key)))
1493 break;
1494
1495 list = XCDR (list);
1496 QUIT;
1497 }
1498
1499 return CAR (list);
1500 }
1501
1502 DEFUN ("rassoc", Frassoc, Srassoc, 2, 2, 0,
1503 doc: /* Return non-nil if KEY is `equal' to the cdr of an element of LIST.
1504 The value is actually the first element of LIST whose cdr equals KEY. */)
1505 (Lisp_Object key, Lisp_Object list)
1506 {
1507 Lisp_Object cdr;
1508
1509 while (1)
1510 {
1511 if (!CONSP (list)
1512 || (CONSP (XCAR (list))
1513 && (cdr = XCDR (XCAR (list)),
1514 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1515 break;
1516
1517 list = XCDR (list);
1518 if (!CONSP (list)
1519 || (CONSP (XCAR (list))
1520 && (cdr = XCDR (XCAR (list)),
1521 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1522 break;
1523
1524 list = XCDR (list);
1525 if (!CONSP (list)
1526 || (CONSP (XCAR (list))
1527 && (cdr = XCDR (XCAR (list)),
1528 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1529 break;
1530
1531 list = XCDR (list);
1532 QUIT;
1533 }
1534
1535 return CAR (list);
1536 }
1537 \f
1538 DEFUN ("delq", Fdelq, Sdelq, 2, 2, 0,
1539 doc: /* Delete members of LIST which are `eq' to ELT, and return the result.
1540 More precisely, this function skips any members `eq' to ELT at the
1541 front of LIST, then removes members `eq' to ELT from the remaining
1542 sublist by modifying its list structure, then returns the resulting
1543 list.
1544
1545 Write `(setq foo (delq element foo))' to be sure of correctly changing
1546 the value of a list `foo'. */)
1547 (register Lisp_Object elt, Lisp_Object list)
1548 {
1549 register Lisp_Object tail, prev;
1550 register Lisp_Object tem;
1551
1552 tail = list;
1553 prev = Qnil;
1554 while (!NILP (tail))
1555 {
1556 CHECK_LIST_CONS (tail, list);
1557 tem = XCAR (tail);
1558 if (EQ (elt, tem))
1559 {
1560 if (NILP (prev))
1561 list = XCDR (tail);
1562 else
1563 Fsetcdr (prev, XCDR (tail));
1564 }
1565 else
1566 prev = tail;
1567 tail = XCDR (tail);
1568 QUIT;
1569 }
1570 return list;
1571 }
1572
1573 DEFUN ("delete", Fdelete, Sdelete, 2, 2, 0,
1574 doc: /* Delete members of SEQ which are `equal' to ELT, and return the result.
1575 SEQ must be a sequence (i.e. a list, a vector, or a string).
1576 The return value is a sequence of the same type.
1577
1578 If SEQ is a list, this behaves like `delq', except that it compares
1579 with `equal' instead of `eq'. In particular, it may remove elements
1580 by altering the list structure.
1581
1582 If SEQ is not a list, deletion is never performed destructively;
1583 instead this function creates and returns a new vector or string.
1584
1585 Write `(setq foo (delete element foo))' to be sure of correctly
1586 changing the value of a sequence `foo'. */)
1587 (Lisp_Object elt, Lisp_Object seq)
1588 {
1589 if (VECTORP (seq))
1590 {
1591 ptrdiff_t i, n;
1592
1593 for (i = n = 0; i < ASIZE (seq); ++i)
1594 if (NILP (Fequal (AREF (seq, i), elt)))
1595 ++n;
1596
1597 if (n != ASIZE (seq))
1598 {
1599 struct Lisp_Vector *p = allocate_vector (n);
1600
1601 for (i = n = 0; i < ASIZE (seq); ++i)
1602 if (NILP (Fequal (AREF (seq, i), elt)))
1603 p->contents[n++] = AREF (seq, i);
1604
1605 XSETVECTOR (seq, p);
1606 }
1607 }
1608 else if (STRINGP (seq))
1609 {
1610 ptrdiff_t i, ibyte, nchars, nbytes, cbytes;
1611 int c;
1612
1613 for (i = nchars = nbytes = ibyte = 0;
1614 i < SCHARS (seq);
1615 ++i, ibyte += cbytes)
1616 {
1617 if (STRING_MULTIBYTE (seq))
1618 {
1619 c = STRING_CHAR (SDATA (seq) + ibyte);
1620 cbytes = CHAR_BYTES (c);
1621 }
1622 else
1623 {
1624 c = SREF (seq, i);
1625 cbytes = 1;
1626 }
1627
1628 if (!INTEGERP (elt) || c != XINT (elt))
1629 {
1630 ++nchars;
1631 nbytes += cbytes;
1632 }
1633 }
1634
1635 if (nchars != SCHARS (seq))
1636 {
1637 Lisp_Object tem;
1638
1639 tem = make_uninit_multibyte_string (nchars, nbytes);
1640 if (!STRING_MULTIBYTE (seq))
1641 STRING_SET_UNIBYTE (tem);
1642
1643 for (i = nchars = nbytes = ibyte = 0;
1644 i < SCHARS (seq);
1645 ++i, ibyte += cbytes)
1646 {
1647 if (STRING_MULTIBYTE (seq))
1648 {
1649 c = STRING_CHAR (SDATA (seq) + ibyte);
1650 cbytes = CHAR_BYTES (c);
1651 }
1652 else
1653 {
1654 c = SREF (seq, i);
1655 cbytes = 1;
1656 }
1657
1658 if (!INTEGERP (elt) || c != XINT (elt))
1659 {
1660 unsigned char *from = SDATA (seq) + ibyte;
1661 unsigned char *to = SDATA (tem) + nbytes;
1662 ptrdiff_t n;
1663
1664 ++nchars;
1665 nbytes += cbytes;
1666
1667 for (n = cbytes; n--; )
1668 *to++ = *from++;
1669 }
1670 }
1671
1672 seq = tem;
1673 }
1674 }
1675 else
1676 {
1677 Lisp_Object tail, prev;
1678
1679 for (tail = seq, prev = Qnil; CONSP (tail); tail = XCDR (tail))
1680 {
1681 CHECK_LIST_CONS (tail, seq);
1682
1683 if (!NILP (Fequal (elt, XCAR (tail))))
1684 {
1685 if (NILP (prev))
1686 seq = XCDR (tail);
1687 else
1688 Fsetcdr (prev, XCDR (tail));
1689 }
1690 else
1691 prev = tail;
1692 QUIT;
1693 }
1694 }
1695
1696 return seq;
1697 }
1698
1699 DEFUN ("nreverse", Fnreverse, Snreverse, 1, 1, 0,
1700 doc: /* Reverse LIST by modifying cdr pointers.
1701 Return the reversed list. Expects a properly nil-terminated list. */)
1702 (Lisp_Object list)
1703 {
1704 register Lisp_Object prev, tail, next;
1705
1706 if (NILP (list)) return list;
1707 prev = Qnil;
1708 tail = list;
1709 while (!NILP (tail))
1710 {
1711 QUIT;
1712 CHECK_LIST_CONS (tail, tail);
1713 next = XCDR (tail);
1714 Fsetcdr (tail, prev);
1715 prev = tail;
1716 tail = next;
1717 }
1718 return prev;
1719 }
1720
1721 DEFUN ("reverse", Freverse, Sreverse, 1, 1, 0,
1722 doc: /* Reverse LIST, copying. Return the reversed list.
1723 See also the function `nreverse', which is used more often. */)
1724 (Lisp_Object list)
1725 {
1726 Lisp_Object new;
1727
1728 for (new = Qnil; CONSP (list); list = XCDR (list))
1729 {
1730 QUIT;
1731 new = Fcons (XCAR (list), new);
1732 }
1733 CHECK_LIST_END (list, list);
1734 return new;
1735 }
1736 \f
1737 Lisp_Object merge (Lisp_Object org_l1, Lisp_Object org_l2, Lisp_Object pred);
1738
1739 DEFUN ("sort", Fsort, Ssort, 2, 2, 0,
1740 doc: /* Sort LIST, stably, comparing elements using PREDICATE.
1741 Returns the sorted list. LIST is modified by side effects.
1742 PREDICATE is called with two elements of LIST, and should return non-nil
1743 if the first element should sort before the second. */)
1744 (Lisp_Object list, Lisp_Object predicate)
1745 {
1746 Lisp_Object front, back;
1747 register Lisp_Object len, tem;
1748 struct gcpro gcpro1, gcpro2;
1749 EMACS_INT length;
1750
1751 front = list;
1752 len = Flength (list);
1753 length = XINT (len);
1754 if (length < 2)
1755 return list;
1756
1757 XSETINT (len, (length / 2) - 1);
1758 tem = Fnthcdr (len, list);
1759 back = Fcdr (tem);
1760 Fsetcdr (tem, Qnil);
1761
1762 GCPRO2 (front, back);
1763 front = Fsort (front, predicate);
1764 back = Fsort (back, predicate);
1765 UNGCPRO;
1766 return merge (front, back, predicate);
1767 }
1768
1769 Lisp_Object
1770 merge (Lisp_Object org_l1, Lisp_Object org_l2, Lisp_Object pred)
1771 {
1772 Lisp_Object value;
1773 register Lisp_Object tail;
1774 Lisp_Object tem;
1775 register Lisp_Object l1, l2;
1776 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4;
1777
1778 l1 = org_l1;
1779 l2 = org_l2;
1780 tail = Qnil;
1781 value = Qnil;
1782
1783 /* It is sufficient to protect org_l1 and org_l2.
1784 When l1 and l2 are updated, we copy the new values
1785 back into the org_ vars. */
1786 GCPRO4 (org_l1, org_l2, pred, value);
1787
1788 while (1)
1789 {
1790 if (NILP (l1))
1791 {
1792 UNGCPRO;
1793 if (NILP (tail))
1794 return l2;
1795 Fsetcdr (tail, l2);
1796 return value;
1797 }
1798 if (NILP (l2))
1799 {
1800 UNGCPRO;
1801 if (NILP (tail))
1802 return l1;
1803 Fsetcdr (tail, l1);
1804 return value;
1805 }
1806 tem = call2 (pred, Fcar (l2), Fcar (l1));
1807 if (NILP (tem))
1808 {
1809 tem = l1;
1810 l1 = Fcdr (l1);
1811 org_l1 = l1;
1812 }
1813 else
1814 {
1815 tem = l2;
1816 l2 = Fcdr (l2);
1817 org_l2 = l2;
1818 }
1819 if (NILP (tail))
1820 value = tem;
1821 else
1822 Fsetcdr (tail, tem);
1823 tail = tem;
1824 }
1825 }
1826
1827 \f
1828 /* This does not check for quits. That is safe since it must terminate. */
1829
1830 DEFUN ("plist-get", Fplist_get, Splist_get, 2, 2, 0,
1831 doc: /* Extract a value from a property list.
1832 PLIST is a property list, which is a list of the form
1833 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
1834 corresponding to the given PROP, or nil if PROP is not one of the
1835 properties on the list. This function never signals an error. */)
1836 (Lisp_Object plist, Lisp_Object prop)
1837 {
1838 Lisp_Object tail, halftail;
1839
1840 /* halftail is used to detect circular lists. */
1841 tail = halftail = plist;
1842 while (CONSP (tail) && CONSP (XCDR (tail)))
1843 {
1844 if (EQ (prop, XCAR (tail)))
1845 return XCAR (XCDR (tail));
1846
1847 tail = XCDR (XCDR (tail));
1848 halftail = XCDR (halftail);
1849 if (EQ (tail, halftail))
1850 break;
1851 }
1852
1853 return Qnil;
1854 }
1855
1856 DEFUN ("get", Fget, Sget, 2, 2, 0,
1857 doc: /* Return the value of SYMBOL's PROPNAME property.
1858 This is the last value stored with `(put SYMBOL PROPNAME VALUE)'. */)
1859 (Lisp_Object symbol, Lisp_Object propname)
1860 {
1861 CHECK_SYMBOL (symbol);
1862 return Fplist_get (XSYMBOL (symbol)->plist, propname);
1863 }
1864
1865 DEFUN ("plist-put", Fplist_put, Splist_put, 3, 3, 0,
1866 doc: /* Change value in PLIST of PROP to VAL.
1867 PLIST is a property list, which is a list of the form
1868 \(PROP1 VALUE1 PROP2 VALUE2 ...). PROP is a symbol and VAL is any object.
1869 If PROP is already a property on the list, its value is set to VAL,
1870 otherwise the new PROP VAL pair is added. The new plist is returned;
1871 use `(setq x (plist-put x prop val))' to be sure to use the new value.
1872 The PLIST is modified by side effects. */)
1873 (Lisp_Object plist, register Lisp_Object prop, Lisp_Object val)
1874 {
1875 register Lisp_Object tail, prev;
1876 Lisp_Object newcell;
1877 prev = Qnil;
1878 for (tail = plist; CONSP (tail) && CONSP (XCDR (tail));
1879 tail = XCDR (XCDR (tail)))
1880 {
1881 if (EQ (prop, XCAR (tail)))
1882 {
1883 Fsetcar (XCDR (tail), val);
1884 return plist;
1885 }
1886
1887 prev = tail;
1888 QUIT;
1889 }
1890 newcell = Fcons (prop, Fcons (val, NILP (prev) ? plist : XCDR (XCDR (prev))));
1891 if (NILP (prev))
1892 return newcell;
1893 else
1894 Fsetcdr (XCDR (prev), newcell);
1895 return plist;
1896 }
1897
1898 DEFUN ("put", Fput, Sput, 3, 3, 0,
1899 doc: /* Store SYMBOL's PROPNAME property with value VALUE.
1900 It can be retrieved with `(get SYMBOL PROPNAME)'. */)
1901 (Lisp_Object symbol, Lisp_Object propname, Lisp_Object value)
1902 {
1903 CHECK_SYMBOL (symbol);
1904 set_symbol_plist
1905 (symbol, Fplist_put (XSYMBOL (symbol)->plist, propname, value));
1906 return value;
1907 }
1908 \f
1909 DEFUN ("lax-plist-get", Flax_plist_get, Slax_plist_get, 2, 2, 0,
1910 doc: /* Extract a value from a property list, comparing with `equal'.
1911 PLIST is a property list, which is a list of the form
1912 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
1913 corresponding to the given PROP, or nil if PROP is not
1914 one of the properties on the list. */)
1915 (Lisp_Object plist, Lisp_Object prop)
1916 {
1917 Lisp_Object tail;
1918
1919 for (tail = plist;
1920 CONSP (tail) && CONSP (XCDR (tail));
1921 tail = XCDR (XCDR (tail)))
1922 {
1923 if (! NILP (Fequal (prop, XCAR (tail))))
1924 return XCAR (XCDR (tail));
1925
1926 QUIT;
1927 }
1928
1929 CHECK_LIST_END (tail, prop);
1930
1931 return Qnil;
1932 }
1933
1934 DEFUN ("lax-plist-put", Flax_plist_put, Slax_plist_put, 3, 3, 0,
1935 doc: /* Change value in PLIST of PROP to VAL, comparing with `equal'.
1936 PLIST is a property list, which is a list of the form
1937 \(PROP1 VALUE1 PROP2 VALUE2 ...). PROP and VAL are any objects.
1938 If PROP is already a property on the list, its value is set to VAL,
1939 otherwise the new PROP VAL pair is added. The new plist is returned;
1940 use `(setq x (lax-plist-put x prop val))' to be sure to use the new value.
1941 The PLIST is modified by side effects. */)
1942 (Lisp_Object plist, register Lisp_Object prop, Lisp_Object val)
1943 {
1944 register Lisp_Object tail, prev;
1945 Lisp_Object newcell;
1946 prev = Qnil;
1947 for (tail = plist; CONSP (tail) && CONSP (XCDR (tail));
1948 tail = XCDR (XCDR (tail)))
1949 {
1950 if (! NILP (Fequal (prop, XCAR (tail))))
1951 {
1952 Fsetcar (XCDR (tail), val);
1953 return plist;
1954 }
1955
1956 prev = tail;
1957 QUIT;
1958 }
1959 newcell = Fcons (prop, Fcons (val, Qnil));
1960 if (NILP (prev))
1961 return newcell;
1962 else
1963 Fsetcdr (XCDR (prev), newcell);
1964 return plist;
1965 }
1966 \f
1967 DEFUN ("eql", Feql, Seql, 2, 2, 0,
1968 doc: /* Return t if the two args are the same Lisp object.
1969 Floating-point numbers of equal value are `eql', but they may not be `eq'. */)
1970 (Lisp_Object obj1, Lisp_Object obj2)
1971 {
1972 if (FLOATP (obj1))
1973 return internal_equal (obj1, obj2, 0, 0) ? Qt : Qnil;
1974 else
1975 return EQ (obj1, obj2) ? Qt : Qnil;
1976 }
1977
1978 DEFUN ("equal", Fequal, Sequal, 2, 2, 0,
1979 doc: /* Return t if two Lisp objects have similar structure and contents.
1980 They must have the same data type.
1981 Conses are compared by comparing the cars and the cdrs.
1982 Vectors and strings are compared element by element.
1983 Numbers are compared by value, but integers cannot equal floats.
1984 (Use `=' if you want integers and floats to be able to be equal.)
1985 Symbols must match exactly. */)
1986 (register Lisp_Object o1, Lisp_Object o2)
1987 {
1988 return internal_equal (o1, o2, 0, 0) ? Qt : Qnil;
1989 }
1990
1991 DEFUN ("equal-including-properties", Fequal_including_properties, Sequal_including_properties, 2, 2, 0,
1992 doc: /* Return t if two Lisp objects have similar structure and contents.
1993 This is like `equal' except that it compares the text properties
1994 of strings. (`equal' ignores text properties.) */)
1995 (register Lisp_Object o1, Lisp_Object o2)
1996 {
1997 return internal_equal (o1, o2, 0, 1) ? Qt : Qnil;
1998 }
1999
2000 /* DEPTH is current depth of recursion. Signal an error if it
2001 gets too deep.
2002 PROPS means compare string text properties too. */
2003
2004 static bool
2005 internal_equal (Lisp_Object o1, Lisp_Object o2, int depth, bool props)
2006 {
2007 if (depth > 200)
2008 error ("Stack overflow in equal");
2009
2010 tail_recurse:
2011 QUIT;
2012 if (EQ (o1, o2))
2013 return 1;
2014 if (XTYPE (o1) != XTYPE (o2))
2015 return 0;
2016
2017 switch (XTYPE (o1))
2018 {
2019 case Lisp_Float:
2020 {
2021 double d1, d2;
2022
2023 d1 = extract_float (o1);
2024 d2 = extract_float (o2);
2025 /* If d is a NaN, then d != d. Two NaNs should be `equal' even
2026 though they are not =. */
2027 return d1 == d2 || (d1 != d1 && d2 != d2);
2028 }
2029
2030 case Lisp_Cons:
2031 if (!internal_equal (XCAR (o1), XCAR (o2), depth + 1, props))
2032 return 0;
2033 o1 = XCDR (o1);
2034 o2 = XCDR (o2);
2035 goto tail_recurse;
2036
2037 case Lisp_Misc:
2038 if (XMISCTYPE (o1) != XMISCTYPE (o2))
2039 return 0;
2040 if (OVERLAYP (o1))
2041 {
2042 if (!internal_equal (OVERLAY_START (o1), OVERLAY_START (o2),
2043 depth + 1, props)
2044 || !internal_equal (OVERLAY_END (o1), OVERLAY_END (o2),
2045 depth + 1, props))
2046 return 0;
2047 o1 = XOVERLAY (o1)->plist;
2048 o2 = XOVERLAY (o2)->plist;
2049 goto tail_recurse;
2050 }
2051 if (MARKERP (o1))
2052 {
2053 return (XMARKER (o1)->buffer == XMARKER (o2)->buffer
2054 && (XMARKER (o1)->buffer == 0
2055 || XMARKER (o1)->bytepos == XMARKER (o2)->bytepos));
2056 }
2057 break;
2058
2059 case Lisp_Vectorlike:
2060 {
2061 register int i;
2062 ptrdiff_t size = ASIZE (o1);
2063 /* Pseudovectors have the type encoded in the size field, so this test
2064 actually checks that the objects have the same type as well as the
2065 same size. */
2066 if (ASIZE (o2) != size)
2067 return 0;
2068 /* Boolvectors are compared much like strings. */
2069 if (BOOL_VECTOR_P (o1))
2070 {
2071 if (XBOOL_VECTOR (o1)->size != XBOOL_VECTOR (o2)->size)
2072 return 0;
2073 if (memcmp (XBOOL_VECTOR (o1)->data, XBOOL_VECTOR (o2)->data,
2074 ((XBOOL_VECTOR (o1)->size
2075 + BOOL_VECTOR_BITS_PER_CHAR - 1)
2076 / BOOL_VECTOR_BITS_PER_CHAR)))
2077 return 0;
2078 return 1;
2079 }
2080 if (WINDOW_CONFIGURATIONP (o1))
2081 return compare_window_configurations (o1, o2, 0);
2082
2083 /* Aside from them, only true vectors, char-tables, compiled
2084 functions, and fonts (font-spec, font-entity, font-object)
2085 are sensible to compare, so eliminate the others now. */
2086 if (size & PSEUDOVECTOR_FLAG)
2087 {
2088 if (((size & PVEC_TYPE_MASK) >> PSEUDOVECTOR_AREA_BITS)
2089 < PVEC_COMPILED)
2090 return 0;
2091 size &= PSEUDOVECTOR_SIZE_MASK;
2092 }
2093 for (i = 0; i < size; i++)
2094 {
2095 Lisp_Object v1, v2;
2096 v1 = AREF (o1, i);
2097 v2 = AREF (o2, i);
2098 if (!internal_equal (v1, v2, depth + 1, props))
2099 return 0;
2100 }
2101 return 1;
2102 }
2103 break;
2104
2105 case Lisp_String:
2106 if (SCHARS (o1) != SCHARS (o2))
2107 return 0;
2108 if (SBYTES (o1) != SBYTES (o2))
2109 return 0;
2110 if (memcmp (SDATA (o1), SDATA (o2), SBYTES (o1)))
2111 return 0;
2112 if (props && !compare_string_intervals (o1, o2))
2113 return 0;
2114 return 1;
2115
2116 default:
2117 break;
2118 }
2119
2120 return 0;
2121 }
2122 \f
2123
2124 DEFUN ("fillarray", Ffillarray, Sfillarray, 2, 2, 0,
2125 doc: /* Store each element of ARRAY with ITEM.
2126 ARRAY is a vector, string, char-table, or bool-vector. */)
2127 (Lisp_Object array, Lisp_Object item)
2128 {
2129 register ptrdiff_t size, idx;
2130
2131 if (VECTORP (array))
2132 for (idx = 0, size = ASIZE (array); idx < size; idx++)
2133 ASET (array, idx, item);
2134 else if (CHAR_TABLE_P (array))
2135 {
2136 int i;
2137
2138 for (i = 0; i < (1 << CHARTAB_SIZE_BITS_0); i++)
2139 set_char_table_contents (array, i, item);
2140 set_char_table_defalt (array, item);
2141 }
2142 else if (STRINGP (array))
2143 {
2144 register unsigned char *p = SDATA (array);
2145 int charval;
2146 CHECK_CHARACTER (item);
2147 charval = XFASTINT (item);
2148 size = SCHARS (array);
2149 if (STRING_MULTIBYTE (array))
2150 {
2151 unsigned char str[MAX_MULTIBYTE_LENGTH];
2152 int len = CHAR_STRING (charval, str);
2153 ptrdiff_t size_byte = SBYTES (array);
2154
2155 if (INT_MULTIPLY_OVERFLOW (SCHARS (array), len)
2156 || SCHARS (array) * len != size_byte)
2157 error ("Attempt to change byte length of a string");
2158 for (idx = 0; idx < size_byte; idx++)
2159 *p++ = str[idx % len];
2160 }
2161 else
2162 for (idx = 0; idx < size; idx++)
2163 p[idx] = charval;
2164 }
2165 else if (BOOL_VECTOR_P (array))
2166 {
2167 register unsigned char *p = XBOOL_VECTOR (array)->data;
2168 size =
2169 ((XBOOL_VECTOR (array)->size + BOOL_VECTOR_BITS_PER_CHAR - 1)
2170 / BOOL_VECTOR_BITS_PER_CHAR);
2171
2172 if (size)
2173 {
2174 memset (p, ! NILP (item) ? -1 : 0, size);
2175
2176 /* Clear any extraneous bits in the last byte. */
2177 p[size - 1] &= (1 << (size % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2178 }
2179 }
2180 else
2181 wrong_type_argument (Qarrayp, array);
2182 return array;
2183 }
2184
2185 DEFUN ("clear-string", Fclear_string, Sclear_string,
2186 1, 1, 0,
2187 doc: /* Clear the contents of STRING.
2188 This makes STRING unibyte and may change its length. */)
2189 (Lisp_Object string)
2190 {
2191 ptrdiff_t len;
2192 CHECK_STRING (string);
2193 len = SBYTES (string);
2194 memset (SDATA (string), 0, len);
2195 STRING_SET_CHARS (string, len);
2196 STRING_SET_UNIBYTE (string);
2197 return Qnil;
2198 }
2199 \f
2200 /* ARGSUSED */
2201 Lisp_Object
2202 nconc2 (Lisp_Object s1, Lisp_Object s2)
2203 {
2204 Lisp_Object args[2];
2205 args[0] = s1;
2206 args[1] = s2;
2207 return Fnconc (2, args);
2208 }
2209
2210 DEFUN ("nconc", Fnconc, Snconc, 0, MANY, 0,
2211 doc: /* Concatenate any number of lists by altering them.
2212 Only the last argument is not altered, and need not be a list.
2213 usage: (nconc &rest LISTS) */)
2214 (ptrdiff_t nargs, Lisp_Object *args)
2215 {
2216 ptrdiff_t argnum;
2217 register Lisp_Object tail, tem, val;
2218
2219 val = tail = Qnil;
2220
2221 for (argnum = 0; argnum < nargs; argnum++)
2222 {
2223 tem = args[argnum];
2224 if (NILP (tem)) continue;
2225
2226 if (NILP (val))
2227 val = tem;
2228
2229 if (argnum + 1 == nargs) break;
2230
2231 CHECK_LIST_CONS (tem, tem);
2232
2233 while (CONSP (tem))
2234 {
2235 tail = tem;
2236 tem = XCDR (tail);
2237 QUIT;
2238 }
2239
2240 tem = args[argnum + 1];
2241 Fsetcdr (tail, tem);
2242 if (NILP (tem))
2243 args[argnum + 1] = tail;
2244 }
2245
2246 return val;
2247 }
2248 \f
2249 /* This is the guts of all mapping functions.
2250 Apply FN to each element of SEQ, one by one,
2251 storing the results into elements of VALS, a C vector of Lisp_Objects.
2252 LENI is the length of VALS, which should also be the length of SEQ. */
2253
2254 static void
2255 mapcar1 (EMACS_INT leni, Lisp_Object *vals, Lisp_Object fn, Lisp_Object seq)
2256 {
2257 register Lisp_Object tail;
2258 Lisp_Object dummy;
2259 register EMACS_INT i;
2260 struct gcpro gcpro1, gcpro2, gcpro3;
2261
2262 if (vals)
2263 {
2264 /* Don't let vals contain any garbage when GC happens. */
2265 for (i = 0; i < leni; i++)
2266 vals[i] = Qnil;
2267
2268 GCPRO3 (dummy, fn, seq);
2269 gcpro1.var = vals;
2270 gcpro1.nvars = leni;
2271 }
2272 else
2273 GCPRO2 (fn, seq);
2274 /* We need not explicitly protect `tail' because it is used only on lists, and
2275 1) lists are not relocated and 2) the list is marked via `seq' so will not
2276 be freed */
2277
2278 if (VECTORP (seq) || COMPILEDP (seq))
2279 {
2280 for (i = 0; i < leni; i++)
2281 {
2282 dummy = call1 (fn, AREF (seq, i));
2283 if (vals)
2284 vals[i] = dummy;
2285 }
2286 }
2287 else if (BOOL_VECTOR_P (seq))
2288 {
2289 for (i = 0; i < leni; i++)
2290 {
2291 unsigned char byte;
2292 byte = XBOOL_VECTOR (seq)->data[i / BOOL_VECTOR_BITS_PER_CHAR];
2293 dummy = (byte & (1 << (i % BOOL_VECTOR_BITS_PER_CHAR))) ? Qt : Qnil;
2294 dummy = call1 (fn, dummy);
2295 if (vals)
2296 vals[i] = dummy;
2297 }
2298 }
2299 else if (STRINGP (seq))
2300 {
2301 ptrdiff_t i_byte;
2302
2303 for (i = 0, i_byte = 0; i < leni;)
2304 {
2305 int c;
2306 ptrdiff_t i_before = i;
2307
2308 FETCH_STRING_CHAR_ADVANCE (c, seq, i, i_byte);
2309 XSETFASTINT (dummy, c);
2310 dummy = call1 (fn, dummy);
2311 if (vals)
2312 vals[i_before] = dummy;
2313 }
2314 }
2315 else /* Must be a list, since Flength did not get an error */
2316 {
2317 tail = seq;
2318 for (i = 0; i < leni && CONSP (tail); i++)
2319 {
2320 dummy = call1 (fn, XCAR (tail));
2321 if (vals)
2322 vals[i] = dummy;
2323 tail = XCDR (tail);
2324 }
2325 }
2326
2327 UNGCPRO;
2328 }
2329
2330 DEFUN ("mapconcat", Fmapconcat, Smapconcat, 3, 3, 0,
2331 doc: /* Apply FUNCTION to each element of SEQUENCE, and concat the results as strings.
2332 In between each pair of results, stick in SEPARATOR. Thus, " " as
2333 SEPARATOR results in spaces between the values returned by FUNCTION.
2334 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2335 (Lisp_Object function, Lisp_Object sequence, Lisp_Object separator)
2336 {
2337 Lisp_Object len;
2338 register EMACS_INT leni;
2339 EMACS_INT nargs;
2340 ptrdiff_t i;
2341 register Lisp_Object *args;
2342 struct gcpro gcpro1;
2343 Lisp_Object ret;
2344 USE_SAFE_ALLOCA;
2345
2346 len = Flength (sequence);
2347 if (CHAR_TABLE_P (sequence))
2348 wrong_type_argument (Qlistp, sequence);
2349 leni = XINT (len);
2350 nargs = leni + leni - 1;
2351 if (nargs < 0) return empty_unibyte_string;
2352
2353 SAFE_ALLOCA_LISP (args, nargs);
2354
2355 GCPRO1 (separator);
2356 mapcar1 (leni, args, function, sequence);
2357 UNGCPRO;
2358
2359 for (i = leni - 1; i > 0; i--)
2360 args[i + i] = args[i];
2361
2362 for (i = 1; i < nargs; i += 2)
2363 args[i] = separator;
2364
2365 ret = Fconcat (nargs, args);
2366 SAFE_FREE ();
2367
2368 return ret;
2369 }
2370
2371 DEFUN ("mapcar", Fmapcar, Smapcar, 2, 2, 0,
2372 doc: /* Apply FUNCTION to each element of SEQUENCE, and make a list of the results.
2373 The result is a list just as long as SEQUENCE.
2374 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2375 (Lisp_Object function, Lisp_Object sequence)
2376 {
2377 register Lisp_Object len;
2378 register EMACS_INT leni;
2379 register Lisp_Object *args;
2380 Lisp_Object ret;
2381 USE_SAFE_ALLOCA;
2382
2383 len = Flength (sequence);
2384 if (CHAR_TABLE_P (sequence))
2385 wrong_type_argument (Qlistp, sequence);
2386 leni = XFASTINT (len);
2387
2388 SAFE_ALLOCA_LISP (args, leni);
2389
2390 mapcar1 (leni, args, function, sequence);
2391
2392 ret = Flist (leni, args);
2393 SAFE_FREE ();
2394
2395 return ret;
2396 }
2397
2398 DEFUN ("mapc", Fmapc, Smapc, 2, 2, 0,
2399 doc: /* Apply FUNCTION to each element of SEQUENCE for side effects only.
2400 Unlike `mapcar', don't accumulate the results. Return SEQUENCE.
2401 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2402 (Lisp_Object function, Lisp_Object sequence)
2403 {
2404 register EMACS_INT leni;
2405
2406 leni = XFASTINT (Flength (sequence));
2407 if (CHAR_TABLE_P (sequence))
2408 wrong_type_argument (Qlistp, sequence);
2409 mapcar1 (leni, 0, function, sequence);
2410
2411 return sequence;
2412 }
2413 \f
2414 /* This is how C code calls `yes-or-no-p' and allows the user
2415 to redefined it.
2416
2417 Anything that calls this function must protect from GC! */
2418
2419 Lisp_Object
2420 do_yes_or_no_p (Lisp_Object prompt)
2421 {
2422 return call1 (intern ("yes-or-no-p"), prompt);
2423 }
2424
2425 /* Anything that calls this function must protect from GC! */
2426
2427 DEFUN ("yes-or-no-p", Fyes_or_no_p, Syes_or_no_p, 1, 1, 0,
2428 doc: /* Ask user a yes-or-no question. Return t if answer is yes.
2429 PROMPT is the string to display to ask the question. It should end in
2430 a space; `yes-or-no-p' adds \"(yes or no) \" to it.
2431
2432 The user must confirm the answer with RET, and can edit it until it
2433 has been confirmed.
2434
2435 Under a windowing system a dialog box will be used if `last-nonmenu-event'
2436 is nil, and `use-dialog-box' is non-nil. */)
2437 (Lisp_Object prompt)
2438 {
2439 register Lisp_Object ans;
2440 Lisp_Object args[2];
2441 struct gcpro gcpro1;
2442
2443 CHECK_STRING (prompt);
2444
2445 #ifdef HAVE_MENUS
2446 if (FRAME_WINDOW_P (SELECTED_FRAME ())
2447 && (NILP (last_nonmenu_event) || CONSP (last_nonmenu_event))
2448 && use_dialog_box
2449 && have_menus_p ())
2450 {
2451 Lisp_Object pane, menu, obj;
2452 redisplay_preserve_echo_area (4);
2453 pane = Fcons (Fcons (build_string ("Yes"), Qt),
2454 Fcons (Fcons (build_string ("No"), Qnil),
2455 Qnil));
2456 GCPRO1 (pane);
2457 menu = Fcons (prompt, pane);
2458 obj = Fx_popup_dialog (Qt, menu, Qnil);
2459 UNGCPRO;
2460 return obj;
2461 }
2462 #endif /* HAVE_MENUS */
2463
2464 args[0] = prompt;
2465 args[1] = build_string ("(yes or no) ");
2466 prompt = Fconcat (2, args);
2467
2468 GCPRO1 (prompt);
2469
2470 while (1)
2471 {
2472 ans = Fdowncase (Fread_from_minibuffer (prompt, Qnil, Qnil, Qnil,
2473 Qyes_or_no_p_history, Qnil,
2474 Qnil));
2475 if (SCHARS (ans) == 3 && !strcmp (SSDATA (ans), "yes"))
2476 {
2477 UNGCPRO;
2478 return Qt;
2479 }
2480 if (SCHARS (ans) == 2 && !strcmp (SSDATA (ans), "no"))
2481 {
2482 UNGCPRO;
2483 return Qnil;
2484 }
2485
2486 Fding (Qnil);
2487 Fdiscard_input ();
2488 message ("Please answer yes or no.");
2489 Fsleep_for (make_number (2), Qnil);
2490 }
2491 }
2492 \f
2493 DEFUN ("load-average", Fload_average, Sload_average, 0, 1, 0,
2494 doc: /* Return list of 1 minute, 5 minute and 15 minute load averages.
2495
2496 Each of the three load averages is multiplied by 100, then converted
2497 to integer.
2498
2499 When USE-FLOATS is non-nil, floats will be used instead of integers.
2500 These floats are not multiplied by 100.
2501
2502 If the 5-minute or 15-minute load averages are not available, return a
2503 shortened list, containing only those averages which are available.
2504
2505 An error is thrown if the load average can't be obtained. In some
2506 cases making it work would require Emacs being installed setuid or
2507 setgid so that it can read kernel information, and that usually isn't
2508 advisable. */)
2509 (Lisp_Object use_floats)
2510 {
2511 double load_ave[3];
2512 int loads = getloadavg (load_ave, 3);
2513 Lisp_Object ret = Qnil;
2514
2515 if (loads < 0)
2516 error ("load-average not implemented for this operating system");
2517
2518 while (loads-- > 0)
2519 {
2520 Lisp_Object load = (NILP (use_floats)
2521 ? make_number (100.0 * load_ave[loads])
2522 : make_float (load_ave[loads]));
2523 ret = Fcons (load, ret);
2524 }
2525
2526 return ret;
2527 }
2528 \f
2529 static Lisp_Object Qsubfeatures;
2530
2531 DEFUN ("featurep", Ffeaturep, Sfeaturep, 1, 2, 0,
2532 doc: /* Return t if FEATURE is present in this Emacs.
2533
2534 Use this to conditionalize execution of lisp code based on the
2535 presence or absence of Emacs or environment extensions.
2536 Use `provide' to declare that a feature is available. This function
2537 looks at the value of the variable `features'. The optional argument
2538 SUBFEATURE can be used to check a specific subfeature of FEATURE. */)
2539 (Lisp_Object feature, Lisp_Object subfeature)
2540 {
2541 register Lisp_Object tem;
2542 CHECK_SYMBOL (feature);
2543 tem = Fmemq (feature, Vfeatures);
2544 if (!NILP (tem) && !NILP (subfeature))
2545 tem = Fmember (subfeature, Fget (feature, Qsubfeatures));
2546 return (NILP (tem)) ? Qnil : Qt;
2547 }
2548
2549 DEFUN ("provide", Fprovide, Sprovide, 1, 2, 0,
2550 doc: /* Announce that FEATURE is a feature of the current Emacs.
2551 The optional argument SUBFEATURES should be a list of symbols listing
2552 particular subfeatures supported in this version of FEATURE. */)
2553 (Lisp_Object feature, Lisp_Object subfeatures)
2554 {
2555 register Lisp_Object tem;
2556 CHECK_SYMBOL (feature);
2557 CHECK_LIST (subfeatures);
2558 if (!NILP (Vautoload_queue))
2559 Vautoload_queue = Fcons (Fcons (make_number (0), Vfeatures),
2560 Vautoload_queue);
2561 tem = Fmemq (feature, Vfeatures);
2562 if (NILP (tem))
2563 Vfeatures = Fcons (feature, Vfeatures);
2564 if (!NILP (subfeatures))
2565 Fput (feature, Qsubfeatures, subfeatures);
2566 LOADHIST_ATTACH (Fcons (Qprovide, feature));
2567
2568 /* Run any load-hooks for this file. */
2569 tem = Fassq (feature, Vafter_load_alist);
2570 if (CONSP (tem))
2571 Fprogn (XCDR (tem));
2572
2573 return feature;
2574 }
2575 \f
2576 /* `require' and its subroutines. */
2577
2578 /* List of features currently being require'd, innermost first. */
2579
2580 static Lisp_Object require_nesting_list;
2581
2582 static Lisp_Object
2583 require_unwind (Lisp_Object old_value)
2584 {
2585 return require_nesting_list = old_value;
2586 }
2587
2588 DEFUN ("require", Frequire, Srequire, 1, 3, 0,
2589 doc: /* If feature FEATURE is not loaded, load it from FILENAME.
2590 If FEATURE is not a member of the list `features', then the feature
2591 is not loaded; so load the file FILENAME.
2592 If FILENAME is omitted, the printname of FEATURE is used as the file name,
2593 and `load' will try to load this name appended with the suffix `.elc' or
2594 `.el', in that order. The name without appended suffix will not be used.
2595 See `get-load-suffixes' for the complete list of suffixes.
2596 If the optional third argument NOERROR is non-nil,
2597 then return nil if the file is not found instead of signaling an error.
2598 Normally the return value is FEATURE.
2599 The normal messages at start and end of loading FILENAME are suppressed. */)
2600 (Lisp_Object feature, Lisp_Object filename, Lisp_Object noerror)
2601 {
2602 Lisp_Object tem;
2603 struct gcpro gcpro1, gcpro2;
2604 bool from_file = load_in_progress;
2605
2606 CHECK_SYMBOL (feature);
2607
2608 /* Record the presence of `require' in this file
2609 even if the feature specified is already loaded.
2610 But not more than once in any file,
2611 and not when we aren't loading or reading from a file. */
2612 if (!from_file)
2613 for (tem = Vcurrent_load_list; CONSP (tem); tem = XCDR (tem))
2614 if (NILP (XCDR (tem)) && STRINGP (XCAR (tem)))
2615 from_file = 1;
2616
2617 if (from_file)
2618 {
2619 tem = Fcons (Qrequire, feature);
2620 if (NILP (Fmember (tem, Vcurrent_load_list)))
2621 LOADHIST_ATTACH (tem);
2622 }
2623 tem = Fmemq (feature, Vfeatures);
2624
2625 if (NILP (tem))
2626 {
2627 ptrdiff_t count = SPECPDL_INDEX ();
2628 int nesting = 0;
2629
2630 /* This is to make sure that loadup.el gives a clear picture
2631 of what files are preloaded and when. */
2632 if (! NILP (Vpurify_flag))
2633 error ("(require %s) while preparing to dump",
2634 SDATA (SYMBOL_NAME (feature)));
2635
2636 /* A certain amount of recursive `require' is legitimate,
2637 but if we require the same feature recursively 3 times,
2638 signal an error. */
2639 tem = require_nesting_list;
2640 while (! NILP (tem))
2641 {
2642 if (! NILP (Fequal (feature, XCAR (tem))))
2643 nesting++;
2644 tem = XCDR (tem);
2645 }
2646 if (nesting > 3)
2647 error ("Recursive `require' for feature `%s'",
2648 SDATA (SYMBOL_NAME (feature)));
2649
2650 /* Update the list for any nested `require's that occur. */
2651 record_unwind_protect (require_unwind, require_nesting_list);
2652 require_nesting_list = Fcons (feature, require_nesting_list);
2653
2654 /* Value saved here is to be restored into Vautoload_queue */
2655 record_unwind_protect (un_autoload, Vautoload_queue);
2656 Vautoload_queue = Qt;
2657
2658 /* Load the file. */
2659 GCPRO2 (feature, filename);
2660 tem = Fload (NILP (filename) ? Fsymbol_name (feature) : filename,
2661 noerror, Qt, Qnil, (NILP (filename) ? Qt : Qnil));
2662 UNGCPRO;
2663
2664 /* If load failed entirely, return nil. */
2665 if (NILP (tem))
2666 return unbind_to (count, Qnil);
2667
2668 tem = Fmemq (feature, Vfeatures);
2669 if (NILP (tem))
2670 error ("Required feature `%s' was not provided",
2671 SDATA (SYMBOL_NAME (feature)));
2672
2673 /* Once loading finishes, don't undo it. */
2674 Vautoload_queue = Qt;
2675 feature = unbind_to (count, feature);
2676 }
2677
2678 return feature;
2679 }
2680 \f
2681 /* Primitives for work of the "widget" library.
2682 In an ideal world, this section would not have been necessary.
2683 However, lisp function calls being as slow as they are, it turns
2684 out that some functions in the widget library (wid-edit.el) are the
2685 bottleneck of Widget operation. Here is their translation to C,
2686 for the sole reason of efficiency. */
2687
2688 DEFUN ("plist-member", Fplist_member, Splist_member, 2, 2, 0,
2689 doc: /* Return non-nil if PLIST has the property PROP.
2690 PLIST is a property list, which is a list of the form
2691 \(PROP1 VALUE1 PROP2 VALUE2 ...\). PROP is a symbol.
2692 Unlike `plist-get', this allows you to distinguish between a missing
2693 property and a property with the value nil.
2694 The value is actually the tail of PLIST whose car is PROP. */)
2695 (Lisp_Object plist, Lisp_Object prop)
2696 {
2697 while (CONSP (plist) && !EQ (XCAR (plist), prop))
2698 {
2699 QUIT;
2700 plist = XCDR (plist);
2701 plist = CDR (plist);
2702 }
2703 return plist;
2704 }
2705
2706 DEFUN ("widget-put", Fwidget_put, Swidget_put, 3, 3, 0,
2707 doc: /* In WIDGET, set PROPERTY to VALUE.
2708 The value can later be retrieved with `widget-get'. */)
2709 (Lisp_Object widget, Lisp_Object property, Lisp_Object value)
2710 {
2711 CHECK_CONS (widget);
2712 XSETCDR (widget, Fplist_put (XCDR (widget), property, value));
2713 return value;
2714 }
2715
2716 DEFUN ("widget-get", Fwidget_get, Swidget_get, 2, 2, 0,
2717 doc: /* In WIDGET, get the value of PROPERTY.
2718 The value could either be specified when the widget was created, or
2719 later with `widget-put'. */)
2720 (Lisp_Object widget, Lisp_Object property)
2721 {
2722 Lisp_Object tmp;
2723
2724 while (1)
2725 {
2726 if (NILP (widget))
2727 return Qnil;
2728 CHECK_CONS (widget);
2729 tmp = Fplist_member (XCDR (widget), property);
2730 if (CONSP (tmp))
2731 {
2732 tmp = XCDR (tmp);
2733 return CAR (tmp);
2734 }
2735 tmp = XCAR (widget);
2736 if (NILP (tmp))
2737 return Qnil;
2738 widget = Fget (tmp, Qwidget_type);
2739 }
2740 }
2741
2742 DEFUN ("widget-apply", Fwidget_apply, Swidget_apply, 2, MANY, 0,
2743 doc: /* Apply the value of WIDGET's PROPERTY to the widget itself.
2744 ARGS are passed as extra arguments to the function.
2745 usage: (widget-apply WIDGET PROPERTY &rest ARGS) */)
2746 (ptrdiff_t nargs, Lisp_Object *args)
2747 {
2748 /* This function can GC. */
2749 Lisp_Object newargs[3];
2750 struct gcpro gcpro1, gcpro2;
2751 Lisp_Object result;
2752
2753 newargs[0] = Fwidget_get (args[0], args[1]);
2754 newargs[1] = args[0];
2755 newargs[2] = Flist (nargs - 2, args + 2);
2756 GCPRO2 (newargs[0], newargs[2]);
2757 result = Fapply (3, newargs);
2758 UNGCPRO;
2759 return result;
2760 }
2761
2762 #ifdef HAVE_LANGINFO_CODESET
2763 #include <langinfo.h>
2764 #endif
2765
2766 DEFUN ("locale-info", Flocale_info, Slocale_info, 1, 1, 0,
2767 doc: /* Access locale data ITEM for the current C locale, if available.
2768 ITEM should be one of the following:
2769
2770 `codeset', returning the character set as a string (locale item CODESET);
2771
2772 `days', returning a 7-element vector of day names (locale items DAY_n);
2773
2774 `months', returning a 12-element vector of month names (locale items MON_n);
2775
2776 `paper', returning a list (WIDTH HEIGHT) for the default paper size,
2777 both measured in millimeters (locale items PAPER_WIDTH, PAPER_HEIGHT).
2778
2779 If the system can't provide such information through a call to
2780 `nl_langinfo', or if ITEM isn't from the list above, return nil.
2781
2782 See also Info node `(libc)Locales'.
2783
2784 The data read from the system are decoded using `locale-coding-system'. */)
2785 (Lisp_Object item)
2786 {
2787 char *str = NULL;
2788 #ifdef HAVE_LANGINFO_CODESET
2789 Lisp_Object val;
2790 if (EQ (item, Qcodeset))
2791 {
2792 str = nl_langinfo (CODESET);
2793 return build_string (str);
2794 }
2795 #ifdef DAY_1
2796 else if (EQ (item, Qdays)) /* e.g. for calendar-day-name-array */
2797 {
2798 Lisp_Object v = Fmake_vector (make_number (7), Qnil);
2799 const int days[7] = {DAY_1, DAY_2, DAY_3, DAY_4, DAY_5, DAY_6, DAY_7};
2800 int i;
2801 struct gcpro gcpro1;
2802 GCPRO1 (v);
2803 synchronize_system_time_locale ();
2804 for (i = 0; i < 7; i++)
2805 {
2806 str = nl_langinfo (days[i]);
2807 val = build_unibyte_string (str);
2808 /* Fixme: Is this coding system necessarily right, even if
2809 it is consistent with CODESET? If not, what to do? */
2810 Faset (v, make_number (i),
2811 code_convert_string_norecord (val, Vlocale_coding_system,
2812 0));
2813 }
2814 UNGCPRO;
2815 return v;
2816 }
2817 #endif /* DAY_1 */
2818 #ifdef MON_1
2819 else if (EQ (item, Qmonths)) /* e.g. for calendar-month-name-array */
2820 {
2821 Lisp_Object v = Fmake_vector (make_number (12), Qnil);
2822 const int months[12] = {MON_1, MON_2, MON_3, MON_4, MON_5, MON_6, MON_7,
2823 MON_8, MON_9, MON_10, MON_11, MON_12};
2824 int i;
2825 struct gcpro gcpro1;
2826 GCPRO1 (v);
2827 synchronize_system_time_locale ();
2828 for (i = 0; i < 12; i++)
2829 {
2830 str = nl_langinfo (months[i]);
2831 val = build_unibyte_string (str);
2832 Faset (v, make_number (i),
2833 code_convert_string_norecord (val, Vlocale_coding_system, 0));
2834 }
2835 UNGCPRO;
2836 return v;
2837 }
2838 #endif /* MON_1 */
2839 /* LC_PAPER stuff isn't defined as accessible in glibc as of 2.3.1,
2840 but is in the locale files. This could be used by ps-print. */
2841 #ifdef PAPER_WIDTH
2842 else if (EQ (item, Qpaper))
2843 {
2844 return list2 (make_number (nl_langinfo (PAPER_WIDTH)),
2845 make_number (nl_langinfo (PAPER_HEIGHT)));
2846 }
2847 #endif /* PAPER_WIDTH */
2848 #endif /* HAVE_LANGINFO_CODESET*/
2849 return Qnil;
2850 }
2851 \f
2852 /* base64 encode/decode functions (RFC 2045).
2853 Based on code from GNU recode. */
2854
2855 #define MIME_LINE_LENGTH 76
2856
2857 #define IS_ASCII(Character) \
2858 ((Character) < 128)
2859 #define IS_BASE64(Character) \
2860 (IS_ASCII (Character) && base64_char_to_value[Character] >= 0)
2861 #define IS_BASE64_IGNORABLE(Character) \
2862 ((Character) == ' ' || (Character) == '\t' || (Character) == '\n' \
2863 || (Character) == '\f' || (Character) == '\r')
2864
2865 /* Used by base64_decode_1 to retrieve a non-base64-ignorable
2866 character or return retval if there are no characters left to
2867 process. */
2868 #define READ_QUADRUPLET_BYTE(retval) \
2869 do \
2870 { \
2871 if (i == length) \
2872 { \
2873 if (nchars_return) \
2874 *nchars_return = nchars; \
2875 return (retval); \
2876 } \
2877 c = from[i++]; \
2878 } \
2879 while (IS_BASE64_IGNORABLE (c))
2880
2881 /* Table of characters coding the 64 values. */
2882 static const char base64_value_to_char[64] =
2883 {
2884 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', /* 0- 9 */
2885 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', /* 10-19 */
2886 'U', 'V', 'W', 'X', 'Y', 'Z', 'a', 'b', 'c', 'd', /* 20-29 */
2887 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', /* 30-39 */
2888 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', /* 40-49 */
2889 'y', 'z', '0', '1', '2', '3', '4', '5', '6', '7', /* 50-59 */
2890 '8', '9', '+', '/' /* 60-63 */
2891 };
2892
2893 /* Table of base64 values for first 128 characters. */
2894 static const short base64_char_to_value[128] =
2895 {
2896 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 0- 9 */
2897 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 10- 19 */
2898 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 20- 29 */
2899 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 30- 39 */
2900 -1, -1, -1, 62, -1, -1, -1, 63, 52, 53, /* 40- 49 */
2901 54, 55, 56, 57, 58, 59, 60, 61, -1, -1, /* 50- 59 */
2902 -1, -1, -1, -1, -1, 0, 1, 2, 3, 4, /* 60- 69 */
2903 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, /* 70- 79 */
2904 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, /* 80- 89 */
2905 25, -1, -1, -1, -1, -1, -1, 26, 27, 28, /* 90- 99 */
2906 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, /* 100-109 */
2907 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, /* 110-119 */
2908 49, 50, 51, -1, -1, -1, -1, -1 /* 120-127 */
2909 };
2910
2911 /* The following diagram shows the logical steps by which three octets
2912 get transformed into four base64 characters.
2913
2914 .--------. .--------. .--------.
2915 |aaaaaabb| |bbbbcccc| |ccdddddd|
2916 `--------' `--------' `--------'
2917 6 2 4 4 2 6
2918 .--------+--------+--------+--------.
2919 |00aaaaaa|00bbbbbb|00cccccc|00dddddd|
2920 `--------+--------+--------+--------'
2921
2922 .--------+--------+--------+--------.
2923 |AAAAAAAA|BBBBBBBB|CCCCCCCC|DDDDDDDD|
2924 `--------+--------+--------+--------'
2925
2926 The octets are divided into 6 bit chunks, which are then encoded into
2927 base64 characters. */
2928
2929
2930 static ptrdiff_t base64_encode_1 (const char *, char *, ptrdiff_t, bool, bool);
2931 static ptrdiff_t base64_decode_1 (const char *, char *, ptrdiff_t, bool,
2932 ptrdiff_t *);
2933
2934 DEFUN ("base64-encode-region", Fbase64_encode_region, Sbase64_encode_region,
2935 2, 3, "r",
2936 doc: /* Base64-encode the region between BEG and END.
2937 Return the length of the encoded text.
2938 Optional third argument NO-LINE-BREAK means do not break long lines
2939 into shorter lines. */)
2940 (Lisp_Object beg, Lisp_Object end, Lisp_Object no_line_break)
2941 {
2942 char *encoded;
2943 ptrdiff_t allength, length;
2944 ptrdiff_t ibeg, iend, encoded_length;
2945 ptrdiff_t old_pos = PT;
2946 USE_SAFE_ALLOCA;
2947
2948 validate_region (&beg, &end);
2949
2950 ibeg = CHAR_TO_BYTE (XFASTINT (beg));
2951 iend = CHAR_TO_BYTE (XFASTINT (end));
2952 move_gap_both (XFASTINT (beg), ibeg);
2953
2954 /* We need to allocate enough room for encoding the text.
2955 We need 33 1/3% more space, plus a newline every 76
2956 characters, and then we round up. */
2957 length = iend - ibeg;
2958 allength = length + length/3 + 1;
2959 allength += allength / MIME_LINE_LENGTH + 1 + 6;
2960
2961 encoded = SAFE_ALLOCA (allength);
2962 encoded_length = base64_encode_1 ((char *) BYTE_POS_ADDR (ibeg),
2963 encoded, length, NILP (no_line_break),
2964 !NILP (BVAR (current_buffer, enable_multibyte_characters)));
2965 if (encoded_length > allength)
2966 emacs_abort ();
2967
2968 if (encoded_length < 0)
2969 {
2970 /* The encoding wasn't possible. */
2971 SAFE_FREE ();
2972 error ("Multibyte character in data for base64 encoding");
2973 }
2974
2975 /* Now we have encoded the region, so we insert the new contents
2976 and delete the old. (Insert first in order to preserve markers.) */
2977 SET_PT_BOTH (XFASTINT (beg), ibeg);
2978 insert (encoded, encoded_length);
2979 SAFE_FREE ();
2980 del_range_byte (ibeg + encoded_length, iend + encoded_length, 1);
2981
2982 /* If point was outside of the region, restore it exactly; else just
2983 move to the beginning of the region. */
2984 if (old_pos >= XFASTINT (end))
2985 old_pos += encoded_length - (XFASTINT (end) - XFASTINT (beg));
2986 else if (old_pos > XFASTINT (beg))
2987 old_pos = XFASTINT (beg);
2988 SET_PT (old_pos);
2989
2990 /* We return the length of the encoded text. */
2991 return make_number (encoded_length);
2992 }
2993
2994 DEFUN ("base64-encode-string", Fbase64_encode_string, Sbase64_encode_string,
2995 1, 2, 0,
2996 doc: /* Base64-encode STRING and return the result.
2997 Optional second argument NO-LINE-BREAK means do not break long lines
2998 into shorter lines. */)
2999 (Lisp_Object string, Lisp_Object no_line_break)
3000 {
3001 ptrdiff_t allength, length, encoded_length;
3002 char *encoded;
3003 Lisp_Object encoded_string;
3004 USE_SAFE_ALLOCA;
3005
3006 CHECK_STRING (string);
3007
3008 /* We need to allocate enough room for encoding the text.
3009 We need 33 1/3% more space, plus a newline every 76
3010 characters, and then we round up. */
3011 length = SBYTES (string);
3012 allength = length + length/3 + 1;
3013 allength += allength / MIME_LINE_LENGTH + 1 + 6;
3014
3015 /* We need to allocate enough room for decoding the text. */
3016 encoded = SAFE_ALLOCA (allength);
3017
3018 encoded_length = base64_encode_1 (SSDATA (string),
3019 encoded, length, NILP (no_line_break),
3020 STRING_MULTIBYTE (string));
3021 if (encoded_length > allength)
3022 emacs_abort ();
3023
3024 if (encoded_length < 0)
3025 {
3026 /* The encoding wasn't possible. */
3027 SAFE_FREE ();
3028 error ("Multibyte character in data for base64 encoding");
3029 }
3030
3031 encoded_string = make_unibyte_string (encoded, encoded_length);
3032 SAFE_FREE ();
3033
3034 return encoded_string;
3035 }
3036
3037 static ptrdiff_t
3038 base64_encode_1 (const char *from, char *to, ptrdiff_t length,
3039 bool line_break, bool multibyte)
3040 {
3041 int counter = 0;
3042 ptrdiff_t i = 0;
3043 char *e = to;
3044 int c;
3045 unsigned int value;
3046 int bytes;
3047
3048 while (i < length)
3049 {
3050 if (multibyte)
3051 {
3052 c = STRING_CHAR_AND_LENGTH ((unsigned char *) from + i, bytes);
3053 if (CHAR_BYTE8_P (c))
3054 c = CHAR_TO_BYTE8 (c);
3055 else if (c >= 256)
3056 return -1;
3057 i += bytes;
3058 }
3059 else
3060 c = from[i++];
3061
3062 /* Wrap line every 76 characters. */
3063
3064 if (line_break)
3065 {
3066 if (counter < MIME_LINE_LENGTH / 4)
3067 counter++;
3068 else
3069 {
3070 *e++ = '\n';
3071 counter = 1;
3072 }
3073 }
3074
3075 /* Process first byte of a triplet. */
3076
3077 *e++ = base64_value_to_char[0x3f & c >> 2];
3078 value = (0x03 & c) << 4;
3079
3080 /* Process second byte of a triplet. */
3081
3082 if (i == length)
3083 {
3084 *e++ = base64_value_to_char[value];
3085 *e++ = '=';
3086 *e++ = '=';
3087 break;
3088 }
3089
3090 if (multibyte)
3091 {
3092 c = STRING_CHAR_AND_LENGTH ((unsigned char *) from + i, bytes);
3093 if (CHAR_BYTE8_P (c))
3094 c = CHAR_TO_BYTE8 (c);
3095 else if (c >= 256)
3096 return -1;
3097 i += bytes;
3098 }
3099 else
3100 c = from[i++];
3101
3102 *e++ = base64_value_to_char[value | (0x0f & c >> 4)];
3103 value = (0x0f & c) << 2;
3104
3105 /* Process third byte of a triplet. */
3106
3107 if (i == length)
3108 {
3109 *e++ = base64_value_to_char[value];
3110 *e++ = '=';
3111 break;
3112 }
3113
3114 if (multibyte)
3115 {
3116 c = STRING_CHAR_AND_LENGTH ((unsigned char *) from + i, bytes);
3117 if (CHAR_BYTE8_P (c))
3118 c = CHAR_TO_BYTE8 (c);
3119 else if (c >= 256)
3120 return -1;
3121 i += bytes;
3122 }
3123 else
3124 c = from[i++];
3125
3126 *e++ = base64_value_to_char[value | (0x03 & c >> 6)];
3127 *e++ = base64_value_to_char[0x3f & c];
3128 }
3129
3130 return e - to;
3131 }
3132
3133
3134 DEFUN ("base64-decode-region", Fbase64_decode_region, Sbase64_decode_region,
3135 2, 2, "r",
3136 doc: /* Base64-decode the region between BEG and END.
3137 Return the length of the decoded text.
3138 If the region can't be decoded, signal an error and don't modify the buffer. */)
3139 (Lisp_Object beg, Lisp_Object end)
3140 {
3141 ptrdiff_t ibeg, iend, length, allength;
3142 char *decoded;
3143 ptrdiff_t old_pos = PT;
3144 ptrdiff_t decoded_length;
3145 ptrdiff_t inserted_chars;
3146 bool multibyte = !NILP (BVAR (current_buffer, enable_multibyte_characters));
3147 USE_SAFE_ALLOCA;
3148
3149 validate_region (&beg, &end);
3150
3151 ibeg = CHAR_TO_BYTE (XFASTINT (beg));
3152 iend = CHAR_TO_BYTE (XFASTINT (end));
3153
3154 length = iend - ibeg;
3155
3156 /* We need to allocate enough room for decoding the text. If we are
3157 working on a multibyte buffer, each decoded code may occupy at
3158 most two bytes. */
3159 allength = multibyte ? length * 2 : length;
3160 decoded = SAFE_ALLOCA (allength);
3161
3162 move_gap_both (XFASTINT (beg), ibeg);
3163 decoded_length = base64_decode_1 ((char *) BYTE_POS_ADDR (ibeg),
3164 decoded, length,
3165 multibyte, &inserted_chars);
3166 if (decoded_length > allength)
3167 emacs_abort ();
3168
3169 if (decoded_length < 0)
3170 {
3171 /* The decoding wasn't possible. */
3172 SAFE_FREE ();
3173 error ("Invalid base64 data");
3174 }
3175
3176 /* Now we have decoded the region, so we insert the new contents
3177 and delete the old. (Insert first in order to preserve markers.) */
3178 TEMP_SET_PT_BOTH (XFASTINT (beg), ibeg);
3179 insert_1_both (decoded, inserted_chars, decoded_length, 0, 1, 0);
3180 SAFE_FREE ();
3181
3182 /* Delete the original text. */
3183 del_range_both (PT, PT_BYTE, XFASTINT (end) + inserted_chars,
3184 iend + decoded_length, 1);
3185
3186 /* If point was outside of the region, restore it exactly; else just
3187 move to the beginning of the region. */
3188 if (old_pos >= XFASTINT (end))
3189 old_pos += inserted_chars - (XFASTINT (end) - XFASTINT (beg));
3190 else if (old_pos > XFASTINT (beg))
3191 old_pos = XFASTINT (beg);
3192 SET_PT (old_pos > ZV ? ZV : old_pos);
3193
3194 return make_number (inserted_chars);
3195 }
3196
3197 DEFUN ("base64-decode-string", Fbase64_decode_string, Sbase64_decode_string,
3198 1, 1, 0,
3199 doc: /* Base64-decode STRING and return the result. */)
3200 (Lisp_Object string)
3201 {
3202 char *decoded;
3203 ptrdiff_t length, decoded_length;
3204 Lisp_Object decoded_string;
3205 USE_SAFE_ALLOCA;
3206
3207 CHECK_STRING (string);
3208
3209 length = SBYTES (string);
3210 /* We need to allocate enough room for decoding the text. */
3211 decoded = SAFE_ALLOCA (length);
3212
3213 /* The decoded result should be unibyte. */
3214 decoded_length = base64_decode_1 (SSDATA (string), decoded, length,
3215 0, NULL);
3216 if (decoded_length > length)
3217 emacs_abort ();
3218 else if (decoded_length >= 0)
3219 decoded_string = make_unibyte_string (decoded, decoded_length);
3220 else
3221 decoded_string = Qnil;
3222
3223 SAFE_FREE ();
3224 if (!STRINGP (decoded_string))
3225 error ("Invalid base64 data");
3226
3227 return decoded_string;
3228 }
3229
3230 /* Base64-decode the data at FROM of LENGTH bytes into TO. If
3231 MULTIBYTE, the decoded result should be in multibyte
3232 form. If NCHARS_RETURN is not NULL, store the number of produced
3233 characters in *NCHARS_RETURN. */
3234
3235 static ptrdiff_t
3236 base64_decode_1 (const char *from, char *to, ptrdiff_t length,
3237 bool multibyte, ptrdiff_t *nchars_return)
3238 {
3239 ptrdiff_t i = 0; /* Used inside READ_QUADRUPLET_BYTE */
3240 char *e = to;
3241 unsigned char c;
3242 unsigned long value;
3243 ptrdiff_t nchars = 0;
3244
3245 while (1)
3246 {
3247 /* Process first byte of a quadruplet. */
3248
3249 READ_QUADRUPLET_BYTE (e-to);
3250
3251 if (!IS_BASE64 (c))
3252 return -1;
3253 value = base64_char_to_value[c] << 18;
3254
3255 /* Process second byte of a quadruplet. */
3256
3257 READ_QUADRUPLET_BYTE (-1);
3258
3259 if (!IS_BASE64 (c))
3260 return -1;
3261 value |= base64_char_to_value[c] << 12;
3262
3263 c = (unsigned char) (value >> 16);
3264 if (multibyte && c >= 128)
3265 e += BYTE8_STRING (c, e);
3266 else
3267 *e++ = c;
3268 nchars++;
3269
3270 /* Process third byte of a quadruplet. */
3271
3272 READ_QUADRUPLET_BYTE (-1);
3273
3274 if (c == '=')
3275 {
3276 READ_QUADRUPLET_BYTE (-1);
3277
3278 if (c != '=')
3279 return -1;
3280 continue;
3281 }
3282
3283 if (!IS_BASE64 (c))
3284 return -1;
3285 value |= base64_char_to_value[c] << 6;
3286
3287 c = (unsigned char) (0xff & value >> 8);
3288 if (multibyte && c >= 128)
3289 e += BYTE8_STRING (c, e);
3290 else
3291 *e++ = c;
3292 nchars++;
3293
3294 /* Process fourth byte of a quadruplet. */
3295
3296 READ_QUADRUPLET_BYTE (-1);
3297
3298 if (c == '=')
3299 continue;
3300
3301 if (!IS_BASE64 (c))
3302 return -1;
3303 value |= base64_char_to_value[c];
3304
3305 c = (unsigned char) (0xff & value);
3306 if (multibyte && c >= 128)
3307 e += BYTE8_STRING (c, e);
3308 else
3309 *e++ = c;
3310 nchars++;
3311 }
3312 }
3313
3314
3315 \f
3316 /***********************************************************************
3317 ***** *****
3318 ***** Hash Tables *****
3319 ***** *****
3320 ***********************************************************************/
3321
3322 /* Implemented by gerd@gnu.org. This hash table implementation was
3323 inspired by CMUCL hash tables. */
3324
3325 /* Ideas:
3326
3327 1. For small tables, association lists are probably faster than
3328 hash tables because they have lower overhead.
3329
3330 For uses of hash tables where the O(1) behavior of table
3331 operations is not a requirement, it might therefore be a good idea
3332 not to hash. Instead, we could just do a linear search in the
3333 key_and_value vector of the hash table. This could be done
3334 if a `:linear-search t' argument is given to make-hash-table. */
3335
3336
3337 /* The list of all weak hash tables. Don't staticpro this one. */
3338
3339 static struct Lisp_Hash_Table *weak_hash_tables;
3340
3341 /* Various symbols. */
3342
3343 static Lisp_Object Qhash_table_p, Qkey, Qvalue, Qeql;
3344 Lisp_Object Qeq, Qequal;
3345 Lisp_Object QCtest, QCsize, QCrehash_size, QCrehash_threshold, QCweakness;
3346 static Lisp_Object Qhash_table_test, Qkey_or_value, Qkey_and_value;
3347
3348 \f
3349 /***********************************************************************
3350 Utilities
3351 ***********************************************************************/
3352
3353 /* If OBJ is a Lisp hash table, return a pointer to its struct
3354 Lisp_Hash_Table. Otherwise, signal an error. */
3355
3356 static struct Lisp_Hash_Table *
3357 check_hash_table (Lisp_Object obj)
3358 {
3359 CHECK_HASH_TABLE (obj);
3360 return XHASH_TABLE (obj);
3361 }
3362
3363
3364 /* Value is the next integer I >= N, N >= 0 which is "almost" a prime
3365 number. A number is "almost" a prime number if it is not divisible
3366 by any integer in the range 2 .. (NEXT_ALMOST_PRIME_LIMIT - 1). */
3367
3368 EMACS_INT
3369 next_almost_prime (EMACS_INT n)
3370 {
3371 verify (NEXT_ALMOST_PRIME_LIMIT == 11);
3372 for (n |= 1; ; n += 2)
3373 if (n % 3 != 0 && n % 5 != 0 && n % 7 != 0)
3374 return n;
3375 }
3376
3377
3378 /* Find KEY in ARGS which has size NARGS. Don't consider indices for
3379 which USED[I] is non-zero. If found at index I in ARGS, set
3380 USED[I] and USED[I + 1] to 1, and return I + 1. Otherwise return
3381 0. This function is used to extract a keyword/argument pair from
3382 a DEFUN parameter list. */
3383
3384 static ptrdiff_t
3385 get_key_arg (Lisp_Object key, ptrdiff_t nargs, Lisp_Object *args, char *used)
3386 {
3387 ptrdiff_t i;
3388
3389 for (i = 1; i < nargs; i++)
3390 if (!used[i - 1] && EQ (args[i - 1], key))
3391 {
3392 used[i - 1] = 1;
3393 used[i] = 1;
3394 return i;
3395 }
3396
3397 return 0;
3398 }
3399
3400
3401 /* Return a Lisp vector which has the same contents as VEC but has
3402 at least INCR_MIN more entries, where INCR_MIN is positive.
3403 If NITEMS_MAX is not -1, do not grow the vector to be any larger
3404 than NITEMS_MAX. Entries in the resulting
3405 vector that are not copied from VEC are set to nil. */
3406
3407 Lisp_Object
3408 larger_vector (Lisp_Object vec, ptrdiff_t incr_min, ptrdiff_t nitems_max)
3409 {
3410 struct Lisp_Vector *v;
3411 ptrdiff_t i, incr, incr_max, old_size, new_size;
3412 ptrdiff_t C_language_max = min (PTRDIFF_MAX, SIZE_MAX) / sizeof *v->contents;
3413 ptrdiff_t n_max = (0 <= nitems_max && nitems_max < C_language_max
3414 ? nitems_max : C_language_max);
3415 eassert (VECTORP (vec));
3416 eassert (0 < incr_min && -1 <= nitems_max);
3417 old_size = ASIZE (vec);
3418 incr_max = n_max - old_size;
3419 incr = max (incr_min, min (old_size >> 1, incr_max));
3420 if (incr_max < incr)
3421 memory_full (SIZE_MAX);
3422 new_size = old_size + incr;
3423 v = allocate_vector (new_size);
3424 memcpy (v->contents, XVECTOR (vec)->contents, old_size * sizeof *v->contents);
3425 for (i = old_size; i < new_size; ++i)
3426 v->contents[i] = Qnil;
3427 XSETVECTOR (vec, v);
3428 return vec;
3429 }
3430
3431
3432 /***********************************************************************
3433 Low-level Functions
3434 ***********************************************************************/
3435
3436 static struct hash_table_test hashtest_eq;
3437 struct hash_table_test hashtest_eql, hashtest_equal;
3438
3439 /* Compare KEY1 which has hash code HASH1 and KEY2 with hash code
3440 HASH2 in hash table H using `eql'. Value is true if KEY1 and
3441 KEY2 are the same. */
3442
3443 static bool
3444 cmpfn_eql (struct hash_table_test *ht,
3445 Lisp_Object key1,
3446 Lisp_Object key2)
3447 {
3448 return (FLOATP (key1)
3449 && FLOATP (key2)
3450 && XFLOAT_DATA (key1) == XFLOAT_DATA (key2));
3451 }
3452
3453
3454 /* Compare KEY1 which has hash code HASH1 and KEY2 with hash code
3455 HASH2 in hash table H using `equal'. Value is true if KEY1 and
3456 KEY2 are the same. */
3457
3458 static bool
3459 cmpfn_equal (struct hash_table_test *ht,
3460 Lisp_Object key1,
3461 Lisp_Object key2)
3462 {
3463 return !NILP (Fequal (key1, key2));
3464 }
3465
3466
3467 /* Compare KEY1 which has hash code HASH1, and KEY2 with hash code
3468 HASH2 in hash table H using H->user_cmp_function. Value is true
3469 if KEY1 and KEY2 are the same. */
3470
3471 static bool
3472 cmpfn_user_defined (struct hash_table_test *ht,
3473 Lisp_Object key1,
3474 Lisp_Object key2)
3475 {
3476 Lisp_Object args[3];
3477
3478 args[0] = ht->user_cmp_function;
3479 args[1] = key1;
3480 args[2] = key2;
3481 return !NILP (Ffuncall (3, args));
3482 }
3483
3484
3485 /* Value is a hash code for KEY for use in hash table H which uses
3486 `eq' to compare keys. The hash code returned is guaranteed to fit
3487 in a Lisp integer. */
3488
3489 static EMACS_UINT
3490 hashfn_eq (struct hash_table_test *ht, Lisp_Object key)
3491 {
3492 EMACS_UINT hash = XHASH (key) ^ XTYPE (key);
3493 return hash;
3494 }
3495
3496 /* Value is a hash code for KEY for use in hash table H which uses
3497 `eql' to compare keys. The hash code returned is guaranteed to fit
3498 in a Lisp integer. */
3499
3500 static EMACS_UINT
3501 hashfn_eql (struct hash_table_test *ht, Lisp_Object key)
3502 {
3503 EMACS_UINT hash;
3504 if (FLOATP (key))
3505 hash = sxhash (key, 0);
3506 else
3507 hash = XHASH (key) ^ XTYPE (key);
3508 return hash;
3509 }
3510
3511 /* Value is a hash code for KEY for use in hash table H which uses
3512 `equal' to compare keys. The hash code returned is guaranteed to fit
3513 in a Lisp integer. */
3514
3515 static EMACS_UINT
3516 hashfn_equal (struct hash_table_test *ht, Lisp_Object key)
3517 {
3518 EMACS_UINT hash = sxhash (key, 0);
3519 return hash;
3520 }
3521
3522 /* Value is a hash code for KEY for use in hash table H which uses as
3523 user-defined function to compare keys. The hash code returned is
3524 guaranteed to fit in a Lisp integer. */
3525
3526 static EMACS_UINT
3527 hashfn_user_defined (struct hash_table_test *ht, Lisp_Object key)
3528 {
3529 Lisp_Object args[2], hash;
3530
3531 args[0] = ht->user_hash_function;
3532 args[1] = key;
3533 hash = Ffuncall (2, args);
3534 if (!INTEGERP (hash))
3535 signal_error ("Invalid hash code returned from user-supplied hash function", hash);
3536 return XUINT (hash);
3537 }
3538
3539 /* An upper bound on the size of a hash table index. It must fit in
3540 ptrdiff_t and be a valid Emacs fixnum. */
3541 #define INDEX_SIZE_BOUND \
3542 ((ptrdiff_t) min (MOST_POSITIVE_FIXNUM, PTRDIFF_MAX / word_size))
3543
3544 /* Create and initialize a new hash table.
3545
3546 TEST specifies the test the hash table will use to compare keys.
3547 It must be either one of the predefined tests `eq', `eql' or
3548 `equal' or a symbol denoting a user-defined test named TEST with
3549 test and hash functions USER_TEST and USER_HASH.
3550
3551 Give the table initial capacity SIZE, SIZE >= 0, an integer.
3552
3553 If REHASH_SIZE is an integer, it must be > 0, and this hash table's
3554 new size when it becomes full is computed by adding REHASH_SIZE to
3555 its old size. If REHASH_SIZE is a float, it must be > 1.0, and the
3556 table's new size is computed by multiplying its old size with
3557 REHASH_SIZE.
3558
3559 REHASH_THRESHOLD must be a float <= 1.0, and > 0. The table will
3560 be resized when the ratio of (number of entries in the table) /
3561 (table size) is >= REHASH_THRESHOLD.
3562
3563 WEAK specifies the weakness of the table. If non-nil, it must be
3564 one of the symbols `key', `value', `key-or-value', or `key-and-value'. */
3565
3566 Lisp_Object
3567 make_hash_table (struct hash_table_test test,
3568 Lisp_Object size, Lisp_Object rehash_size,
3569 Lisp_Object rehash_threshold, Lisp_Object weak)
3570 {
3571 struct Lisp_Hash_Table *h;
3572 Lisp_Object table;
3573 EMACS_INT index_size, sz;
3574 ptrdiff_t i;
3575 double index_float;
3576
3577 /* Preconditions. */
3578 eassert (SYMBOLP (test.name));
3579 eassert (INTEGERP (size) && XINT (size) >= 0);
3580 eassert ((INTEGERP (rehash_size) && XINT (rehash_size) > 0)
3581 || (FLOATP (rehash_size) && 1 < XFLOAT_DATA (rehash_size)));
3582 eassert (FLOATP (rehash_threshold)
3583 && 0 < XFLOAT_DATA (rehash_threshold)
3584 && XFLOAT_DATA (rehash_threshold) <= 1.0);
3585
3586 if (XFASTINT (size) == 0)
3587 size = make_number (1);
3588
3589 sz = XFASTINT (size);
3590 index_float = sz / XFLOAT_DATA (rehash_threshold);
3591 index_size = (index_float < INDEX_SIZE_BOUND + 1
3592 ? next_almost_prime (index_float)
3593 : INDEX_SIZE_BOUND + 1);
3594 if (INDEX_SIZE_BOUND < max (index_size, 2 * sz))
3595 error ("Hash table too large");
3596
3597 /* Allocate a table and initialize it. */
3598 h = allocate_hash_table ();
3599
3600 /* Initialize hash table slots. */
3601 h->test = test;
3602 h->weak = weak;
3603 h->rehash_threshold = rehash_threshold;
3604 h->rehash_size = rehash_size;
3605 h->count = 0;
3606 h->key_and_value = Fmake_vector (make_number (2 * sz), Qnil);
3607 h->hash = Fmake_vector (size, Qnil);
3608 h->next = Fmake_vector (size, Qnil);
3609 h->index = Fmake_vector (make_number (index_size), Qnil);
3610
3611 /* Set up the free list. */
3612 for (i = 0; i < sz - 1; ++i)
3613 set_hash_next_slot (h, i, make_number (i + 1));
3614 h->next_free = make_number (0);
3615
3616 XSET_HASH_TABLE (table, h);
3617 eassert (HASH_TABLE_P (table));
3618 eassert (XHASH_TABLE (table) == h);
3619
3620 /* Maybe add this hash table to the list of all weak hash tables. */
3621 if (NILP (h->weak))
3622 h->next_weak = NULL;
3623 else
3624 {
3625 h->next_weak = weak_hash_tables;
3626 weak_hash_tables = h;
3627 }
3628
3629 return table;
3630 }
3631
3632
3633 /* Return a copy of hash table H1. Keys and values are not copied,
3634 only the table itself is. */
3635
3636 static Lisp_Object
3637 copy_hash_table (struct Lisp_Hash_Table *h1)
3638 {
3639 Lisp_Object table;
3640 struct Lisp_Hash_Table *h2;
3641
3642 h2 = allocate_hash_table ();
3643 *h2 = *h1;
3644 h2->key_and_value = Fcopy_sequence (h1->key_and_value);
3645 h2->hash = Fcopy_sequence (h1->hash);
3646 h2->next = Fcopy_sequence (h1->next);
3647 h2->index = Fcopy_sequence (h1->index);
3648 XSET_HASH_TABLE (table, h2);
3649
3650 /* Maybe add this hash table to the list of all weak hash tables. */
3651 if (!NILP (h2->weak))
3652 {
3653 h2->next_weak = weak_hash_tables;
3654 weak_hash_tables = h2;
3655 }
3656
3657 return table;
3658 }
3659
3660
3661 /* Resize hash table H if it's too full. If H cannot be resized
3662 because it's already too large, throw an error. */
3663
3664 static void
3665 maybe_resize_hash_table (struct Lisp_Hash_Table *h)
3666 {
3667 if (NILP (h->next_free))
3668 {
3669 ptrdiff_t old_size = HASH_TABLE_SIZE (h);
3670 EMACS_INT new_size, index_size, nsize;
3671 ptrdiff_t i;
3672 double index_float;
3673
3674 if (INTEGERP (h->rehash_size))
3675 new_size = old_size + XFASTINT (h->rehash_size);
3676 else
3677 {
3678 double float_new_size = old_size * XFLOAT_DATA (h->rehash_size);
3679 if (float_new_size < INDEX_SIZE_BOUND + 1)
3680 {
3681 new_size = float_new_size;
3682 if (new_size <= old_size)
3683 new_size = old_size + 1;
3684 }
3685 else
3686 new_size = INDEX_SIZE_BOUND + 1;
3687 }
3688 index_float = new_size / XFLOAT_DATA (h->rehash_threshold);
3689 index_size = (index_float < INDEX_SIZE_BOUND + 1
3690 ? next_almost_prime (index_float)
3691 : INDEX_SIZE_BOUND + 1);
3692 nsize = max (index_size, 2 * new_size);
3693 if (INDEX_SIZE_BOUND < nsize)
3694 error ("Hash table too large to resize");
3695
3696 #ifdef ENABLE_CHECKING
3697 if (HASH_TABLE_P (Vpurify_flag)
3698 && XHASH_TABLE (Vpurify_flag) == h)
3699 {
3700 Lisp_Object args[2];
3701 args[0] = build_string ("Growing hash table to: %d");
3702 args[1] = make_number (new_size);
3703 Fmessage (2, args);
3704 }
3705 #endif
3706
3707 set_hash_key_and_value (h, larger_vector (h->key_and_value,
3708 2 * (new_size - old_size), -1));
3709 set_hash_next (h, larger_vector (h->next, new_size - old_size, -1));
3710 set_hash_hash (h, larger_vector (h->hash, new_size - old_size, -1));
3711 set_hash_index (h, Fmake_vector (make_number (index_size), Qnil));
3712
3713 /* Update the free list. Do it so that new entries are added at
3714 the end of the free list. This makes some operations like
3715 maphash faster. */
3716 for (i = old_size; i < new_size - 1; ++i)
3717 set_hash_next_slot (h, i, make_number (i + 1));
3718
3719 if (!NILP (h->next_free))
3720 {
3721 Lisp_Object last, next;
3722
3723 last = h->next_free;
3724 while (next = HASH_NEXT (h, XFASTINT (last)),
3725 !NILP (next))
3726 last = next;
3727
3728 set_hash_next_slot (h, XFASTINT (last), make_number (old_size));
3729 }
3730 else
3731 XSETFASTINT (h->next_free, old_size);
3732
3733 /* Rehash. */
3734 for (i = 0; i < old_size; ++i)
3735 if (!NILP (HASH_HASH (h, i)))
3736 {
3737 EMACS_UINT hash_code = XUINT (HASH_HASH (h, i));
3738 ptrdiff_t start_of_bucket = hash_code % ASIZE (h->index);
3739 set_hash_next_slot (h, i, HASH_INDEX (h, start_of_bucket));
3740 set_hash_index_slot (h, start_of_bucket, make_number (i));
3741 }
3742 }
3743 }
3744
3745
3746 /* Lookup KEY in hash table H. If HASH is non-null, return in *HASH
3747 the hash code of KEY. Value is the index of the entry in H
3748 matching KEY, or -1 if not found. */
3749
3750 ptrdiff_t
3751 hash_lookup (struct Lisp_Hash_Table *h, Lisp_Object key, EMACS_UINT *hash)
3752 {
3753 EMACS_UINT hash_code;
3754 ptrdiff_t start_of_bucket;
3755 Lisp_Object idx;
3756
3757 hash_code = h->test.hashfn (&h->test, key);
3758 eassert ((hash_code & ~INTMASK) == 0);
3759 if (hash)
3760 *hash = hash_code;
3761
3762 start_of_bucket = hash_code % ASIZE (h->index);
3763 idx = HASH_INDEX (h, start_of_bucket);
3764
3765 /* We need not gcpro idx since it's either an integer or nil. */
3766 while (!NILP (idx))
3767 {
3768 ptrdiff_t i = XFASTINT (idx);
3769 if (EQ (key, HASH_KEY (h, i))
3770 || (h->test.cmpfn
3771 && hash_code == XUINT (HASH_HASH (h, i))
3772 && h->test.cmpfn (&h->test, key, HASH_KEY (h, i))))
3773 break;
3774 idx = HASH_NEXT (h, i);
3775 }
3776
3777 return NILP (idx) ? -1 : XFASTINT (idx);
3778 }
3779
3780
3781 /* Put an entry into hash table H that associates KEY with VALUE.
3782 HASH is a previously computed hash code of KEY.
3783 Value is the index of the entry in H matching KEY. */
3784
3785 ptrdiff_t
3786 hash_put (struct Lisp_Hash_Table *h, Lisp_Object key, Lisp_Object value,
3787 EMACS_UINT hash)
3788 {
3789 ptrdiff_t start_of_bucket, i;
3790
3791 eassert ((hash & ~INTMASK) == 0);
3792
3793 /* Increment count after resizing because resizing may fail. */
3794 maybe_resize_hash_table (h);
3795 h->count++;
3796
3797 /* Store key/value in the key_and_value vector. */
3798 i = XFASTINT (h->next_free);
3799 h->next_free = HASH_NEXT (h, i);
3800 set_hash_key_slot (h, i, key);
3801 set_hash_value_slot (h, i, value);
3802
3803 /* Remember its hash code. */
3804 set_hash_hash_slot (h, i, make_number (hash));
3805
3806 /* Add new entry to its collision chain. */
3807 start_of_bucket = hash % ASIZE (h->index);
3808 set_hash_next_slot (h, i, HASH_INDEX (h, start_of_bucket));
3809 set_hash_index_slot (h, start_of_bucket, make_number (i));
3810 return i;
3811 }
3812
3813
3814 /* Remove the entry matching KEY from hash table H, if there is one. */
3815
3816 static void
3817 hash_remove_from_table (struct Lisp_Hash_Table *h, Lisp_Object key)
3818 {
3819 EMACS_UINT hash_code;
3820 ptrdiff_t start_of_bucket;
3821 Lisp_Object idx, prev;
3822
3823 hash_code = h->test.hashfn (&h->test, key);
3824 eassert ((hash_code & ~INTMASK) == 0);
3825 start_of_bucket = hash_code % ASIZE (h->index);
3826 idx = HASH_INDEX (h, start_of_bucket);
3827 prev = Qnil;
3828
3829 /* We need not gcpro idx, prev since they're either integers or nil. */
3830 while (!NILP (idx))
3831 {
3832 ptrdiff_t i = XFASTINT (idx);
3833
3834 if (EQ (key, HASH_KEY (h, i))
3835 || (h->test.cmpfn
3836 && hash_code == XUINT (HASH_HASH (h, i))
3837 && h->test.cmpfn (&h->test, key, HASH_KEY (h, i))))
3838 {
3839 /* Take entry out of collision chain. */
3840 if (NILP (prev))
3841 set_hash_index_slot (h, start_of_bucket, HASH_NEXT (h, i));
3842 else
3843 set_hash_next_slot (h, XFASTINT (prev), HASH_NEXT (h, i));
3844
3845 /* Clear slots in key_and_value and add the slots to
3846 the free list. */
3847 set_hash_key_slot (h, i, Qnil);
3848 set_hash_value_slot (h, i, Qnil);
3849 set_hash_hash_slot (h, i, Qnil);
3850 set_hash_next_slot (h, i, h->next_free);
3851 h->next_free = make_number (i);
3852 h->count--;
3853 eassert (h->count >= 0);
3854 break;
3855 }
3856 else
3857 {
3858 prev = idx;
3859 idx = HASH_NEXT (h, i);
3860 }
3861 }
3862 }
3863
3864
3865 /* Clear hash table H. */
3866
3867 static void
3868 hash_clear (struct Lisp_Hash_Table *h)
3869 {
3870 if (h->count > 0)
3871 {
3872 ptrdiff_t i, size = HASH_TABLE_SIZE (h);
3873
3874 for (i = 0; i < size; ++i)
3875 {
3876 set_hash_next_slot (h, i, i < size - 1 ? make_number (i + 1) : Qnil);
3877 set_hash_key_slot (h, i, Qnil);
3878 set_hash_value_slot (h, i, Qnil);
3879 set_hash_hash_slot (h, i, Qnil);
3880 }
3881
3882 for (i = 0; i < ASIZE (h->index); ++i)
3883 ASET (h->index, i, Qnil);
3884
3885 h->next_free = make_number (0);
3886 h->count = 0;
3887 }
3888 }
3889
3890
3891 \f
3892 /************************************************************************
3893 Weak Hash Tables
3894 ************************************************************************/
3895
3896 /* Sweep weak hash table H. REMOVE_ENTRIES_P means remove
3897 entries from the table that don't survive the current GC.
3898 !REMOVE_ENTRIES_P means mark entries that are in use. Value is
3899 true if anything was marked. */
3900
3901 static bool
3902 sweep_weak_table (struct Lisp_Hash_Table *h, bool remove_entries_p)
3903 {
3904 ptrdiff_t bucket, n;
3905 bool marked;
3906
3907 n = ASIZE (h->index) & ~ARRAY_MARK_FLAG;
3908 marked = 0;
3909
3910 for (bucket = 0; bucket < n; ++bucket)
3911 {
3912 Lisp_Object idx, next, prev;
3913
3914 /* Follow collision chain, removing entries that
3915 don't survive this garbage collection. */
3916 prev = Qnil;
3917 for (idx = HASH_INDEX (h, bucket); !NILP (idx); idx = next)
3918 {
3919 ptrdiff_t i = XFASTINT (idx);
3920 bool key_known_to_survive_p = survives_gc_p (HASH_KEY (h, i));
3921 bool value_known_to_survive_p = survives_gc_p (HASH_VALUE (h, i));
3922 bool remove_p;
3923
3924 if (EQ (h->weak, Qkey))
3925 remove_p = !key_known_to_survive_p;
3926 else if (EQ (h->weak, Qvalue))
3927 remove_p = !value_known_to_survive_p;
3928 else if (EQ (h->weak, Qkey_or_value))
3929 remove_p = !(key_known_to_survive_p || value_known_to_survive_p);
3930 else if (EQ (h->weak, Qkey_and_value))
3931 remove_p = !(key_known_to_survive_p && value_known_to_survive_p);
3932 else
3933 emacs_abort ();
3934
3935 next = HASH_NEXT (h, i);
3936
3937 if (remove_entries_p)
3938 {
3939 if (remove_p)
3940 {
3941 /* Take out of collision chain. */
3942 if (NILP (prev))
3943 set_hash_index_slot (h, bucket, next);
3944 else
3945 set_hash_next_slot (h, XFASTINT (prev), next);
3946
3947 /* Add to free list. */
3948 set_hash_next_slot (h, i, h->next_free);
3949 h->next_free = idx;
3950
3951 /* Clear key, value, and hash. */
3952 set_hash_key_slot (h, i, Qnil);
3953 set_hash_value_slot (h, i, Qnil);
3954 set_hash_hash_slot (h, i, Qnil);
3955
3956 h->count--;
3957 }
3958 else
3959 {
3960 prev = idx;
3961 }
3962 }
3963 else
3964 {
3965 if (!remove_p)
3966 {
3967 /* Make sure key and value survive. */
3968 if (!key_known_to_survive_p)
3969 {
3970 mark_object (HASH_KEY (h, i));
3971 marked = 1;
3972 }
3973
3974 if (!value_known_to_survive_p)
3975 {
3976 mark_object (HASH_VALUE (h, i));
3977 marked = 1;
3978 }
3979 }
3980 }
3981 }
3982 }
3983
3984 return marked;
3985 }
3986
3987 /* Remove elements from weak hash tables that don't survive the
3988 current garbage collection. Remove weak tables that don't survive
3989 from Vweak_hash_tables. Called from gc_sweep. */
3990
3991 void
3992 sweep_weak_hash_tables (void)
3993 {
3994 struct Lisp_Hash_Table *h, *used, *next;
3995 bool marked;
3996
3997 /* Mark all keys and values that are in use. Keep on marking until
3998 there is no more change. This is necessary for cases like
3999 value-weak table A containing an entry X -> Y, where Y is used in a
4000 key-weak table B, Z -> Y. If B comes after A in the list of weak
4001 tables, X -> Y might be removed from A, although when looking at B
4002 one finds that it shouldn't. */
4003 do
4004 {
4005 marked = 0;
4006 for (h = weak_hash_tables; h; h = h->next_weak)
4007 {
4008 if (h->header.size & ARRAY_MARK_FLAG)
4009 marked |= sweep_weak_table (h, 0);
4010 }
4011 }
4012 while (marked);
4013
4014 /* Remove tables and entries that aren't used. */
4015 for (h = weak_hash_tables, used = NULL; h; h = next)
4016 {
4017 next = h->next_weak;
4018
4019 if (h->header.size & ARRAY_MARK_FLAG)
4020 {
4021 /* TABLE is marked as used. Sweep its contents. */
4022 if (h->count > 0)
4023 sweep_weak_table (h, 1);
4024
4025 /* Add table to the list of used weak hash tables. */
4026 h->next_weak = used;
4027 used = h;
4028 }
4029 }
4030
4031 weak_hash_tables = used;
4032 }
4033
4034
4035 \f
4036 /***********************************************************************
4037 Hash Code Computation
4038 ***********************************************************************/
4039
4040 /* Maximum depth up to which to dive into Lisp structures. */
4041
4042 #define SXHASH_MAX_DEPTH 3
4043
4044 /* Maximum length up to which to take list and vector elements into
4045 account. */
4046
4047 #define SXHASH_MAX_LEN 7
4048
4049 /* Hash X, returning a value that fits into a Lisp integer. */
4050 #define SXHASH_REDUCE(X) \
4051 ((((X) ^ (X) >> (BITS_PER_EMACS_INT - FIXNUM_BITS))) & INTMASK)
4052
4053 /* Return a hash for string PTR which has length LEN. The hash value
4054 can be any EMACS_UINT value. */
4055
4056 EMACS_UINT
4057 hash_string (char const *ptr, ptrdiff_t len)
4058 {
4059 char const *p = ptr;
4060 char const *end = p + len;
4061 unsigned char c;
4062 EMACS_UINT hash = 0;
4063
4064 while (p != end)
4065 {
4066 c = *p++;
4067 hash = sxhash_combine (hash, c);
4068 }
4069
4070 return hash;
4071 }
4072
4073 /* Return a hash for string PTR which has length LEN. The hash
4074 code returned is guaranteed to fit in a Lisp integer. */
4075
4076 static EMACS_UINT
4077 sxhash_string (char const *ptr, ptrdiff_t len)
4078 {
4079 EMACS_UINT hash = hash_string (ptr, len);
4080 return SXHASH_REDUCE (hash);
4081 }
4082
4083 /* Return a hash for the floating point value VAL. */
4084
4085 static EMACS_INT
4086 sxhash_float (double val)
4087 {
4088 EMACS_UINT hash = 0;
4089 enum {
4090 WORDS_PER_DOUBLE = (sizeof val / sizeof hash
4091 + (sizeof val % sizeof hash != 0))
4092 };
4093 union {
4094 double val;
4095 EMACS_UINT word[WORDS_PER_DOUBLE];
4096 } u;
4097 int i;
4098 u.val = val;
4099 memset (&u.val + 1, 0, sizeof u - sizeof u.val);
4100 for (i = 0; i < WORDS_PER_DOUBLE; i++)
4101 hash = sxhash_combine (hash, u.word[i]);
4102 return SXHASH_REDUCE (hash);
4103 }
4104
4105 /* Return a hash for list LIST. DEPTH is the current depth in the
4106 list. We don't recurse deeper than SXHASH_MAX_DEPTH in it. */
4107
4108 static EMACS_UINT
4109 sxhash_list (Lisp_Object list, int depth)
4110 {
4111 EMACS_UINT hash = 0;
4112 int i;
4113
4114 if (depth < SXHASH_MAX_DEPTH)
4115 for (i = 0;
4116 CONSP (list) && i < SXHASH_MAX_LEN;
4117 list = XCDR (list), ++i)
4118 {
4119 EMACS_UINT hash2 = sxhash (XCAR (list), depth + 1);
4120 hash = sxhash_combine (hash, hash2);
4121 }
4122
4123 if (!NILP (list))
4124 {
4125 EMACS_UINT hash2 = sxhash (list, depth + 1);
4126 hash = sxhash_combine (hash, hash2);
4127 }
4128
4129 return SXHASH_REDUCE (hash);
4130 }
4131
4132
4133 /* Return a hash for vector VECTOR. DEPTH is the current depth in
4134 the Lisp structure. */
4135
4136 static EMACS_UINT
4137 sxhash_vector (Lisp_Object vec, int depth)
4138 {
4139 EMACS_UINT hash = ASIZE (vec);
4140 int i, n;
4141
4142 n = min (SXHASH_MAX_LEN, ASIZE (vec));
4143 for (i = 0; i < n; ++i)
4144 {
4145 EMACS_UINT hash2 = sxhash (AREF (vec, i), depth + 1);
4146 hash = sxhash_combine (hash, hash2);
4147 }
4148
4149 return SXHASH_REDUCE (hash);
4150 }
4151
4152 /* Return a hash for bool-vector VECTOR. */
4153
4154 static EMACS_UINT
4155 sxhash_bool_vector (Lisp_Object vec)
4156 {
4157 EMACS_UINT hash = XBOOL_VECTOR (vec)->size;
4158 int i, n;
4159
4160 n = min (SXHASH_MAX_LEN, XBOOL_VECTOR (vec)->header.size);
4161 for (i = 0; i < n; ++i)
4162 hash = sxhash_combine (hash, XBOOL_VECTOR (vec)->data[i]);
4163
4164 return SXHASH_REDUCE (hash);
4165 }
4166
4167
4168 /* Return a hash code for OBJ. DEPTH is the current depth in the Lisp
4169 structure. Value is an unsigned integer clipped to INTMASK. */
4170
4171 EMACS_UINT
4172 sxhash (Lisp_Object obj, int depth)
4173 {
4174 EMACS_UINT hash;
4175
4176 if (depth > SXHASH_MAX_DEPTH)
4177 return 0;
4178
4179 switch (XTYPE (obj))
4180 {
4181 case_Lisp_Int:
4182 hash = XUINT (obj);
4183 break;
4184
4185 case Lisp_Misc:
4186 hash = XHASH (obj);
4187 break;
4188
4189 case Lisp_Symbol:
4190 obj = SYMBOL_NAME (obj);
4191 /* Fall through. */
4192
4193 case Lisp_String:
4194 hash = sxhash_string (SSDATA (obj), SBYTES (obj));
4195 break;
4196
4197 /* This can be everything from a vector to an overlay. */
4198 case Lisp_Vectorlike:
4199 if (VECTORP (obj))
4200 /* According to the CL HyperSpec, two arrays are equal only if
4201 they are `eq', except for strings and bit-vectors. In
4202 Emacs, this works differently. We have to compare element
4203 by element. */
4204 hash = sxhash_vector (obj, depth);
4205 else if (BOOL_VECTOR_P (obj))
4206 hash = sxhash_bool_vector (obj);
4207 else
4208 /* Others are `equal' if they are `eq', so let's take their
4209 address as hash. */
4210 hash = XHASH (obj);
4211 break;
4212
4213 case Lisp_Cons:
4214 hash = sxhash_list (obj, depth);
4215 break;
4216
4217 case Lisp_Float:
4218 hash = sxhash_float (XFLOAT_DATA (obj));
4219 break;
4220
4221 default:
4222 emacs_abort ();
4223 }
4224
4225 return hash;
4226 }
4227
4228
4229 \f
4230 /***********************************************************************
4231 Lisp Interface
4232 ***********************************************************************/
4233
4234
4235 DEFUN ("sxhash", Fsxhash, Ssxhash, 1, 1, 0,
4236 doc: /* Compute a hash code for OBJ and return it as integer. */)
4237 (Lisp_Object obj)
4238 {
4239 EMACS_UINT hash = sxhash (obj, 0);
4240 return make_number (hash);
4241 }
4242
4243
4244 DEFUN ("make-hash-table", Fmake_hash_table, Smake_hash_table, 0, MANY, 0,
4245 doc: /* Create and return a new hash table.
4246
4247 Arguments are specified as keyword/argument pairs. The following
4248 arguments are defined:
4249
4250 :test TEST -- TEST must be a symbol that specifies how to compare
4251 keys. Default is `eql'. Predefined are the tests `eq', `eql', and
4252 `equal'. User-supplied test and hash functions can be specified via
4253 `define-hash-table-test'.
4254
4255 :size SIZE -- A hint as to how many elements will be put in the table.
4256 Default is 65.
4257
4258 :rehash-size REHASH-SIZE - Indicates how to expand the table when it
4259 fills up. If REHASH-SIZE is an integer, increase the size by that
4260 amount. If it is a float, it must be > 1.0, and the new size is the
4261 old size multiplied by that factor. Default is 1.5.
4262
4263 :rehash-threshold THRESHOLD -- THRESHOLD must a float > 0, and <= 1.0.
4264 Resize the hash table when the ratio (number of entries / table size)
4265 is greater than or equal to THRESHOLD. Default is 0.8.
4266
4267 :weakness WEAK -- WEAK must be one of nil, t, `key', `value',
4268 `key-or-value', or `key-and-value'. If WEAK is not nil, the table
4269 returned is a weak table. Key/value pairs are removed from a weak
4270 hash table when there are no non-weak references pointing to their
4271 key, value, one of key or value, or both key and value, depending on
4272 WEAK. WEAK t is equivalent to `key-and-value'. Default value of WEAK
4273 is nil.
4274
4275 usage: (make-hash-table &rest KEYWORD-ARGS) */)
4276 (ptrdiff_t nargs, Lisp_Object *args)
4277 {
4278 Lisp_Object test, size, rehash_size, rehash_threshold, weak;
4279 struct hash_table_test testdesc;
4280 char *used;
4281 ptrdiff_t i;
4282
4283 /* The vector `used' is used to keep track of arguments that
4284 have been consumed. */
4285 used = alloca (nargs * sizeof *used);
4286 memset (used, 0, nargs * sizeof *used);
4287
4288 /* See if there's a `:test TEST' among the arguments. */
4289 i = get_key_arg (QCtest, nargs, args, used);
4290 test = i ? args[i] : Qeql;
4291 if (EQ (test, Qeq))
4292 testdesc = hashtest_eq;
4293 else if (EQ (test, Qeql))
4294 testdesc = hashtest_eql;
4295 else if (EQ (test, Qequal))
4296 testdesc = hashtest_equal;
4297 else
4298 {
4299 /* See if it is a user-defined test. */
4300 Lisp_Object prop;
4301
4302 prop = Fget (test, Qhash_table_test);
4303 if (!CONSP (prop) || !CONSP (XCDR (prop)))
4304 signal_error ("Invalid hash table test", test);
4305 testdesc.name = test;
4306 testdesc.user_cmp_function = XCAR (prop);
4307 testdesc.user_hash_function = XCAR (XCDR (prop));
4308 testdesc.hashfn = hashfn_user_defined;
4309 testdesc.cmpfn = cmpfn_user_defined;
4310 }
4311
4312 /* See if there's a `:size SIZE' argument. */
4313 i = get_key_arg (QCsize, nargs, args, used);
4314 size = i ? args[i] : Qnil;
4315 if (NILP (size))
4316 size = make_number (DEFAULT_HASH_SIZE);
4317 else if (!INTEGERP (size) || XINT (size) < 0)
4318 signal_error ("Invalid hash table size", size);
4319
4320 /* Look for `:rehash-size SIZE'. */
4321 i = get_key_arg (QCrehash_size, nargs, args, used);
4322 rehash_size = i ? args[i] : make_float (DEFAULT_REHASH_SIZE);
4323 if (! ((INTEGERP (rehash_size) && 0 < XINT (rehash_size))
4324 || (FLOATP (rehash_size) && 1 < XFLOAT_DATA (rehash_size))))
4325 signal_error ("Invalid hash table rehash size", rehash_size);
4326
4327 /* Look for `:rehash-threshold THRESHOLD'. */
4328 i = get_key_arg (QCrehash_threshold, nargs, args, used);
4329 rehash_threshold = i ? args[i] : make_float (DEFAULT_REHASH_THRESHOLD);
4330 if (! (FLOATP (rehash_threshold)
4331 && 0 < XFLOAT_DATA (rehash_threshold)
4332 && XFLOAT_DATA (rehash_threshold) <= 1))
4333 signal_error ("Invalid hash table rehash threshold", rehash_threshold);
4334
4335 /* Look for `:weakness WEAK'. */
4336 i = get_key_arg (QCweakness, nargs, args, used);
4337 weak = i ? args[i] : Qnil;
4338 if (EQ (weak, Qt))
4339 weak = Qkey_and_value;
4340 if (!NILP (weak)
4341 && !EQ (weak, Qkey)
4342 && !EQ (weak, Qvalue)
4343 && !EQ (weak, Qkey_or_value)
4344 && !EQ (weak, Qkey_and_value))
4345 signal_error ("Invalid hash table weakness", weak);
4346
4347 /* Now, all args should have been used up, or there's a problem. */
4348 for (i = 0; i < nargs; ++i)
4349 if (!used[i])
4350 signal_error ("Invalid argument list", args[i]);
4351
4352 return make_hash_table (testdesc, size, rehash_size, rehash_threshold, weak);
4353 }
4354
4355
4356 DEFUN ("copy-hash-table", Fcopy_hash_table, Scopy_hash_table, 1, 1, 0,
4357 doc: /* Return a copy of hash table TABLE. */)
4358 (Lisp_Object table)
4359 {
4360 return copy_hash_table (check_hash_table (table));
4361 }
4362
4363
4364 DEFUN ("hash-table-count", Fhash_table_count, Shash_table_count, 1, 1, 0,
4365 doc: /* Return the number of elements in TABLE. */)
4366 (Lisp_Object table)
4367 {
4368 return make_number (check_hash_table (table)->count);
4369 }
4370
4371
4372 DEFUN ("hash-table-rehash-size", Fhash_table_rehash_size,
4373 Shash_table_rehash_size, 1, 1, 0,
4374 doc: /* Return the current rehash size of TABLE. */)
4375 (Lisp_Object table)
4376 {
4377 return check_hash_table (table)->rehash_size;
4378 }
4379
4380
4381 DEFUN ("hash-table-rehash-threshold", Fhash_table_rehash_threshold,
4382 Shash_table_rehash_threshold, 1, 1, 0,
4383 doc: /* Return the current rehash threshold of TABLE. */)
4384 (Lisp_Object table)
4385 {
4386 return check_hash_table (table)->rehash_threshold;
4387 }
4388
4389
4390 DEFUN ("hash-table-size", Fhash_table_size, Shash_table_size, 1, 1, 0,
4391 doc: /* Return the size of TABLE.
4392 The size can be used as an argument to `make-hash-table' to create
4393 a hash table than can hold as many elements as TABLE holds
4394 without need for resizing. */)
4395 (Lisp_Object table)
4396 {
4397 struct Lisp_Hash_Table *h = check_hash_table (table);
4398 return make_number (HASH_TABLE_SIZE (h));
4399 }
4400
4401
4402 DEFUN ("hash-table-test", Fhash_table_test, Shash_table_test, 1, 1, 0,
4403 doc: /* Return the test TABLE uses. */)
4404 (Lisp_Object table)
4405 {
4406 return check_hash_table (table)->test.name;
4407 }
4408
4409
4410 DEFUN ("hash-table-weakness", Fhash_table_weakness, Shash_table_weakness,
4411 1, 1, 0,
4412 doc: /* Return the weakness of TABLE. */)
4413 (Lisp_Object table)
4414 {
4415 return check_hash_table (table)->weak;
4416 }
4417
4418
4419 DEFUN ("hash-table-p", Fhash_table_p, Shash_table_p, 1, 1, 0,
4420 doc: /* Return t if OBJ is a Lisp hash table object. */)
4421 (Lisp_Object obj)
4422 {
4423 return HASH_TABLE_P (obj) ? Qt : Qnil;
4424 }
4425
4426
4427 DEFUN ("clrhash", Fclrhash, Sclrhash, 1, 1, 0,
4428 doc: /* Clear hash table TABLE and return it. */)
4429 (Lisp_Object table)
4430 {
4431 hash_clear (check_hash_table (table));
4432 /* Be compatible with XEmacs. */
4433 return table;
4434 }
4435
4436
4437 DEFUN ("gethash", Fgethash, Sgethash, 2, 3, 0,
4438 doc: /* Look up KEY in TABLE and return its associated value.
4439 If KEY is not found, return DFLT which defaults to nil. */)
4440 (Lisp_Object key, Lisp_Object table, Lisp_Object dflt)
4441 {
4442 struct Lisp_Hash_Table *h = check_hash_table (table);
4443 ptrdiff_t i = hash_lookup (h, key, NULL);
4444 return i >= 0 ? HASH_VALUE (h, i) : dflt;
4445 }
4446
4447
4448 DEFUN ("puthash", Fputhash, Sputhash, 3, 3, 0,
4449 doc: /* Associate KEY with VALUE in hash table TABLE.
4450 If KEY is already present in table, replace its current value with
4451 VALUE. In any case, return VALUE. */)
4452 (Lisp_Object key, Lisp_Object value, Lisp_Object table)
4453 {
4454 struct Lisp_Hash_Table *h = check_hash_table (table);
4455 ptrdiff_t i;
4456 EMACS_UINT hash;
4457
4458 i = hash_lookup (h, key, &hash);
4459 if (i >= 0)
4460 set_hash_value_slot (h, i, value);
4461 else
4462 hash_put (h, key, value, hash);
4463
4464 return value;
4465 }
4466
4467
4468 DEFUN ("remhash", Fremhash, Sremhash, 2, 2, 0,
4469 doc: /* Remove KEY from TABLE. */)
4470 (Lisp_Object key, Lisp_Object table)
4471 {
4472 struct Lisp_Hash_Table *h = check_hash_table (table);
4473 hash_remove_from_table (h, key);
4474 return Qnil;
4475 }
4476
4477
4478 DEFUN ("maphash", Fmaphash, Smaphash, 2, 2, 0,
4479 doc: /* Call FUNCTION for all entries in hash table TABLE.
4480 FUNCTION is called with two arguments, KEY and VALUE. */)
4481 (Lisp_Object function, Lisp_Object table)
4482 {
4483 struct Lisp_Hash_Table *h = check_hash_table (table);
4484 Lisp_Object args[3];
4485 ptrdiff_t i;
4486
4487 for (i = 0; i < HASH_TABLE_SIZE (h); ++i)
4488 if (!NILP (HASH_HASH (h, i)))
4489 {
4490 args[0] = function;
4491 args[1] = HASH_KEY (h, i);
4492 args[2] = HASH_VALUE (h, i);
4493 Ffuncall (3, args);
4494 }
4495
4496 return Qnil;
4497 }
4498
4499
4500 DEFUN ("define-hash-table-test", Fdefine_hash_table_test,
4501 Sdefine_hash_table_test, 3, 3, 0,
4502 doc: /* Define a new hash table test with name NAME, a symbol.
4503
4504 In hash tables created with NAME specified as test, use TEST to
4505 compare keys, and HASH for computing hash codes of keys.
4506
4507 TEST must be a function taking two arguments and returning non-nil if
4508 both arguments are the same. HASH must be a function taking one
4509 argument and return an integer that is the hash code of the argument.
4510 Hash code computation should use the whole value range of integers,
4511 including negative integers. */)
4512 (Lisp_Object name, Lisp_Object test, Lisp_Object hash)
4513 {
4514 return Fput (name, Qhash_table_test, list2 (test, hash));
4515 }
4516
4517
4518 \f
4519 /************************************************************************
4520 MD5, SHA-1, and SHA-2
4521 ************************************************************************/
4522
4523 #include "md5.h"
4524 #include "sha1.h"
4525 #include "sha256.h"
4526 #include "sha512.h"
4527
4528 /* ALGORITHM is a symbol: md5, sha1, sha224 and so on. */
4529
4530 static Lisp_Object
4531 secure_hash (Lisp_Object algorithm, Lisp_Object object, Lisp_Object start, Lisp_Object end, Lisp_Object coding_system, Lisp_Object noerror, Lisp_Object binary)
4532 {
4533 int i;
4534 ptrdiff_t size;
4535 EMACS_INT start_char = 0, end_char = 0;
4536 ptrdiff_t start_byte, end_byte;
4537 register EMACS_INT b, e;
4538 register struct buffer *bp;
4539 EMACS_INT temp;
4540 int digest_size;
4541 void *(*hash_func) (const char *, size_t, void *);
4542 Lisp_Object digest;
4543
4544 CHECK_SYMBOL (algorithm);
4545
4546 if (STRINGP (object))
4547 {
4548 if (NILP (coding_system))
4549 {
4550 /* Decide the coding-system to encode the data with. */
4551
4552 if (STRING_MULTIBYTE (object))
4553 /* use default, we can't guess correct value */
4554 coding_system = preferred_coding_system ();
4555 else
4556 coding_system = Qraw_text;
4557 }
4558
4559 if (NILP (Fcoding_system_p (coding_system)))
4560 {
4561 /* Invalid coding system. */
4562
4563 if (!NILP (noerror))
4564 coding_system = Qraw_text;
4565 else
4566 xsignal1 (Qcoding_system_error, coding_system);
4567 }
4568
4569 if (STRING_MULTIBYTE (object))
4570 object = code_convert_string (object, coding_system, Qnil, 1, 0, 1);
4571
4572 size = SCHARS (object);
4573
4574 if (!NILP (start))
4575 {
4576 CHECK_NUMBER (start);
4577
4578 start_char = XINT (start);
4579
4580 if (start_char < 0)
4581 start_char += size;
4582 }
4583
4584 if (NILP (end))
4585 end_char = size;
4586 else
4587 {
4588 CHECK_NUMBER (end);
4589
4590 end_char = XINT (end);
4591
4592 if (end_char < 0)
4593 end_char += size;
4594 }
4595
4596 if (!(0 <= start_char && start_char <= end_char && end_char <= size))
4597 args_out_of_range_3 (object, make_number (start_char),
4598 make_number (end_char));
4599
4600 start_byte = NILP (start) ? 0 : string_char_to_byte (object, start_char);
4601 end_byte =
4602 NILP (end) ? SBYTES (object) : string_char_to_byte (object, end_char);
4603 }
4604 else
4605 {
4606 struct buffer *prev = current_buffer;
4607
4608 record_unwind_current_buffer ();
4609
4610 CHECK_BUFFER (object);
4611
4612 bp = XBUFFER (object);
4613 set_buffer_internal (bp);
4614
4615 if (NILP (start))
4616 b = BEGV;
4617 else
4618 {
4619 CHECK_NUMBER_COERCE_MARKER (start);
4620 b = XINT (start);
4621 }
4622
4623 if (NILP (end))
4624 e = ZV;
4625 else
4626 {
4627 CHECK_NUMBER_COERCE_MARKER (end);
4628 e = XINT (end);
4629 }
4630
4631 if (b > e)
4632 temp = b, b = e, e = temp;
4633
4634 if (!(BEGV <= b && e <= ZV))
4635 args_out_of_range (start, end);
4636
4637 if (NILP (coding_system))
4638 {
4639 /* Decide the coding-system to encode the data with.
4640 See fileio.c:Fwrite-region */
4641
4642 if (!NILP (Vcoding_system_for_write))
4643 coding_system = Vcoding_system_for_write;
4644 else
4645 {
4646 bool force_raw_text = 0;
4647
4648 coding_system = BVAR (XBUFFER (object), buffer_file_coding_system);
4649 if (NILP (coding_system)
4650 || NILP (Flocal_variable_p (Qbuffer_file_coding_system, Qnil)))
4651 {
4652 coding_system = Qnil;
4653 if (NILP (BVAR (current_buffer, enable_multibyte_characters)))
4654 force_raw_text = 1;
4655 }
4656
4657 if (NILP (coding_system) && !NILP (Fbuffer_file_name (object)))
4658 {
4659 /* Check file-coding-system-alist. */
4660 Lisp_Object args[4], val;
4661
4662 args[0] = Qwrite_region; args[1] = start; args[2] = end;
4663 args[3] = Fbuffer_file_name (object);
4664 val = Ffind_operation_coding_system (4, args);
4665 if (CONSP (val) && !NILP (XCDR (val)))
4666 coding_system = XCDR (val);
4667 }
4668
4669 if (NILP (coding_system)
4670 && !NILP (BVAR (XBUFFER (object), buffer_file_coding_system)))
4671 {
4672 /* If we still have not decided a coding system, use the
4673 default value of buffer-file-coding-system. */
4674 coding_system = BVAR (XBUFFER (object), buffer_file_coding_system);
4675 }
4676
4677 if (!force_raw_text
4678 && !NILP (Ffboundp (Vselect_safe_coding_system_function)))
4679 /* Confirm that VAL can surely encode the current region. */
4680 coding_system = call4 (Vselect_safe_coding_system_function,
4681 make_number (b), make_number (e),
4682 coding_system, Qnil);
4683
4684 if (force_raw_text)
4685 coding_system = Qraw_text;
4686 }
4687
4688 if (NILP (Fcoding_system_p (coding_system)))
4689 {
4690 /* Invalid coding system. */
4691
4692 if (!NILP (noerror))
4693 coding_system = Qraw_text;
4694 else
4695 xsignal1 (Qcoding_system_error, coding_system);
4696 }
4697 }
4698
4699 object = make_buffer_string (b, e, 0);
4700 set_buffer_internal (prev);
4701 /* Discard the unwind protect for recovering the current
4702 buffer. */
4703 specpdl_ptr--;
4704
4705 if (STRING_MULTIBYTE (object))
4706 object = code_convert_string (object, coding_system, Qnil, 1, 0, 0);
4707 start_byte = 0;
4708 end_byte = SBYTES (object);
4709 }
4710
4711 if (EQ (algorithm, Qmd5))
4712 {
4713 digest_size = MD5_DIGEST_SIZE;
4714 hash_func = md5_buffer;
4715 }
4716 else if (EQ (algorithm, Qsha1))
4717 {
4718 digest_size = SHA1_DIGEST_SIZE;
4719 hash_func = sha1_buffer;
4720 }
4721 else if (EQ (algorithm, Qsha224))
4722 {
4723 digest_size = SHA224_DIGEST_SIZE;
4724 hash_func = sha224_buffer;
4725 }
4726 else if (EQ (algorithm, Qsha256))
4727 {
4728 digest_size = SHA256_DIGEST_SIZE;
4729 hash_func = sha256_buffer;
4730 }
4731 else if (EQ (algorithm, Qsha384))
4732 {
4733 digest_size = SHA384_DIGEST_SIZE;
4734 hash_func = sha384_buffer;
4735 }
4736 else if (EQ (algorithm, Qsha512))
4737 {
4738 digest_size = SHA512_DIGEST_SIZE;
4739 hash_func = sha512_buffer;
4740 }
4741 else
4742 error ("Invalid algorithm arg: %s", SDATA (Fsymbol_name (algorithm)));
4743
4744 /* allocate 2 x digest_size so that it can be re-used to hold the
4745 hexified value */
4746 digest = make_uninit_string (digest_size * 2);
4747
4748 hash_func (SSDATA (object) + start_byte,
4749 end_byte - start_byte,
4750 SSDATA (digest));
4751
4752 if (NILP (binary))
4753 {
4754 unsigned char *p = SDATA (digest);
4755 for (i = digest_size - 1; i >= 0; i--)
4756 {
4757 static char const hexdigit[16] = "0123456789abcdef";
4758 int p_i = p[i];
4759 p[2 * i] = hexdigit[p_i >> 4];
4760 p[2 * i + 1] = hexdigit[p_i & 0xf];
4761 }
4762 return digest;
4763 }
4764 else
4765 return make_unibyte_string (SSDATA (digest), digest_size);
4766 }
4767
4768 DEFUN ("md5", Fmd5, Smd5, 1, 5, 0,
4769 doc: /* Return MD5 message digest of OBJECT, a buffer or string.
4770
4771 A message digest is a cryptographic checksum of a document, and the
4772 algorithm to calculate it is defined in RFC 1321.
4773
4774 The two optional arguments START and END are character positions
4775 specifying for which part of OBJECT the message digest should be
4776 computed. If nil or omitted, the digest is computed for the whole
4777 OBJECT.
4778
4779 The MD5 message digest is computed from the result of encoding the
4780 text in a coding system, not directly from the internal Emacs form of
4781 the text. The optional fourth argument CODING-SYSTEM specifies which
4782 coding system to encode the text with. It should be the same coding
4783 system that you used or will use when actually writing the text into a
4784 file.
4785
4786 If CODING-SYSTEM is nil or omitted, the default depends on OBJECT. If
4787 OBJECT is a buffer, the default for CODING-SYSTEM is whatever coding
4788 system would be chosen by default for writing this text into a file.
4789
4790 If OBJECT is a string, the most preferred coding system (see the
4791 command `prefer-coding-system') is used.
4792
4793 If NOERROR is non-nil, silently assume the `raw-text' coding if the
4794 guesswork fails. Normally, an error is signaled in such case. */)
4795 (Lisp_Object object, Lisp_Object start, Lisp_Object end, Lisp_Object coding_system, Lisp_Object noerror)
4796 {
4797 return secure_hash (Qmd5, object, start, end, coding_system, noerror, Qnil);
4798 }
4799
4800 DEFUN ("secure-hash", Fsecure_hash, Ssecure_hash, 2, 5, 0,
4801 doc: /* Return the secure hash of OBJECT, a buffer or string.
4802 ALGORITHM is a symbol specifying the hash to use:
4803 md5, sha1, sha224, sha256, sha384 or sha512.
4804
4805 The two optional arguments START and END are positions specifying for
4806 which part of OBJECT to compute the hash. If nil or omitted, uses the
4807 whole OBJECT.
4808
4809 If BINARY is non-nil, returns a string in binary form. */)
4810 (Lisp_Object algorithm, Lisp_Object object, Lisp_Object start, Lisp_Object end, Lisp_Object binary)
4811 {
4812 return secure_hash (algorithm, object, start, end, Qnil, Qnil, binary);
4813 }
4814 \f
4815 void
4816 syms_of_fns (void)
4817 {
4818 DEFSYM (Qmd5, "md5");
4819 DEFSYM (Qsha1, "sha1");
4820 DEFSYM (Qsha224, "sha224");
4821 DEFSYM (Qsha256, "sha256");
4822 DEFSYM (Qsha384, "sha384");
4823 DEFSYM (Qsha512, "sha512");
4824
4825 /* Hash table stuff. */
4826 DEFSYM (Qhash_table_p, "hash-table-p");
4827 DEFSYM (Qeq, "eq");
4828 DEFSYM (Qeql, "eql");
4829 DEFSYM (Qequal, "equal");
4830 DEFSYM (QCtest, ":test");
4831 DEFSYM (QCsize, ":size");
4832 DEFSYM (QCrehash_size, ":rehash-size");
4833 DEFSYM (QCrehash_threshold, ":rehash-threshold");
4834 DEFSYM (QCweakness, ":weakness");
4835 DEFSYM (Qkey, "key");
4836 DEFSYM (Qvalue, "value");
4837 DEFSYM (Qhash_table_test, "hash-table-test");
4838 DEFSYM (Qkey_or_value, "key-or-value");
4839 DEFSYM (Qkey_and_value, "key-and-value");
4840
4841 defsubr (&Ssxhash);
4842 defsubr (&Smake_hash_table);
4843 defsubr (&Scopy_hash_table);
4844 defsubr (&Shash_table_count);
4845 defsubr (&Shash_table_rehash_size);
4846 defsubr (&Shash_table_rehash_threshold);
4847 defsubr (&Shash_table_size);
4848 defsubr (&Shash_table_test);
4849 defsubr (&Shash_table_weakness);
4850 defsubr (&Shash_table_p);
4851 defsubr (&Sclrhash);
4852 defsubr (&Sgethash);
4853 defsubr (&Sputhash);
4854 defsubr (&Sremhash);
4855 defsubr (&Smaphash);
4856 defsubr (&Sdefine_hash_table_test);
4857
4858 DEFSYM (Qstring_lessp, "string-lessp");
4859 DEFSYM (Qprovide, "provide");
4860 DEFSYM (Qrequire, "require");
4861 DEFSYM (Qyes_or_no_p_history, "yes-or-no-p-history");
4862 DEFSYM (Qcursor_in_echo_area, "cursor-in-echo-area");
4863 DEFSYM (Qwidget_type, "widget-type");
4864
4865 staticpro (&string_char_byte_cache_string);
4866 string_char_byte_cache_string = Qnil;
4867
4868 require_nesting_list = Qnil;
4869 staticpro (&require_nesting_list);
4870
4871 Fset (Qyes_or_no_p_history, Qnil);
4872
4873 DEFVAR_LISP ("features", Vfeatures,
4874 doc: /* A list of symbols which are the features of the executing Emacs.
4875 Used by `featurep' and `require', and altered by `provide'. */);
4876 Vfeatures = Fcons (intern_c_string ("emacs"), Qnil);
4877 DEFSYM (Qsubfeatures, "subfeatures");
4878
4879 #ifdef HAVE_LANGINFO_CODESET
4880 DEFSYM (Qcodeset, "codeset");
4881 DEFSYM (Qdays, "days");
4882 DEFSYM (Qmonths, "months");
4883 DEFSYM (Qpaper, "paper");
4884 #endif /* HAVE_LANGINFO_CODESET */
4885
4886 DEFVAR_BOOL ("use-dialog-box", use_dialog_box,
4887 doc: /* Non-nil means mouse commands use dialog boxes to ask questions.
4888 This applies to `y-or-n-p' and `yes-or-no-p' questions asked by commands
4889 invoked by mouse clicks and mouse menu items.
4890
4891 On some platforms, file selection dialogs are also enabled if this is
4892 non-nil. */);
4893 use_dialog_box = 1;
4894
4895 DEFVAR_BOOL ("use-file-dialog", use_file_dialog,
4896 doc: /* Non-nil means mouse commands use a file dialog to ask for files.
4897 This applies to commands from menus and tool bar buttons even when
4898 they are initiated from the keyboard. If `use-dialog-box' is nil,
4899 that disables the use of a file dialog, regardless of the value of
4900 this variable. */);
4901 use_file_dialog = 1;
4902
4903 defsubr (&Sidentity);
4904 defsubr (&Srandom);
4905 defsubr (&Slength);
4906 defsubr (&Ssafe_length);
4907 defsubr (&Sstring_bytes);
4908 defsubr (&Sstring_equal);
4909 defsubr (&Scompare_strings);
4910 defsubr (&Sstring_lessp);
4911 defsubr (&Sappend);
4912 defsubr (&Sconcat);
4913 defsubr (&Svconcat);
4914 defsubr (&Scopy_sequence);
4915 defsubr (&Sstring_make_multibyte);
4916 defsubr (&Sstring_make_unibyte);
4917 defsubr (&Sstring_as_multibyte);
4918 defsubr (&Sstring_as_unibyte);
4919 defsubr (&Sstring_to_multibyte);
4920 defsubr (&Sstring_to_unibyte);
4921 defsubr (&Scopy_alist);
4922 defsubr (&Ssubstring);
4923 defsubr (&Ssubstring_no_properties);
4924 defsubr (&Snthcdr);
4925 defsubr (&Snth);
4926 defsubr (&Selt);
4927 defsubr (&Smember);
4928 defsubr (&Smemq);
4929 defsubr (&Smemql);
4930 defsubr (&Sassq);
4931 defsubr (&Sassoc);
4932 defsubr (&Srassq);
4933 defsubr (&Srassoc);
4934 defsubr (&Sdelq);
4935 defsubr (&Sdelete);
4936 defsubr (&Snreverse);
4937 defsubr (&Sreverse);
4938 defsubr (&Ssort);
4939 defsubr (&Splist_get);
4940 defsubr (&Sget);
4941 defsubr (&Splist_put);
4942 defsubr (&Sput);
4943 defsubr (&Slax_plist_get);
4944 defsubr (&Slax_plist_put);
4945 defsubr (&Seql);
4946 defsubr (&Sequal);
4947 defsubr (&Sequal_including_properties);
4948 defsubr (&Sfillarray);
4949 defsubr (&Sclear_string);
4950 defsubr (&Snconc);
4951 defsubr (&Smapcar);
4952 defsubr (&Smapc);
4953 defsubr (&Smapconcat);
4954 defsubr (&Syes_or_no_p);
4955 defsubr (&Sload_average);
4956 defsubr (&Sfeaturep);
4957 defsubr (&Srequire);
4958 defsubr (&Sprovide);
4959 defsubr (&Splist_member);
4960 defsubr (&Swidget_put);
4961 defsubr (&Swidget_get);
4962 defsubr (&Swidget_apply);
4963 defsubr (&Sbase64_encode_region);
4964 defsubr (&Sbase64_decode_region);
4965 defsubr (&Sbase64_encode_string);
4966 defsubr (&Sbase64_decode_string);
4967 defsubr (&Smd5);
4968 defsubr (&Ssecure_hash);
4969 defsubr (&Slocale_info);
4970
4971 {
4972 struct hash_table_test
4973 eq = { Qeq, Qnil, Qnil, NULL, hashfn_eq },
4974 eql = { Qeql, Qnil, Qnil, cmpfn_eql, hashfn_eql },
4975 equal = { Qequal, Qnil, Qnil, cmpfn_equal, hashfn_equal };
4976 hashtest_eq = eq;
4977 hashtest_eql = eql;
4978 hashtest_equal = equal;
4979 }
4980 }